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Abstract

Smith and Oskerson proposed the prototype view
for concept representation and category
classification. In the prototype view, concepts are
represented as prototypes. A prototype is a
collection of salient properties of a concept. Under
the prototype view, an instance is classified as a
member of a concept if it is sufficiently similar to the
prototype of this concept. Although the prototype
view has been extensively researched in cognitive
science, it has not been widely adopted in machine
learning. In this paper, we discuss some preliminary
work on a genetic aigorithms approach to leamning
weighted prototypes. In this approach, a concept is
represented -as one or more weighted prototypes,
each of which is a conjunction of weighted attribute
values. In this approach, every prototype maintains
its own attribute weights. A genetic algorithm is
applied to generate prototypes and their attribute
weights. This approach has been implemented in
GABWPL (Genetic Algorithm Based Weighted
Prototype Learning) and empirically evaluated on
several artificial datasets.

1. Introduction

Smith and Osherson (1984) proposed the prototype view
for concept representation and category classification. In the
prototype view, concepts are represented as prototypes. A
prototype is a collection of salient properties of a concept.
Under the prototype view, an instance is classified as a
member of a concept if it is sufficiently similar to the
prototype of this concept. The prototype represeniation
strongly supporis human concept fomnation. People tend to
remember those most often encountered instances and
forget those rmarely. encountered instances. Concepts
involved in real world applications usually possess graded
structures (Barsalou 1985). Instead of being equivalent,
instances of a concept may be characterized by a degree of
typicality ih representing the concept. Prototypes represent
the central tendencies of such graded structures, so concepts
described by prototypes are more human understandable
than those desctibved by regular instances and also easier for
human to capture the basic principles underlying these

concepts.

Although the prototype view has been extensively
researched in cognitive science, it has not been widely
adopted in machine learning. In recent years, instance-
based ieaming (IBL) becomes popuiar for several reasons,
First, it is strongly motivated by similar psychologically
plausible algorithms that perform concept formation (Smith
& Medin 1981; Aha & Goldstone 1992; Zhang 1992).
Second, polymorphy and imprecision of natural concepts
prevent many inductive iearning approaches from inducing
gencral concept descriptions, while instance-based
(exemplar-based) approaches peform well in domains
involving polymorphous and imprecise concepts (Bareiss,
Porter, & Wier 1990). Third, instance-based leaming
algotithms are simple and easy to understand and
implement. A number of instance-based leaming methods,
c.g. Protos {(Bareiss, Porter, & Wier 1990), IBn (Aha,
Kibler, & Albert 1991), and Each (Salzberg 1991), were
developed and applied to many practical problems. These
problems inciude clinical andiology (Bareiss, Porter, &
Wier 1990), diagnesis of heart diseases, classification of
congressional voting records (Aha & Kibler 1989),
prediction of protein secondary structures, word
pronunciation (Stanfill & Waltz 1986), and prediction of
DNA promoter sequences (Cost & Salzberg 1991). The
results obtained by these IBL methods were compardbie to
those obtained from other learning methods.

Unfortunately, IBL has its disadvantages. Because
concepi descriptions are represented by many individual
instances, they arc not human understandable. As we
mentioned above, a prototype represents a central tendency
of a comcept, thus prototypes are easy for human to
understand the concepts represented. Each classification of a
novel instance invoives measuring the distance between the
novel instance and each of the stored instances, so it
becomes very inefficient to make classifications when the
number of stored instances becomes large. Therefore, it is
important to develop effective storage reduction algorithms
for IBL. Skaiak (1993) showed that significant reduction in
storage of instances can be achieved in some datasets using
a few prototypes without decreasing IBL’s classification
accuracy.
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tic algorit ques. A genels

algorithm represents a specnahzed search technique, which,
although it is not guaranteed to arrive at a “best” solution,
generally arrives at a good or near optimal solution.
Furthermore, in terms of time, it is considerably more
efficient than random or exhaustive searches when the
search space is large. Learning a concept description is a
search problem. There have been many applications of
genetic algorithms to machine leamning (e.g, Wilson
1987; De Jong 1988; De Jong, Spears, & Gordon 1993).
Leaming weighted prototypes is to find a set of prototypes
in a given instance space and their attribute weights. A
prototype is am instance, but may not be a training
instance. The number of subsets of an instance space is
huge. The search space becomes much larger after attribute
weights are used. Therefore, we choose a genetic
algorithms approach to the task of leamning weighted
prototypes.

In this paper, we discuss some preliminary work on a
genetic algorithms approach to leaming weighted
prototypes. In this approach, a concept is represcnted as
one or more weighted prototypes, each of which is a
conjunction of weighted attribute values. In this approach,
every prototype maintains its own attribute weights. A
genetic algorithm is applied to gencrate prototypes and
their attribute weights. This approach has been
implemented in GABWPL (Genetic Algorithm Based
Weighted Prototype Leamning) and empirically evaluated
on several artificial datasets.

Michalski (1994) defined a multistrategy learning
system as a leaming system that integrates two or more
inferential and/or computational strategies. According this
definition, GABWPL is a multistrategy learning system
because it combines a genetic algorithm approach with a
prototype learning approach.

2. Previous work

Recently, there have been some attempis at creating
systems for leaming prototypes in machine learning (de la
Maza 1991; Zhang 1992; Daita & Kibler 1995). This
section discusses the work in applying genetic algorithms
to learning prototypes.

The work done by Sen & Knight (1995) is the most
closely related to the work reported in this paper. Sen and
Knight implemented a genctic algorithm based prototype
learning system PLEASE. In PLEASE, a concept is
represented by one or more prototypes and a prototype is a
set of attribute values. Each population structure represents
descriptions of all possible concepts and consists of one or
more prototypes belonging to each of the possible
concepts. PLEASE does not use the bit-string
representation, instead it uses real attribute values. Three
operators (mutation, creep, and two point crossover) are
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cvolve population structurcs. was un on
a set of antificial datasets and achieved higher classification
accuracy than C4.5 on these datasets.

The work reported in this paper improves PLEASE
with several extensions. First, the attribute values of a
prototype are weighted in our work: Each prototype
maintains its own set of attribute weights. The attribute
weights of a prototype are learned with the prototype.
Second, we use a different set of operators: crossover,
mutation, addition, and deletion. The first two operators
are similar to those used in PLEASE and addition and
deletion are new operators. Addition adds a new prototype
to a population structure, while deletion deletes a
prototype from a population structure. Third, we use a
different fitness function which takes not only the
classification accuracy on training set but also the number
of prototypes into consideration. The population structure
with fewer prototypes is preferred over the one with more
prototypes. In PLEASE, the number of prototype is
limited by a user input parameter.

Skalak (1993) describes an application of the random
mutation hill climbing algorithm to prototype leaming. In
Skalak’s method, the number of prototypes is fixed and
determined by a parameter m. All prototypes are selected
from training instances. In his method, Skalak applies
random mutation hill climbing to select the best
combination of m prototypes, which maximizes the
classification accuracy on the training set. Skalak also
applies random mutation hill climbing to select attributes.
Experiments conducted by Skalak show that significant
reduction in storage of instances can be achieved by his
simple search method without decreasing classification
accuracy on the selected datasets.

Kelly and Davis (1991) apply genetic algorithm
technique to leamn real-valued attribute weights for a simple
instance-based leaming algorithm. In their method,
attributes weights are the same in the entire instance space.
They propose to maintain a different set of weights for each
concept.

3. Learning and  Classification  with
Weighted Prototypes

Given a attributes, a weighted prototype P is a vector of a
pairs (v; w;) plus its class membership, where v is P’s
value of the ith attribute and w; is P’s weight of the ith
attribute taking a value between 0 and 1. A different
weighted prototype has a set of different attribute weights.
Given a set of classified training instances, the task o
leamning weighted prototypes is to generate a minimum
number of weighted prototypes, which maximizes the
classification accuracy on the training instances. At least
one weighted prototype is generated for each class.
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A novel instance is classified to the class of a weighted
prototype which is the closest to the novel instance among
all weighted prototypes. The distance metric used in our
work is the weighted Euclidean distance metric, in which
the distance between an instance 7 = (x;, ..., X.) and a
weighted prototype P = ((vi wy), ..., (Va Wa)) is

‘\/ Z:,, w, (x;—v,),

Zhang and Yang (1996) show that the decision
boundary between two weighted prototypes is a quadratic
hypersurface and that the decision boundary between two
unweighted prototypes is a hyperplane. When all
prototypes share the same set of weights, the decision
boundary is still a hyperplane. Depending on the weights
of the two weighted prototypes, the decision boundary
between them could be an ellipse, a hyperbola, a parebola,
or two line in a two dimensional instance space.

4. Genetic  Algerithms  for
Weighted Prototypes

Learning

In this section, we describe the genetic algorithms method
which we use to learn weighted prototypes. We introduce
popuiation structures, fitness functions, and operators used
in our method.

4.1 Populiation Structures

Given n classes, a population structure consists of n class
descriptions, each consisting of onc or more weighted
prototypes. In many genetic algorithms based learning
systems (¢.g. De Jong, Spears, & Gordon 1993), a rule is
encoded as a string of bimary bits. This binary bit
representation is goed for rule induction learning, but not
for prototype or instance-based learning. In our method, a
weighted prototype is represented as a string of a pairs of
real values, where a is the number of attributes. The first
value of a pair is the value of the corresponding attribute
and the second value is the atiribute weight and takes a
value between 0 and 1.

Weighted prototypes of the same class are placed
consecutively, and classes are separated by a comma. The
number of classes is fixed, but the number of weighted
prototypes in a class is variable. Therefore, the length of a
population structure in our method is not fixed and may
grow or shrink during evolution. The following is an
example of a population structure in a domain with two
attributes and two classes.

Vuwnviwnvawavawa, Vaiws vawavawavVaewa

where v;; is the value of the jth attribute of the ith
prototype and w; is the weight of the jth attribute of the ith

prototype. In this example, the population structure
consists of four prototypes two for each class.

4.2 Fitness Function

A fitness function measures the goodness of a population
structure during evolution. The population structure with a
greater fitness value is stronger so as to get a greafer
survival chance. Fitness functions used in many genetic
algorithms based leamning systems (e.g., De Jong, Spears,
& Gordon 1993; Kelly & Davis 1991) use only
classification accuracy. In our fitness function, we take both
classification accuracy and the number of prototypes into
consideration. We prefer the population structure with high
classification accuracy and a small number of prototypes.
Too many prototypes may cause overfiting. Namely, they
may perform well on iraining data but not on test data.
The fitness function used in our method is:

X
x’ = ’

f(x.y) Cty

where x is the percentage of comectly classified instances, y
is the number of prototypes in population structure, and C
is a nonnegative real value which controls the tradeoff
between the classification accuracy and the number of
weighted prototypes. When C is 0, every time the number
of prototypes increases by 1, the classification accuracy
must increase by more than the average percemtage of
classification accuracy per prototype in order to get a larger
fitness value. A larger C means that when a new prototype
is added to a population structure, a less increase in
classification accuracy is required in order to get a larger
fitness value. C is dynamically adjusted during evolution.

4.3 Operators

Four operators are used in our method to evolve
population structures. They are crossover, mulation,
addition, and deletion. The first two operators are often
used in almost all genetic algorithms methods. Addition
and deletion are specially designed operators to change the
length of a population structure.

A two point crossover operator is applied in our
method. The crossover operator is executed as follows.
The two crossover points are first andomly selected on the
parent with a shorter length. The two crossover points on
the second parent are the same as those on the first parent.
The two offsprings have the same lengths as the two
parents respectively. The probability of crossover is
determined by the parameter P, Table 1 shows an
example that demonstrates an application of the crossover
operator in a two class and two attribute domain.
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Table 1. Example of an application of the crossover operator

. 1 1.1 1 .1 1 1 1 1.1 1.1 1 1 1
Parent #1: v, WV}, 'wuvzlw;xvzzwzz’V31W31V32W32V41W41 1vywy

2

) 2222 2. 222 2 2. 22 22 22 2
Parent #2: Vi, Wy Vi | WipVy Wy Via Wy Vi Wy Vg Wiy, Vg Wy | Vg Wip Vs w5 Vip W

sl 1 90022 .2.1..2.2.2.2.2 2.2 .11
Offspring #1: vy, wy, V), | WpVp Wy Vo, WiV Wy v, Wi, VW, [ VoW,

o om 02.22 o8 1oL ko1 1 o1 1 1 1.1 .2 2.2 2 2 2
Offspring #2: Vi, W}, Vj; | W3Va Wy Voy WiaVy Wy Vay Wiy Vi Wy | Vi Wp Vi, W Vs, Wiy

The first parent has four prototypes two for each class,
and the second parent has five prototypes three for the first
class and two for the second class. The first offspring has
four prototypes two for each class, and the second offspring
has five prototypes three for the first class and two for the
second class.

Mutation changes the value or weight of an attribute of
a prototype, which is randomly selected. The amount
changed is dependent on the matio of the number of
correctly classified instances to the number of incorrectly
classified instances. The higher the ratio is, the smaller the
amount changed is. The change may be increase or
decrease determined randomly. The probability of mutation
is determined by the parameter Pru.

Addition adds a training instance to a class of a
population structure as a new prototype. In a population
structure, the new prototype is added to the class with the
most emor omission (the number of training instances
belonging to the class, but misclassified to other classes).
The training instance with the largest distance to the class
is added as the new prototype of the class and all weights
are initialized to 0.5. The probability of addition is
determined by the parameter Po.

Deletion deletes a prototype from a class of a
population structure. In a population structure, the new
prototype from the class with the most error commission
(the number of training instances belonging to other

classes, but misclassified to this class). The prototype to
be deleted is randomly sclected. The probability of
addition is determined by the parameter Py,

5. Experiments

The method discussed in Section 4 was implemented in a
system called in GABWPL (Genetic Algorithm Based
Weighted Prototype Leaming). In this section, we report
the experimental results on eight artificial datasets.

5.1 Test Problems And Experiments

All eight problems are defined in a two dimensional space.
The two attributes are numeric attributes with values
ranged from O to 1. All problems contain two classes: class
0 and class 1. The first four problems are the same as those
used in (Sen & Knight 1995). In these four problems,
decision regions are scparated by one or more lines. They
are called 1/1 line, 1/2 line, 1/3 line, and 1/4 line
respectively. Figure 1 shows these four problems.

Next four problems are similar to the first four
problems, but their regions are separated by arcs not lines.
These four problems are more complex than the first four
problems. The are called 1/1 arc, 1/2 arc, 1/3 arc, and 1/4
arc respectively. Figure 2 shows the four arc problems.

problem 6
112 ine

- problem 5
1A line

/ N
problem7 - problem 8
183 line 144 line

Figure 1. Four line problems
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. "problem 4
1/4 arc

Figure 2. Four arc problems

In all experiments, 800 training instances and 200 test
instances were used. All instances were randomly generated
and the training and test datasets are disjoint. All
experiments were repeated ten times on different set of
trzining and test datasets. We ran two versions of
GABWPL, one with no atiribute weights and one with
aftribute weights. Our hypotheses are that GABWPL with
weights should attain higher classification accuracy than
GABWPL with no weight on the four arc problems while
GABWPL with no weight may attain higher classification
than GABWPL with weights on the four line problems.
The decision boundary between two weighted prototypes
is an axc while the decision boundary between two
unweighted prototypes is a line (Zhang & Yang 1996).
With some weight values, the decision boundary between
two weighted prototypes becomes a line.

In all experiments, Pooss Was set t0 0.6, Pre Was set to
0.05, P.ag was set to 0.2, and P4y was set to 0.15. The
population size was 40 and the number of generations was
1200. Actually, experiments on all problems except for 1/3
arc and 1/4 arc converged before geaecration 200 and
experiments on 1/3 arc and 1/4 arc converged around

generation 400.

5.2 Experimental Results

All results reported in this section are the average of ten
runs. Table 2 reports 'the classification accuracy on both
training and test datasets. As we expect, GABWPL with
weights attains about 2% higher classification aocuracy
than GABWPL with no weight on the four arc problems.
GABWPL with weights achieves about the same
classification accuracy as GABWPL with no weight on 1/1
line and 122 line and about 2% lower classification
accuracy than GABWPL with no weight on 1/3 line and
1/4 line.

Table 3 shows the average mumber of prototypes
generated. On all arc problems, fewer weighted prototypes
were generated than unweighted prototypes, because an arc
needs to be approximated by more than one line segments.
Figure 3 and 4 show where gencrated prototypes were
located on the line and arc problems, respectively. The two
numbers around a weighted prototype are the two weights
of the weighted prototype.

Table 2. Average Classification accuracy
Test Problems Training Set Test Set
No weight _ With Weight No weight With Weight
1/1 line 100% 100% 99.5% 99.5%
172 line 99.5% 99.5% 99.7% 99.1%
173 line 99.4% 97.1% 98.5% 96.3%
1/4 line 98.3% 97.1% 97.8% 95.1%
1/1 arc 97.9% 100% 96.9% 99.8%
172 arc 97.3% 98.9% 96.9% 98.5%
1/3 arc 93.8% 96.0% 90.8% 92.9%
1/4 arc 97.5% 98.2% 95.7% 97.3%
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Test Problems No weight With weight
1/1 line 2 2
1/2 line 3 3
173 line 4 36
1/4 line 5 4.2
1/1 arc 3 2
172 arc 33 ] 3.1
173 arc 54 ' 45
1/4 arc 7.6 5.5
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Figure 3. Prototypes generated for the line problems
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Figure 4. Prototypes gencrated for the arc problems

6. Conclusion and Future Weork

In this paper, we have described a multistrategy leaming
system that combines a genetic algorithm approach with a

prototype learning approach. The major novelty of this -

approach is to apply genetic algorithm to leamn attribute
weights and prototypes together. Our experimental results
show that this approach works well on some simple
artificial problems. Other contributions include the use of
operators addition and deletion and a fitness function
which takes the number of prototypes into consideration.
The work reported in this paper is preliminary. In the

future, a number of problems need to be addressed. First,
more experiments need to be conducted. We need to run
GABWPL on more difficult problems: problems with
more attributes and problems with irnrelevant atiributes. We
need to apply GABWPL to some real world applications.
And also we need to compare GABWPL with other
learning methods, particularly instance-based learning
methods.

Second, we will explore how domain knowledge
(knowledge extracted from training instances) can be used
in our method to speed up the search for the best
descriptions. Use of domain knowledge may be very
important for complex problems.
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numeric attributes and it should be extended to symbolic
attributes. Fourth, the fitness function needs to adjusted.
Finally, more operators should be investigated.
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