
Learning Weighted Prototypes using Genetic Algorithms

Jianping Zhang and Qiu Fan
Department of Computer Science

Utah State University
Logan UT 84322-4205

jianping@7.h~ng.cs.usu.edu

Abstract

Smith and Osherson proposed the prototype view
for concept representation and category
cls, Hiflcafion. In the prototype view, concepts are
represented as prototypes. A prototype is a
collection of salient properties of a concept- Under
the prototype view, a~ instance is classified as a
memberofa concept ifit is sufficiently similar to the
prototype of this concept. Although the prototype
view has been extensively re~azched in cognitive
sciest~, it has not been widely adopted in machine
learning. In this paper, we discuss some preliminary
work on a genetic algorithm.q approach to learning
weighted prototypes. In this approach, a concept is
represented .as one or more weighted prototypes,
each of which is a conjunction of weighted attribute
values. In this approach, eve~ prototype maintains
its own at~bute weights. A genetic algorithm is
applied to generate prototypes and their attribute
weight& This approach has beca implemented in
GABWPL (Genetic Algorithm BA_~_~!_ Weighted
Prototype Leeraing)end empirically evaluated on
several artificial datasets.

1, Introduction

Smith and Oshersen (1984) proposed the prototype view
for concept representation and category classification In the
prototype view, concepts are represented as prototypes. A
pmtntype is a collection of salient propetlies of a concept
Under the prototype view, an instance is classified as a
member of a concept if it is sufficiently similar to the
prototype of this concept The prototype ~eserdation
strongly ~pports human concept form=~ion People tend to
remember those most ofie~ encoureered instsnces and
for~t those rarely, e~counte~ instances. Concepts
involved in real world applications usually possess graded
smcua~ (Barsalou 1985). Instead of being equivalent,
instances of a concept may be ~fiznd by a degree of
typicality in representing the concept. Prototypes represent
the central tendencies of such graded ~, so concepts
described by prototypes are move human understandable
thsn those ~scrlbed by veg-|nr instances and also easier ix
Imman to capmve the basic principles underlying these

coeMx-pts.
Although the prototype view has been extensively

researched in cognitive science, it has not been widely
adopted in machim learning. In recent years, instance-
based learning (IBL) becomes popular for several reasons.
First, it is strongly motivated by similar psychologically
plausible algorithms that perform concept formation (Smith
& Medin 1981; Aba & Goldstone 1992; Zhang 1992).
Second, polymorphy and imprecision of natural concepts
prevent many inductive learning approaches fiom inducing
general concept descriptions, while instance-based
(exenq3lar-based) approaches perform well in domains
involving polymorphous and imprecise concepts (Baveiss,
Porter, & Wier 1990). Third, ~ learning
algorithms ate shnple and easy to understand end
implement. A nmuber of imlance-based learning methods,
e.g. Protos ~s, Porter, & Wier 1990), lBn (,~h~
Kibler, & Albert 1991), and Each (Saizberg 1991), were
developed ~nd appfied to many practical problems. These
pmblmus inclmle clinical audiology (Bareiss, Potter,
Wier 1990), diagnosis of heart diseases, classification of
congressional voting records (Aim & Kibler 1989),
prediction of protein secondmy structures, word
promnciafion (SlanfiH & Waltz 1986), and prediction of
DNA promoter sequemcs (Cost & Salzberg 1991). The
results obtained by these IBL methods were conkoamble to
those obtained from other learning methods.

Unformm~ely, IBL has its disadvantages. Becmme
concept descripfious a~ ~-eserded by many individual
instances, they axe not lntman understandable. As we
mentmned above, a prototype represents a centnfl tendency
of a concept, thus prototypes are easy for human to
understand the concepts rept~:~Led. Each classification of a
novel imtance involves measuring the distance between the
novel instance and each of the stored instances, so it
becomes very ineffgieat to mnk¢ classifications when the
number of stored instances becomes large. Thevefove, it is
import~m to develop effe~ve storage reduction algofithnts
for IBL. Skalak (1993) showed that significant veduction
storage of instances can be achieved in some datasets using
a f~w prototypes without decreasing IBL’s classification
ac~macy.

Zhang 223

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Genetic algorithms are search techniques. A genetic
algorithm represents a specialized search technique, which,
although it is not guaranteed to arrive at a "best" solution,
generally arrives at a good or near optimal solution.
Ftmhermore, in terms of time, it is considerably more
efficient than random or exhaustive searches when the
search space is large. Learning a concept description is a
search problem. There have been many applications of
genetic algorithms to machine learning (e.g., Wilson
1987: De Jong 1988; De Jong, Spears, & Gordon 1993).
Learning weighted prototypes is to find a set of prototypes
in a given instance space and their attribute weights. A
prototype is an instance, but may not be a training
in,qance. The number of subsets of an instance space is
huge. The search space becomes much larger aflex attribute
weights me used. Therefore, we choose a genetic
algorithms approach to the task of teaming weighted
prototypes.

In this paper, we discuss some preliminaxy work on a
genetic algorithms approach to learning weighted
prototypes. In this approach, a concept is reinesented as
one or more weighted prototypes, each of which is a
conjunction of weighted attribute values. In this approach,
every prototype maintains its own attribute weights. A
genetic algorithm is applied to generate prototypes and
their attn~oute weights. This approach has been
implemented in GABWPL (Genetic Algorithm Based
Weighted Prototype Learning) and empirically evaluated
on several az~al datasets.

Michalski (1994) defined a multistrategy learning
system as a learning system that integrates two or more
infere~nl and/or computational strategies. According this
definition, GABWPL is a multislrategy learning system
because it combines a genetic algorithm approach with a
prototype learning approach.

2. Previous work

Recently, there have been some attempts at crentln~
systems for learning prototypes in machine learning (de ia
M~Ta 1991; Zlmn~ 1992; Datta & FAbler 1995). This
section discusses the work in applying genetic algorithms
to learning prototypes.

The work done by Sen & Knight (1995) is the most
closely related to the work repom:d in this paper. Sen and
Knight implememed a genetic algorithm based prototype
learning system PLEASE. In PLEASE, a concept is
represented by one or more prototypes and a prototype is a
set of attribute values. Each population structure represents
descriptions of all possible concepts and consists of one or
more prototypes belonging to each of the possible
concepts. PLEASE does not use the bit-string
representation, instead it uses ~ attribute values. Thiee
opemtom (mutation, creep, and two point crossover)

224 MSL-96

used to evolve population structures. PLEASE was mn on
a set ofa~ficial datasets and achieved higher classification
accuracy than C4.5 on these datasets.

The work reported in this paper improves PLEASE
with several extensions. First, the attribute values of a
prototype ate weighted in our work- Each prototype
maintains its own set of attribute weights. The attnbute
weights of a prototype me learned with the prototype.
Second, we use a different set of operators: crossover,
mutation, addition, and deletion. The lust two operators
me similar to those used in PLEASE and addition and
deletion are new operators. Addition adds a new prototype
to a population stmclnre, while deletion deletes a
prototype from a population structure. Third, we use a
diffenal fitness function which takes not only the
classification a~uracy on training set but also the rmmber
of prototypes into consideration. The population
with fewer prototypes is preferred over the one with more
prototypes. In PLEASE, the number of prototype is
limited by a user input parameter.

Skalak (1993) descn]~es an application of the random
mutation hill climbing algorithm to prototype learning. In
SkAlak’s method, the number of prototypes is feted and
determined by a parameter m. All prototypes are selected
from training instances. In his method, Skalak applies
random mutation hill climbing to select the best
combination of m prototypes, which maximizes the
classification acoJra~ on the training set. Skalak also
applies random mutation hill climbing to select attributes.
Experiments conducted by Skalak show that significant
reduction in storage of instances can be achieved by his
simple search method without decreasing classification
accuracy on the selected datasels.

Kelly and Davis (1991) apply genetic algorithm
technique to learn real-valued aUribute weights for a simple
instance-based learning algorithm. In their method,
attributes weights are the same in the entire instance space.
They propose to maimain a different set of weights for each
cou~p{.

3. Learning and Classification
Weighted Prototypes

with

Given a attributes, a weighted prototype P is a vector of a
pairs (vi w+) plus its class membership, where vi is P’s
value of the ith attribute and wt is P’s weight of the ith
attribute taking a value between 0 and 1. A
weighted prototype has a set of different altribute weights.
Given a set of classified training instances, the task of
learning weighted prototypes is to generate a minimum
number of weighted prototypes, which maximizes the
classification acctuacy on the training instances. At least
one weighted prototype is generated for each class.

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

A novel instance is classified to the class of a weighted
prototype which is the closest to the novel instance among
all weighted prototypes. The distance metric used in our
work is the weighted Euclidean distance metric, in which
the distance between an instance I ffi (xi x.) and
weighted prototype P ffi ((vl ws) (v, w,))

~2:=, W, (Xi -- V,)2,
Z~ng and Yang (1996) show that the decision

boundL, y between two weighted prototypes is a ~dr~e
bypemmfa~ and that the decision boundmy between two
unweighted prototypes is a hyperplane. When all
prototypes share the same set of weights, the decision
bounda~ is still a hypeiplane. Depending on the weights
of the two weighted prototypes, the decision boundmy
between them could be an ellipse, a hyperbola, a parabola,
or two line in a two dimensional instance space.

4. Genetic Algorithms
Weighted Prototypes

for Learning

In this section, we describe the genetic algorithms method
which we use to learn weighted prototypes. We introduce
population stmctmes, fitness functions, and operators used
in our method.

4.1 Population Structures

Given n classes, a population su’acture consists of n cl~
descriptions, each consisting of one or more weighted
proto|ypes. In many genetic algorithms based learning
systems (e.~ De Jong, Spears, & Gordon 1993), a role
encoded as a string of bimuy bits. This binaxy bit
representation is good for rule induction leamin~ but not
for prototype or instance-based learning In our method, a
weighted prototype is reptmented as a string of a pairs of

values, where a is the number of attributes. The lust
value of a pair is the value of the correSpOndin£ attribute
and the second value is the attribute weight and takes a
value between 0 and 1.

Weighted prototypes of the same class are placed
consecutively, and classes are separated by a comm~ The
nmnber of classes is fmxl, but the number of weighted
prototypes in a class is variable. Therefore, the length of a
population strocture in our method is not fixed and may
~-ov~ or shrink during evolution. The following is an
exan~le of a population sUucture in a domain with two
attributes and two classes.

V ! IWl IV 12WI2V21W21V22W22, V3 IW$ IV32W32V41 W4 IV42W42

where v~ is the value of the jth attribute of the ith
prototype and we is the weight of the jth attn’oute of the ith

prototype. In this example, the population structure
consists of four prototypes two for each class.

4.2 Fitness Function

A fitness function messures the goodness of a population
stnlcture during evolution. The population structure with a
greater fitness value is stronger so as to get a gte~er
survival chance. Fitness functions used in many genetic
algorithms based learning systems (e.g., De Jong, S~ms,
& Gordon 1993; Kelly & Davis 1991) use only
classification accuracy. In our fitness function, we take both
classification accmacy and the number of prototypes into
comideration. We prefer the population structure with high
classification accamcy and a small nnmber of prototypes.
Too many prototypes may cause overfitin& Namely, they
may pel’foHn well on U’aiiung dat~ but not on test data.

The fitness function used in our method is:
X

f(x,y) =
C+y’

where z is the percentage of conectly classify! instances, y
is the nnmber of prototypes in popdntion structure, and C
is a nonae~ive real value which controls the uadecH
between the classification aocumcy and the number of
weighted prototypes. When C is 0, ever7 lime the number
of prototypes increases by 1, the class~on accuracy
must increase by more than the aver~ pe~mge cf
classification accuracy per prototype in order to get a larger
fitness value. A larger C means that when a new prototype
is added to a population sUuctore, a less increase in
classifi(mtion a~-macy is required in order to get a larger
fitness value. C is dynamically adjusted during evolution.

4.3 Operators

Four operators are used in our method to evolve
population ~s. They are crossover, mutation,
addition, and deletion. The first two operators are often
used in almost all genetic algorithms methods. Addition
and deletion are specially designed operators to c~n~c the
length of a population structure.

A two point crossover operator is applied in our
method. The crossover operator is executed as follows.
The two crossover points are feat mudondy selected on the
parem with a shinier length. The two crossover points on
the second pment me the same as those on the fnst parent.
The two offsp~ngs have the same lengths as the two
parents respectively. The probability of crossover is
determined by the l~mmeter P~,. Table 1 shows an
example that demonstrates an application of the crossover
operator in a two class and two attn’bute domain.

Zhang 225

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Table 1. Example of an application of the crossover operator
i l 1 1 ! I i ! ! 1 I I ! 1 1

Parent ~1"]311WIIVi2 [Wi2~21~21V22W22,V31W31V32W32V41W41 I ~2W42

2 2 2 2 2 2 2 2 2 2 2 2 2 2 ,2 2 2 2 2 2Parent 02:VllWllVi2]wi2v21w21V22w22V~lW31V32W32,V41w411~42w42Vs1wsiv52w52

Offspring01: Vnwnvi2x t I I 2 2 2 t 2 2 2 2 2 2 2 x nWi2V21W21V22W22V31W31V32W32, V41W41 [U42 W42
2 2 2 I 1 I 1 1 1 1 1 1 1 ! ,2 2 2 2 2 2

O~1~#2:VllWilVi2] Wi2V21W2tV22W22V31W31V32W32,V41W41] ~ 42W42]JSIW$1V52W52

The first parent has four prototypes two for each class,
and the second parent has five prototypes three for the fnst
class and two for the second class. The fwst offspring has
four prototypes two for each class, and the second
has five prototypes three for the f’h’St class and two for the
second class.

Mutation changes the value or weight of an attribute cf
a pmtotypo, which is randomly selected. The amount
changed is dependent on the ratio of the number cf
corm’fly classified instances to the number of incorrectly
classified instances. The higher the ratio is, the smaller the
amount clmnged is. The change may be increase or
decrease determined randomly. The probability of mutation
is determined by the parameter P,~

Addition adds a training instance to a class of a
population sUuctture as a new pmmty~. In a population
structure, the new prototype is added to the class with the
most error omission (the number of training instances
belonging to the cla-~, but misclassified to other classes).
The training instance with the largest distance to the class
is added as the new prototype of the class and all weights
me imtialized to 0.5. The probability of addition is
determined by the parameter Pro.

Deletion deletes a prototype from a class of a
population mucture. In a population structure, the new
prototype from the class with the most error commission
(the munber of training instances belonging to other

classes, but misclassified to this class). The prototype to
be deleted is randomly selected. The probability cf
addition is determined by the parameter P~-t.

5. Experiments

The method discussed in Section 4 was implemented in a
system called in GABWPL (Genetic Algorithm Based
Weighted Prototype Learning). In this section, we report
the experimenlal results on eight artificial datasets.

5.1 Test Problems And Experiments

All eight problems are defined in a two dimensional space.
The two attributes are numeric attributes with values
ranged from 0 to 1. All l~roblems contain two classes: class
0 and class 1. The first four problems are the same as those
used in (Sen & Knight 1995). In these four problems,
decision regions are separated by one or more lines. They
are called 1/1 line, 1/2 line, 1/3 line, and 1/4 line
respectively. Figure I shows these four problems.

Next four problems me similar to the lust four
problems, but their regions me separated by arcs not lines.
These four problems me more complex than the fnst four
problems. The are called 1/1 arc, 1/2 arc, 1/3 arc, and 1/4
arc respectively. Figme 2 shows the four arc problems.

Figure 1. Four line problems

226 MSL-96

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Figure 2. Four arc problems

In all experiments, 800 training instances and 200 test
instances were used. All instances were randomly generated
and the training and test datasets are disjoim. All
~nts were ~x~cd ten times on d/~i set cf
training and test datasets. We tan two versiom cf
GABWPL, one with no a~m~)ute weights and one with
attribute weights. Our hypotheses are t~_ GABWPL with
weights should attain higher classif~ation accuracy than
GABWPL with no weight on the four arc problems while
GABWPL with no weight may attain higher c~fion
thnn GABWPL with weights on the four line problems.
The decision boundmy between two weighted prototypes
is an a~c while the decision boandm3r between two
unweighted prototypes is a line (Zlmng & Yang 1996).
With some weight values, the decision boundmy between
two weighted prototypes becomes a line.

In all experiments, P~m was set to 0.6, P,m was set to
0.05, P~d was set to 0.2, and__ P~-t was set to 0.15. The
population size was 40 and the munher c~ generations was
1200. Actually, experiments on all problems except for 1/3
a~ and 114 arc converged before generation 200 and
experiments on I/3 arc and I/4 am converged around

generation 400.

5.2 Experimental Results

All results reported in this section me the avem~ of ten
runs. Table 2 reports the classification accmacy on both
training and test datasets. As we expect, GABWPL with
weights attair~ about 2% higher classification accuracy
than GABWPL with no weight on the four arc problems.
GABWPL with w~ht8 ~hi~ about the same
classification accuracy as GABWPL with no weight on Ill
line and 1/2 line and about 2% lower classification
accuracy than GABWPL with no weight on 1/3 line and
114 line.

Table 3 shows the aver-age number of prototypes
generated. On all a~c problems, fewer weighted prototypes
were generated than unweighted prototypes, because an a~c
needs to be approximated by more than one line segments.
Figure 3 and 4 show when: generated prototypes were
located on the line and arc problems, respectively. The two
numbers around a weighted prototype me the two weiEl~x
of the weighted prototype.

Average
Test Problems Training Set Test Set

No...weight With Weight No weight Wi~ Weight
111 line 100% 100% 99.5% 99.5%
1/’2 line 99.5% 99.5% 99.7% 99.1%
1/3 line 99.4% 97.1% 98.5% 96.3%
1/4 line 98.3% 97.1% 97.8% 95.1%
l/1 arc 97.9% 100% 96.9% 99.8%
1/’2 arc 97.3% 98.9% 96.9% 98.5%
1/3 arc 93.8% 96.0% 90.8% 92.9%
I14 arc 97.5% 98.2% 95.7% 97.3%

Zhang 227

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Table 3. Average number of prototypes generated
I ~J. ~ n K ___ RN

Test Problems No weight

I/I line 2
1/2 line 3
1/3 line 4
1/4 line 5
I/I arc 3
1/2 arc 3.3
I/3 arc 5.4
114 arc 7.6........ ::::.:

With weight
2
3
3.6
4.2
2
3.1
4.5
5.5

0.764.0~626"

Y /
I I /

.O~IZG~Rq /

"--~ :1" I/0.2 ~ ____--~-~--~. -o~os.Qs19
0.4s4,~ II - - ¯

o----o i !":’~ ! P !
0 0.2 0.4 0.6 0.8 !

o’. °l /
0.4

¯

I I
0 0 2 0.4 0.6 0.8 1 0 0.2 0.4 06 0.6 I

l"s I /’

0.6
¯o~ i /,"

0 I .f m
0 02 04 0.6 0.8 I

1 *’! I’"~
Y"

I I__

o.e~.,/ . .oa97.o.53:._

I L,,"
0.2 ~.660.o.54o ,-

o .XI
0 0.2 0.4 0.6 0.8 I

o. jj’~ _

o7,~,
°

/_,P

o" I ~ c:-

[o 02
04 Oe o.8 I

1-0 , ,.,;~ J ;]. I

o.o_~-Vo.;-7,,-i-~;
0.4 !

o~~
0 0.2 0.4 0.6 O~ 1

Figure 3. Prototypes generated for the line problems

228 MSL-96

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

o, f,It
O.6

/ 0
0.4

o://
O| 02 0.4 0.6 0.8 1

::_._/
O.4

0,2-

0
0 O2 0.4

f ,,, .

f ": I-
0.6 0.8 1

j/ ’ ,Oj;,~o.2e4
O.6 ~

~~~’I

0.4

O2

0 "
0 O2 0.4 0.6 0.8 1

O.8

0.2[-..~ ¯ #n

¯ . ~ :."

~.
"o \

0 02 0 0.6 O~ 1

~t.~# ./
/

,. j~ --

¯
0.4---.~ q

oo \,,, ~ o ’~/I
0 0.2 0.4 0.6 O.IS 1 O 02 0.4 0.6 0.8 1"

0.6

Figure 4. Prototypes generated for the arc problems

6. Conclusion and Future Work

In this paper, we have described a multistrategy learning
syslem that combines a genetic algodflun approach with a
prototype learning approach The major .novelty of this ¯
approach is to apply genetic algorithm to learn aUribute
weights and prototypes together. Our expedmenUd results
show that this approach works well on some simple
mlificial problems. Other contributions include the use cf
opcratoxs addition nnd deletion and a fitness function
which takes the number of prototypes into consideration.

The work reported in this paper is preliminary. In the

future, a number of problems need to be addressed. First,
more experiments need to be conducted. We need to run
GABWPL on more difficult problems: problems with
more attribu__~_ and pmblema with irrelevant altributes. We
need to apply GABWPL to some zeal world applications.
And also we need to corapare GABWPL with ot~her
learning methods, pank-ulafly instance-based learning
methods.

Second, we will explore how domain knowledge
(knowledge extracted from training instances) can be used
in our method to speed up tic search for the best
descriptions. Use of domain knowledge may be very
important for complex problems.

Zhang 229

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



Third, the current version of GABWPL works only for
numeric attributes and it should be cxtcnded to symbolic
attributes. Fourth, the fitness function needs to adjusted.
Finally, more operators should be investigated.

Aha, D. and Kibler, D. 1989. "Noise-tolerant instance-
based learning algorithms," Proceedings of the l lth
International Joint Conference on Artificial
Intelli~nce, Detroit, MI..

,~,ha D.W. & Goldstone, R.L. 1992. "Concept learning
and fle,~’ole weighting," Proceedings of Fourteenth
An~,~1 Conference of the Cognitive Science Society.

Aba, D., Kibler, D, and Albert, M. 1991. "Instance-Based
Learning Algoriflml," Machine Learning 6.

Bareiss, E. R., Porter, B. W., and Wier, C. C. 1990.
"Proms: An Exemplar-Based Learning Apprentice," in
KodnC, off& Michalski (Eds), Machine Learning: 
Artificial Intelligence Approach V 11], San Mateo,
CA: Morgan Kaufmann

Barsalou, L. 1985. "Ideals, central tendency, and frequency
of instantiation as determinants of graded slxucture in
categories," in Jotmlal of Experimental Psychology:
Learning, MemoD’ and Cognition, ! 1.

Cost, S., and Salzberg, S. 1991. "Q weighted nearest
neighbor algorithm for learning with symbolic
fearing" Technique report, Department of Computer
Science, The Johns Hopkins University

Dau~. P., & Kibler, D. 1995. "Learning prototypical
concept descriptions," Pmceedin~ of the 12th
Intomational Conference on Machine Learning

Dejong, K.A. 1988. "Learning with genetic algorithms: an
overview," Machine Learning 3.

Dejong, K.A., Spears, W.M., & Gordon, D.F. 1993.
"Using genetic algorithms for concept leaming,"
Machine Learning 13.

de la MaTa. J. 1991. "A prototype based symbolic concept
learning system," Proceedings of the 8th International
Workshop on Machine Learning.

Kelly, J.D., & Davis, L. 1991. "A hybrid gemlk
algorithm for clussific~tion," Proceedings of the 12th
Imernational Joint Conference on ARificial
Intelligence.

Michalski, R.S. 1994. "lnferemial theory of learning," in
Michalski & Tecuci (Eds), Machine Learning: A
Muitfstrategy Approach, Vol. IV, San Matco, CA:
Morgan Kanfmann.

Salzberg S. 1991. "A nearest hyperrectangle learning
method," Machine 1canting, 6:3.

Sen, S., & Knight, L. 1995 "A genetic prototype learner,"
Proceedings of the 14th International Joint Confemce
on Artificial Intelligence.

Skalak, D.B. 1994. "’Prototype and feature sclcction by
sampling and random mutation hill climbing
algorithms," Proceedings of the I lth International
Conference on Machine Lcaming.

Smith, E. E., & Medin, D. L. 1981. Categories and
Concepts. Harvard University Prcss.

Smith, E.E., & Osherson, D.N. 1984. "Conceptual
combination with prototype concepts. Cognitive
Science 9.

Stanfiil, C. and Waltz, D. 1986. "Toward memory-based
reasoning," Communications of the ACM, 29:12.

Wilson, S.W. 1987. "Classifier systems and the animate
problem," Machine Learning 2.

Zhang J. 1992. "Selecting Typical Instances in Instance-
Based Learning," Proceedings of the Ninth
lmemational Conference on Machine Learning.

Zhang, J., & Yang, J. 1996. "The role of attribute weights
in iastance-based learning," Unpublished marmscript.

230 MSL-96

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 


