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Abstract

This work reports cm progress made in the first 3 years of
ATR’s "CAM-Brain" Project, which aims to use
"evolutionary engineering" techniques to build/grow/evolve a
RAM-and-cellular-automata based artificial brain consisting
of thous~mds of interconnected neural network modules
inside special hardware such as MIT’s Cellular Automata
Machine "CAM-8", or NTF’s Content Addressable Memory
System "CAM-CAM". The states of a billion (later a trillion)
3D cellular automata cells, and millions of cellular automata
rules which govern their state changes, can be stored
relatively cheaply in giga(tera)bytes of RAM. After 3 years
work. the CA rules are almost ready. MIT’s "CAM-8"
(essentially a serial device) can update 200 million CA cells
a second. It is likely that NTT’s "CAM-CAM" (Cellular
Automata on Content Addressable Memory) is essentially 
massively parallel device, and will be able to update a
hundred billion CA cells a second. Hence all the ingredients
will soon be ready to create a revolutionary new technology
which will allow thousands of evolved neural network
modules to be assembled into artificial brains. This in turn
will probably create not only a new research field, but
hopefully a whole new industry, namely "brain building’.
Building artificial brains with a billion neurons is the aim of
ATR’s 8 year "CAM-Brain" research project, ending in 2001.

1. Introduction

ATR’s CAM-Brain project resulted from the experience of
the author’s thesis work, in which he evolved neural net
modules (using concatenated bit-string weights) to control
the behavior of a simulated quadruped called "LIZZY",
which could walk straight, turn left, turn right, peck at
food and mate (de Gaffs 1994). Each of these behaviors
was controlled by the time varying outputs of a single
evolved neural network module, and applied to the angles
of the leg components of LIZZY. (As far as he is aware,
the author was the first person to evolve neural net
dynamics (de Gads 1991), (in the form of walking stick-
legs "Walker")). Switching between behaviors involved
taking the outputs from one neural net module and

feeding them into the inputs of the next module. The next
step was to evolve neural net detectors, e.g. for frequency,
signal strength, signal strength difference, etc. Finally,
neural net "production rule" modules were evolved which
could map conditional inputs from detectors to output
behaviors. Thus an "intelligent" artificial creature was
built, which could detect prey, mates and predators, and
then approach and eat or mate. or turn away and flee.

Virtually every neural net that the author tried
to evolve, evolved successfully. The evolution of these
fully connected neural network modules proved to be a
very powerful technique. This success made a deep
impression on the author, reinforcing his dream of being
able to build much more complex artificial nervous
systems, even artificial brains. However, every time the
author added a neural net module to the Lizzy simulation,
its speed on the screen was slowed (on a Mac II
computer). Gradually, the necessity dawned on the author
that some kind of evolvable hardware solution (de Garis
1993) would he needed to evolve large numbers of neural
net modules and at great speed (i.e. electronic speed) 
special machines the author calls "Darwin Machines" [de
Garis 1993]. Evolving artificial brains directly in
hardware remains the ultimate future goal of the author,
but in the meantime (since the field of evolvable hardware
(EHW, E-Hard) is today only in its infancy), the author
compromises by using cellular automata to grow/evolve
neural nets in large numbers in RAM, which is cheap and
plentiful. (It is now possible to have a gigabyte (a billion
byes) of RAM in one’s work-station). By using cellular
automata based neural nets which grow and evolve in
gigabytes of RAM, it should be possible to evolve large
numbers (tens of thousands) of neural net modules, and
then assemble them (or even evolve their
interconnections) to build an artificial brain. The
bottleneck is the speed of the processor which updates the
CA cells. State of the art in such processors is MIT’s
"CAM-8" machine, which can update 200,000,000 CA
cells a second.
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Recendy, it has been suggested by the author’s
ATR colleague Hemmi, that NTTs Content Addressable
Memory System "CAM-CAM" (which should be ready
by the end of 1997) might be able to update CA cells at 
rate thousands of times faster than the MAT machine, i.e.
at a hundred billion CA cells per second. N’Tr’s machine
is massively parallel Hemmi and his programmer
assistant Yoshikawa are now (December 1995) busily
engaged in writing software to convert the author’s CA
rules (in 2D form) into Boolean expressions suitable for
the NTT machine. If they succeed in applying this
machine to CAM-Brain, then a new era of brain building
can begin, because the ability to evolve thousands of
neural net modules would become realistic and very
practical (for example, to evolve a neural net module
inside a cubic space of a million CA cells, i.e. 100 cells on
a side, at a hundred billion cells a second, would take at
most about 500 clock cycles, i.e. about five milliseconds.
So the ~olutlon of a Oopulation of ]O0 chromosomes over
100 generations could all be done in about one minute.)
All the essential ingredients for brain building would be
available (lots of RAM, the CA rules, and fast CA
processors). Even if Hemmi does not succeed, then a new
machine can be designed to be thousands of times faster
than the CAM-8 machine. The author believes the CAM-
Brain breakthrough is either less than a year away, or at
most only a few years away (the time necessary to design
~d build a "Super-CAM" machine, probably with the
help of NTI).

The above gives an overview of the CAM-Brain
research project. What now follows is a more detailed
description of CAM-Brain, showing how one grows and
evolves CA based neural net modules in 2D and 3D. We
begin with the ~sential idea. Imagine a 2D CA trail
which is 3 cells wide (e.g. Fig. 2). Down the middle 
the wail, send growth signals. When a growth signal hits
the end of the u’ail, it makes the trail extend, or turn left,
or right, or split etc., depending upon the nature of the
signal (e.g. see Figs. 3-6). ]t was the author who hand
coded the CA rules which make these extensions, turns,
splits etc. happen. The CA rules themselves are not
evolved. It is the sequence of these signals (fed
continuously over time into an initialized short Wail) that
is evolved. This sequence of growth signals is the
"chromosome" of a genetic algorithm, and it is this
sequence that maps to a cellular automata network. When
wails collide, they can form "synapses" (e.g. see Fig. 7).
Once the CA network has been formed in the initial
"growth phase’, it is later used in a second "neural
signaling phase’. Neural signals move along CA-based
axons and dendrites, and across synapses etc. The CA
network is made to behave like a conventional artificial
neural network (see Fig. 11). The outputs of some of the
neurons of the complex recurrent networks which result
can be used to control complex time dependent
behaviors whose fitnesses can be measured. These fimess
values can be used to drive the evolution. By

growing/evolving thousands of neural net modules anti
their interconueedons in an incremental evolutionary way.
it will bc possible to build artificial brains. According t~:
the CAM developers at MIT, it is likely that the next
generation of CAMs will achieve an increase in
performance of the order of thousands, within 5 years.
However, to be able to evolve a billion neuron artificial
brain by 2001 (ATR’s goal), it is likely that a "nano-
CAM" machine (i.e. one which uses neno-scale electronic
speeds and densities) will need to be developed. To this
end, we are collaborating with an NTr researcher who h,l~
developed a nanoscale electronics device, who wants to
combine huge numbers of them to behave as nano-scalc
cellular automata machines.

In the summer of 1994, a two dimensional CAM-
Brain simulation was completed which required 11,000
hand crafted CA state transition rules. It was successfully
applied to the evolution of maximizing the number of
synapses, outputting an arbitrary constant neural signal
value, outputting a sine wave of a desired arbitrary period
and amplitude and to the evolu~on of a simple artificial
retina which could output the vector velocity of a "white.
line" which "moved" across an array of’detect(~ neurons.
Work on the 3D simulation should be completed by early
1996, and is expected to take about 150,000 hand crafted
CA rules. The Brain Builder Group of ATR took
possession of one of MITs CAM8 machines in the fall of
1994. At the time of writing (December 1995) the porting
of the 2D rules from a Spare20 workstation to the CAM8
is nearing completion. If the porting of the rules of the 3D
simulation to this-machine is not possible, then a
"SuperCAM" machine will be designed specifically for
CAM-Brain, with the collaboration of the Evolutionary
Technologies (ET) group of NTT, with whom our Brain
Builder group of ATR’s Evolutionary Systems (F..S) group,
collaborates closely. The complexity of CAM-Brain will
make it largely undesignable, so a (directed) evolutionary
approach called "evolutionary engineering" is being used.
Neural networks based on cellular automata (Codd 1968),
can be grown and evolved at electronic spcedsinside state
of the art cellular automata machines, e.g. MITs "CAM8"
machine, which can update 200 million cells per second
(Toffoli & Margolus 1990). Since RAM is cheap,
gigabytes of RAM can be used to store the states of the
CA ceils used to grow the neural networks. CA based
neural net modules are evolved in a two phase process.
Three cell wide CA wails are grown by sending a sequence
of growth signals (extend, turn left, turn right, fork left,
fork right, T fork) down the middle of the wail. When an
instruction hits the end of the wail it executes its function.
This sequence of growth instructions is treated as a
chromosome in a Genetic Algorithm (Goldberg 1989) and
is evolved. Once gigabytes of RAM and electronic
evolutionary speeds can be used, genuine brain building,
involving millions and later billions of artificial neurons,
becomes realistic, and should become concrete within a
year or two. The CAM-Brain Project should revolutionize
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the fields of neural networks and artificial life, and in time
help create a new specialty called "Brain Building’. with
its own conferences and journals.

This work consists of the following sections.
Section 2 describes briefly the idea of "Evolutionary
Engineering", of which the CAM-Brain Project is an
example. Section 3 describes how neural networks can he
based on cellular automata (Codd 1968), and evolved 
electronic speeds. Section 4 presents some of the details
of CAM-Brain’s implementation. Section 5 shows how
using cellular automata machines will enable millions of
artificial neural circuits to be evolved to form an artificial
brain. Section 6 discusses changes needed for the 3D
version of CAM-Brain. Section 7 deals with recent work.
Section 8 deals with future work and section 9
summarizes.

2. Evolutionary Engineering

Evolutionary Engineering is defined to be "the art of
using evolutionary algorithms (such as genetic algorithms
(Goldberg 1989)) to build complex systems." This work
reports on the idea of evolving cellular automata based
neural networks at electronic speeds inside cellular
automata machines. This idea is a clear example of
evolutionary engineering. Evolutionary engineering will
be increasingly needed in the future as the number of
components in systems grows to gargantuan levels.
Today’s nano-electronics for example, is researching
single electron transistors (SETs) and quantum dots.
Pmhably within a decade or so, humanity will have full
blown nanotechnology (molecular scale engineering),
which will produce systems with a trillion trillion
components [Drexler 1992]. The potential complexities of
such systems will be so huge, that designing them will
become increasingly impossible. However, what is too
complex to be humanly designable, might still be
buildable, as this work will show. By using evolutionary
techniques (i.e. evolutionary engineering), it is often still
possible to build a complex system, even though one
does not understand how it functions. This arises from
the notion of the "complexity independence" of
evolutionary algorithms, i.e. so long as the (scalar) illness
values which drive the evolution keep increasing, the
internal complexity of the evolving system is irrelevant.
This means that it is possible to successfully evolve
systems which function as desired, but which are to
complex to be designable. The author believes that this
simple idea (i.e. the complexity independence of
evolutionary algorithms) will form the basis of most
21st century technologies (dominated by nanotechnology
(Drexler 1992)). Thus, evolutionary engineering 
"extend the barrier of the buildable", but may not be good
science, because its products tend to be black boxes.
However, confronted with the complexity of trillion
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trillion component systems, evolutionary engineering may
be the only viable method to build them.

o Cellular Automata Based Neural
Networks

Building an artificial brain containing billions of artificial
neurons is probably too complex a task to be humanly
dasignable. The author felt that brain building would be a
suitable task for the application of evolutionary
engineering techniques. The key ideas are the following.
Use evolutionary techniques to evolve neural circuits in
some electronic medium, so as to take advantage of
electronic speeds. The medium chosen by the author was
that of cellular automata (CA) (Codd 1968), using special
machines, called "Cellular Automata Machines (CAMs)’,
which can update hundreds of millions of CA cells a
second (Toffoli & Margolus 1990).

CAMs can be used to evolve the CA based neural
networks at electronic speeds. The states of the cellular
automata cells can be stored in RAM, which is cheap, so
one can have gigabytes of RAM to store the states of
billions of CA cells. This space is large enough to contain
an artificial brain. MIT’s Information Mechanics Group
(Toffoli and Margolus) believe that within a few years 
will be technically possible to update a trillion CA cells
in about 0.I nanoseconds Co221, Toffoli & Margolus
1990). Thus, if CA state transition rules can be found to
make CA behave like neural networks, and if such CA
based networks prove to be readily evolvable, then a
potentially revolutionary new technology becomes
possible. The CAM-Brain Project is based on the above
ideas and fully intends to build artificial brains before the
completion of the project in 2001. The potential is felt to
be so great that it is likely that a new specialty will be
formed, called "Brain Building’.

/:or the first 18 months of the CAM-Brain
Project, the author simulated a two dimensional version of
CAM-Brain on a Spare 10 workstation. This work was
completed in the summer of 1994. The 2D version was
used briefly (before work on the 3D version was started)
to undertake some evolutionary tests, whose results will
be presented in the next section. The 2D version served
only as a feasibility and educational device. Since trails
are obliged to collide in 2D, the 2I) version was not taken
very seriously. Work was begun rather quickly on the
more interesting 3D version almost immediately after the
2D version was ready. Proper evolutionary tests will be
undertaken once the 3D version is ready, which should be
by early 1996. To begin to understand how cellular
automata (Codd 1968) can be used as the basis for the
growth and evolution of neural networks, consider Fig. I
which shows an example of a 21) CA state transition rule,
and Fig. 2 which shows a 2D CA trail, 3 cells wide. All
cells in a CA system update the state of their cells
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synchronously. The new state of a given cell depends
upon its present state and the states of its nearest
neighbors. Down the middle of the 3 cell wide CA wail,
move "signal or growth cells" as shown in Fig. 2 As an
example of a state transition rule which makes a signal
cell move to the fight one square, consider the right hand
most signal cell in Fig. 2, which has a state of 5. The cell
immediately to its fight has a state of 1, which we want to
become a 5. Therefore the 2D state ulmsition rule to turn
the 1 into a 5 is 1.2.2.2.5-->5. These signal or growth
cells me used to generate the CA wails, by causing them
to exte~al, turn left or right; split left or right, and TspliL
When trails collide, they can form synapses. It is the
sequence of these signal cells which determines the
configuration of the CA trails, thus forming a CA
network. It is these CA trails which later are used as
neural network trails of axons and dendrites. Neural
signals are sent down the middle of these CA trails. Thus
there are two major phases in this process. Firsdy, the CA
trails are grown, using the sequence of signal cells.
Secondly, the resulting CA trail network is used as a
netral network, whose fitness at controlling some system
can be measured and used to evolve the original growth
sequence. To make this mcce explicit, it is the sequence of
growth cells which is evolved. By modifying the
sequence, one alters the CA network configuration, and
hence the fitness of the configuration when it functions
as a neural net in the second phase. From a genetic
algorithm (GA) point of view, the format of the 
"chromosome" is the sequence of integers which code
for the signaling or growth instructions. By mutating and
crossing over these integers, one obtains new CA
networks, and hence new neural networks. By performing
this growth at electronic speeds in CAMs. and in parallel.
with one CAM per GA chromosome, and attaching a
conventional programmable microprocessor to each CAM
to measure the user defined fitness of the CA based
neural circuit, one has a means to evolve large numbers of
neural modules vet’)’ quickly. Using CAMs to evolve
neural circuits, is an example of a type of machine that the
author labels a "Darwin Machine". i.e. one which evolves
its own structure or architecture. A related idea of the
author concerns the concept of "Evolvable Hardware
(EHW)" (de Garis 1993) where the software instructions
used to configure programmable logic devices 0n_,Ds) are
treated as chromosomes in a Genetic Algorithm
(Goldberg 1989)¯ One then rewrites the circuit for each
chromosome.

Fig. 1
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A 2D CA State Transition Rule

Fig. 2 Signal Cells Move Along a Cellular
Automata Trail
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4. Further Details

This section provides further details on the
implementation of the CA based neural networks. There
are three kinds of CA trails in CAM-Brain, labeled
dendrites, excitatory axons and inhibitory axons, each
with their own stales. Whenever an axon collides with a
dendrite or vice versa, a "synapse" is formed. When a
dendrite hits an excitatory/inhibitory axon or vice versa,
an excitatory/inhibitory synapse is formed. An inhibitory
synapse reverses the sign of the neural signal value
passing through iL An excitatory synapse leaves the sign
unchanged. Neural signal values range between -240 and
+240 (or their equivalent CA states, ranging from 100 to
580). The value of a neural signal remains unchanged as
it moves along an axon, but as soon as it crosses a synapse
into a dendrite, the signal value (i.e. signal strength)
begins to drop off linearly with the distance it has to
Iravel to ks receiving neuron. Hence the signal strength is
proportional to the distance between the synapse and the
receiving neuron. Thus the reduction in signal strength
acts like a weighting of the signal by the time it reaches
the neuron. But, this distance is evolvable, hence
indirectly, the weighting is evolvable. CAM-Brain is
therefore equivalent to a conventional artificial neural
network, with its weighted sums of neural signal
strengths. However, in CAM-Brain there are time delays,
as signals flow through the network. When two or three
dendrite signals collide, they sum their signal strengths
(within saturated upper or lower hounds).

When implementing the 2D version of CAM-
Brain, it soon became noticeable that there were many
many ways in which collisions between CA trails could
occur. So many, that the author became increasingly
discouraged. It looked as though it would take years of
handcnding the CA state Iransition rules to get CAM-
Brain to work. The intention was to have rules which
would cover every collision possibility. Eventually a
decision was made to impose constraints on the ways in
which CA Irails could grow. The first such conslraint was
to make the trails grow on a grid 6 cells or squares
(cubes) on a side. This process (called "gridding’)
sharply reduces the number of collision types. It also has
a number of positive side effects. One is that in the neural
signaling phase, neural signals arrive synchronously at
junction points. One no longer needs to have to handcode
rules for phase delays in neural signaling summation. By
further imposing thatdifferent growth cells advance the
length of the trails by the same number of squares, one
can further reduce the number of collision types. With
synchrony of growth and synchrony of signaling and
gridding, it is possible to cover all possible types of
collisions. Nevertheless, it still took over 11000 rules to
achieve this goal, and this was only for the 2D version.
The 3D version is expected to take about 150,000 rules,
but due to the experience gained in working on the 2D
version, and to the creation of certain software

productivity tools, the 3D version should be completed by
early 1996

Considering the fact that the 2D version takes
11,000 rules, it is impossible in this short weak to discuss
all the many tricks and strategies that are used to gct
CAM-Brain to work. That would require a book
(something the author is thinking seriously about writing,
if he ever makes time to do it). However, some of the
tricks will be mentioned here. One is the frequent use
of =gating cells=, i.e. cells which indicate the direction
that dendrite signals should turn at junctions to head
towards the receiving hereon. To give these gating cells a
directionality, e.g. a "leftuess" or a "rightness’, special
marker cells are circulated at the last minute, after the
circuit growth is stabilized. Since some trails are longer
than others, a sequence of delay cells are sent through
the network after the growth ceils and before the marker
cells. Without thedelay cells, it is poss~le that the marker
cells pass before synapses are formed.

Once the 21) simulation was completed (before
the CAM8 was delivered) several brief evolutionary
experiments using the 2D version were undertaken. The
first, was to see if it would he possible to evolve the
number of synapses. Figs. 9, 10, 11 show the results of an
elite chromosome evolved to give a large number of
synapses. Fig. 9 shows early growth. Fig. 10 shows
completed growth, andFig. 11 shows the neural signaling
phase. In this experiment, the number of synapses
increased steadily. It evolved successfully. The next
experiment was to use the neural signaling to see if an
output signal (tapped from the output of one of the
neurons) could evolve to give a desired constant value.
This evolved perfectly. Next, was to evolve an oscillator
of a given arbitrary frequency and amplitude, which did
evolve, but slowly (it took a full day on a Sparcl0
workstation). Finally, a simple retina was evolved which
output the two component directional velocity of a
moving "line" which passed (in various directions) over 
grid of 16 nretinal neurons~. This also evolved but even
more slowly. The need for greater speed is obvious.

The above experiments are only the beginning.
The author has already evolved (not using CAs) the
weights of recurrent neural networks as controllers of an
artificial nervous system for a simulated quadrupedal
artificial creature. Neural modules called nGenNets" (de
Gaffs 1990, 1991) were evolved to make the creature
walk straight, turn left or right, peck at food, and mate.
Gerd~ets were also evolved to detect signal frequencies, to
generate signal frequencies, to detect signal strengths, and
signal strength differences. By using the output of the
detector GenNets, it was possible to switch motion
behaviors. Each behavior had its own separately evolved
GenNet. By switching between a library of GenNets (i.e.
their corresponding evolved weights) it was possible to
get the artificial creature to behave in interesting ways.
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It could detect the presence and location of prey,
predators and mates and take appropriate action, e.g.
orientate, approach, and eat or mate, or turn away and
flee. However, every time the author added another
GenNet, the motion of the simulated creature slowed on
the screen. The author’s dream of being able to give a
robot kitten some thousand different behaviors using
GenNets, could not be realized on a standard
monoprocessor workstation. Something more radical
would be needed. Hence the motivation behind the CAM-
Brain Project.

e A Billion Neurons in a Trillion Cell
CAM by 2001

Fig. 8a shows some estimated evolution times for 10
chromosomes over 100 generations for a Spare 10
workstation, a CAM8, and a CAM2001 (i.e. a CAM using
the anticipated electronics of the year 2001) for a given
application. In the 2D version of CAM-Brain,
implemented on a Sun Sparc 10 workstation, it takes
approximately 3.4 minutes to grow a stable cellular
automata network consisting of only four neurons. It takes
an additional 3.2 minutes to perform the signaling on the
grown network, i.e. a total growth-signaling time to
measure the fitness of a chromosome of 6.6 minutes. This
time scales linearly with the number of artificial neurons
in the network. If one uses a population of 10
chromosomes, for 100 generations, the total evolution
time (on a Spare 10) is 100"10"6.6 minutes, i.e., I 
hours, or 4.6 days. This is obviously tediously slow, hence
the need to use a CAM. MIT’s CAM8 (Toffoli 
Margolus 1990) can update 25 million cellular automata
cells per second, per hardware module. A CAM8 "box"
(of personal computer size) contains eight such modules,
and costs about $40,000. Such boxes can be connected
blockwise indefinitely, with a linear increase in processing
capacity. Assuming aa eight module box, how quickly can
the above evolution (i.e. 100 generations, with 
population size of 10) be performed? With eight modules,
200 million cell updates per second is possible. If one
assumes that the 2D CA space in which the evolution
takes place is a square of 100 cells on a side, i.e., 10,000
cells, then all of these cells can be (sequentially) updated
by the CAM8 box in 50 microseconds. Assuming 1000
CA clock cycles for the growth and signaling, it will take
50 milliseconds to grow and measure the fitness of one
chromosome. With a population of 10, and 100
generations, total CAM8 evolution time for a four neuron
network will be 50 seconds, i.e. about one minute, which
is roughly 8000 times faster. Using the same CAM8 box,
and a 3D space of a million cells, i.e. a cube of I00 cells
on a side, one could place roughly 40 neurons. The
evolution time will be 100 times as long with a single
CAM8 box. With 10 boxes, each with a separate
microprocessor attached, to measure the fitness of the
evolved network, the evolution time would be about eight
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minutes. Thus for 1000 neurons, the evolution would take
about 3.5 hours, quite an acceptable figure. For a million
neurons, the evolution time would be nearly five months.
This is still a workable figure. Note, of course, that these
estimates are lower bounds. They do not include the
necessary human thinking time, and the time needed for
sequential, incremental evolution, etc. However, since the
CAM-Brain research project will continue until the year
2001, we can anticipate an improvement in the speed and
density of electronics over that period. Assuming a
continuation of the historical doubling of electronic
component density and speed every two years, then over
the next eight years, .there will be a 16-fold increase in
speed and density. Thus the "CAM-2001" box will be
able to update at a rate of 200"16"16 million cells per
second. To evolve the million neurons above will take
roughly 13.6 hours. Thus to evolve a billion neurons, will
take about 19 months, again a workable figure. But, if a
million neurons can be successfully evolved, it is likely
that considerable interest will be focused upon the CAM-
Brain approach, so that more and better machines will be
devoted to the task, thus reducing the above 19-month
figure. For example, with 100 machines, the figure would
be about two months. The above estimates are
summarized in Figure 8a. These estimates raise some
tantalizing questions. For example, if it is possible to
evolve the connections between a billion artificial neurons
in a CAM200U then what would one want to do with such
an artificial nervous system (or artificial brain)? Even
evolving a thousand neurons raises the same question.

¯ ISlmurclO CAM8 CAM0 CAM8 CAM8 CAM2001 CAM2001

10000 100o0 1 mno. 2s miiio. 2S billion 25 billion 25 trillion
CA cells CA cells CA cells CA cells CA cells CA cells CA cells

4 4 40 1000 1 million 1 million 1 billion
nllurorls I~lurol~ I~urolIs I~urolw IleUrOl~ i~urons rlQUrol~

I 1 10 10 10 10 100
Spare10 ". CAM8 CAMS$ CAMBs CAMSs CAMZ001s CAM20Ols

4.6days -50ceconds 8minutes $.5hours Smonths 13.6hours 2months

Fig. 8a Evolution Times for Different
Machines & CA Cell, Neuron
& Machine Numbers

48*48*24
10gem 40gens

¯ 51 63
10gens 20gens

96*48*24 81 89

- ~6"96"24 5gens lOgens
116 116

96*96*48 5gens 10gens
235 235

60gens 100gens
71 93

45gens
122

40gens 45gens 70gens
205 20S 234

Fig. 8b Synapses per Neuron Doubles as
3D Space Doubles
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One of the aims of the CAM-Brain research
project is to build an artificial brain which can control
I000 behaviors of a "robot kitten" (i.e. a robot of size and
capacities comparable to a kitten) or to control 
household "cleaner robot". Presumably it will not be
practical to evolve all these behaviors at once. Most likely
they will have to be evolved incrementally, i.e., starting
off with a very basic behavioral repe.rt, oire and then adding
(stepwise) new behaviors. In brain circuitry terms, this
means that the new neural modules will have to connect
up to already established neural circuits. In practice, one
can imagine placing neural bodies (somas) external to the
established nervous system and then evolving new axonal
and dendral connections to it.

The CAM-Brain Project hopes to create a new
tool to enable serious investigation of the new field of
"incremental evolution." This field is still rather virgin
territory at the time of writing. This incremental evolution
could benefit from using embryological ideas. For
example, single seeder cells can be positioned in the 3D
CA space under evolutionary control. Using handcrafted
CA "developmental or embryological" rules, these seeder
cells can grow into neurons ready to emit dendrites and
axons (de Garis 1992). The CAM-Brain Project, 
successful, should also have a major impact on both the
field of neural networks and the electronics industry. The
traditional preoccupation of most research papers on
neural networks is on analysis, but the complexities of
CAM-Brain neural circuits, will make such analysis
impractical. However, using Evolutionary Engineering,
one can at least build/evolve functional systems. The
electronics industry will be given a new paradigm, i.e.
evolving/growing circuits, rather than designing them. The
long term impact of this idea should be significant, both
conceptually and financially.

6. The 3D Version

The 3D version is a conceptually (but not practically)
simple extension of the 2D version. Instead of 4
neighbors, there Are 6 (i.e. North, East, West, South, Top,
Bottom). Instead of 6 growth instructions as in the 2D
version (i.e. extend, turn left, turn right, split extend left,
split extend right, split left right), there are 15 in the 3D
version. A 3D CA trail cross section consists of a center
cell and 4 neighbor cells, each of different state or color
(e.g. red, green, blue, brown). Instead of a turn left
instruction being used as in the 2D case, a "turn green"
instruction is used in the 3D case. The 15 3D growth
instructions are (extend, turn red, turn green, turn blue,
turn brown, split extend red, split extend green, split
extend blue, split extend brown, split red brown, split red
blue, split red green, split brown blue, split brown green,
split blue green). A 3D CA rule thus consists of 8 integers
of the form CTSENWB->Cnew. The 3D version enables
dendrites and axons to grow past each other, and hence

reach greater distances. The weakness with the 2D version
is that collisions in a plane are inevitable, which causes a
crowding effect, whereby an axon or dendrite cannot
escape from its local environment. This is not the case
with the 3D version, which is topologically quite
different. A 3D version is essential if one wants to build
artificial brains with many interconnected neural modules.
The interconnectivity requires long axons/dendrites. Fig.
12 shows an early result in 3D simulation. A space of 3D
CA cells (48*48*48 cubes) was used. A single short 
CA trail was allowed to grow to saturate the space. One
can already sense the potential complexity of the neural
circuits that CAM-Brain will be able to build. In 3D, it is
likely that each neuron will have hundreds, maybe
thousands of synapses, thus making the circuits highly
evolvable due to their smooth fitness landscapes (i.e. if
you cut one synapse, the effect is minimal when there are
hundreds of them per neuron).

7. Recent Work

Just prior to writing this work, the author was able to test
the idea that in 3D a single neuron could have an
arbitrarily large number of synapses, provided that there is
enough space for them to grow in. This was a crucial test,
whose results are shown in Fig. 8b. Fitness was defined as
the number of synapses formed for two neurons in CA
spaces of 48*48*24, 96*48*24, 96*96*24, and 96*96*48
cells respectively. One can see that by doubling the space,
one doubles (roughly) the number of synapses (for 
elite chromosome). If this had not been the case, for
example, if some kind of fractal effect had caused a
crowding of the 3D circuits (similar to the crowding effect
in 2D), then the whole CAM-Brain project would have
been made doubtful. However, with this result, it looks as
though evolvability in the 3D signaling phase will be
excellent, although the author needs several months more
work before completing the 3D signaling phase to confirm
his confidence.

At the time of writing (December 1995), the
author is completing the simulation of the 3D version,
working on the many thousands of rules necessary to
specify the creation of synapses. So far, more than
140,000 3D rules have been implemented, and it is quite
probable that the figure may go higher than 150,000.
Since each rule is rotated 24 ways (6 ways to place a cube
on a surface, then 4 ways to rotate that cube) to cater to all
possible orientations of a 3D trail, the actual number of
rules placed in the (hashed) rule base will be over 
million. Specifying these rules takes time, and constitutes
so far, the bulk of the effort spent building the CAM-Brain
system. Software has been written to help automate this
rule generation process, but it remains a very time
consuming business. Hence the immediate future work
will be to complete the simulation of the 3D version.
Probably, this will be done by early 1996.
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Early in 1995, the author put his fLrSt application
on the CAM8 machine (which rests on his desk). MITs
CAM8 is basically a hardware version of a look up table,
where the output is a 16 bit word which becomes an
address in the look up table at the next clock cycle. This
one clock cycle lookup loop is the reason for CAMS’s
speed. It is possible to give each CA cell in the CAM8
more than 16 bits, but tricks are necessary. The first
CAM8 experiment the author undertook involved only 16
bits per CA cell. This work is too short to go into details
as to how the CAM8 functions, so only a broad overview
will be given here. The 16 bits can be divided into slices,
one slice per neighbor cell. These slices can then be
"shifted" (by adding a displacement pointer) by arbitrarily
large amounts (thus CAM8 CA cells are not restricted to
having local neighbors). With only 16 bits, and 
neighbors in the 2D case (Top, Right, Bottom, Left) and
the Center cell, that’s only 3 bits per cell (i.e. 8 states, i.e.
8 colors on the display screen). It is not possible to
implement CAM-Brain with only 3 bits per CA cell. It
was the intention of the author to use the CAM8 to show
its potential to evolve neural circuits with a huge number
of artificial neurons. The author chose an initial state in
the form of a square CA trail with 4 extended edges. As
the signals loop around the square, they duplicate at the
comers. Thus the infinite looping of 3 kinds of growth
signals supply an infinite number of growth signals to a
growing CA network. There are 3 growth signals (extend,
extend and split left, extend and split fight). The structure
needs exactly 8 states. The 8 state network grows into the
32 megacells of 16 bits each, which are available in the
CAM8. At one pixei per cell, this 2D space takes over 4
square meters of paper poster (hanging on the author’s
wall). A single artificial neuron can be put into the space
of one’s little finger nail, thus allowing 25,000 neurons to
fit into the space. If 16 Mbit memory chips are used
instead of 4 Mbit chips, then the area and the number of
neurons quadruples to I00,000.

Placing the poster on the author’s wall suddenly
gave visitors a sense of what is to come. They could see
that soon a methodology will be ready which will allow
the growth and evolution of artificial brains, because soon
it will be possible to evolve many thousands of neural
modules and their inter-connections. The visitors sense the
excitement of CAM-Brain’s potential.

Filling a space of 32 Mcells, with artificial
neurons can be undertaken in at least two ways. One is to
use a very large initialization table with position vectors
and states. Another, is to allow the neurons to "grow"
within the space. The author chose to use this "neuro-
embryonic" approach. A single "seeder" CA cell is placed
in the space. This seeder cell launches a cell to its right
and beneath it. These two launched cells then move in
their respective directions, cycling through a few dozen
states When the cycle is complete, they deposit a cell
which grows into the original artificial neuron shape that
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the author uses in the 2D version of CAM-Brain.
Meanwhile other ceils are launched to continue the
growth. Thus the 32Mcell space can be filled with
artificial neurons ready to accept growth cell
"chromosomes" to grow the neural circuitry. This neuro-
embryogenetic program (called "CAM-Bryo") was
implemented on a workstation by the author, and ported to
the CAM8 by his research colleague Felix Gers. In order
to achieve the porting, use was made of "subcells" in the
CAM8, a trick which allows more than 16 bits per CA
cell, but for N subcells of 16 bits, the total CAM8 memory
space available for CA states is reduced by a factor of N.
Gers used two subcells for CAM-Bryo, hence 16M cells
of 32 bits each. A second poster of roughly two square
meters was made, which contained about 25,000 artificial
neurons (see Fig. 13). Again, with 16Mbit memory chips,
this figure would be 100,000. Gers expects to be able to
port the 2D version of CAM-Brain to the CAM8 with a
few weeks work, in which case, a third poster will be
made which will depict about 15,000 neurons (with 
lower density, to provide enough space for the neural
circuitry to grow) and a mass of complex neural circuits.
Once this is accomplished, we expect that the world will
sit up and take notice - more on this in the next section.

The author’s boss at ATR’s Evolutionary Systems
department, has recently set up a similar group at his
company NTT, called Evolutionary Technologies (ET)
department. The idea is that once the ATR Brain Builder
group’s research principles are fairly solid, the author and
the author’s boss (whose careers are now closely linked)
will be able to tap into the great research and
development resources of one of the world’s biggest
companies, when the time comes to build large scale
artificial brains. NTT has literally thousands of
researchers.

The author would like to see Japan invest in a
major national research project within the next 10 years to
build "Japan’s Artificial Brain", the so-called "J-Brain
Project". This is the goal of the author, and then to see
such a project develop into a major industry within 20
years. Every household would like to have a cleaner robot
controlled by an artificial brain. The potential market is
huge.

8. Future Work

A lot of work remains to be done. The author has a list of
"to dos" attached to his computer screen. The first item on
the list is of course, to finish the rules for the 3D version
of CAM-Brain. This should be done by early 1996, and
will probably need over 150,000 CA rules. Second, the
experience gained in porting the 700 rules for "CAM-
Bryo" from a workstation to the CAM8 will shortly enable
Gers to complete the much tougher task of porting the 2D
version of CAM-Brain to the CAM8. In theory, since
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there are 11,000 CA rules for the 2D version, and that
each rule has 4 symmetry rotations, that makes about
45,000 rules in total to be ported. This fits into the 64K
words addressable by 16 bits. The 3D version however,
with its (es~,nated) 150,000 rules, and its 24 symmetry
rotations, will require over 3 million rules in total. The 3D’
version may require a "Super CAM" to be designed and
built (by NTT’s "Evolutionary Teohnologies" Dept., with
whom the author collaborates closely), which can handle 
much larger number of bits than 16. The group at MIT
who built CAM8 is thinking of building a CAM9 with 32
bits. This would be very interesting to the author.
Whether NTT or MIT get there first, such a machine may
be needed to put the 3D version into a CAM. However,
with a state-of-the-art workstation (e.g. a DEC Alph~
which the user has on his desk) and a lot of memory (e.g.
256 Mbyte RAM), it will still be possible to perform some
interesting evolutionary experiments in 3D CAM-Brain,
but not with ’.,he speed of a CAM.

Another possibility for porting the 3D version to
the CAM8, is to re implement it using CA rules which are
more similar to those used in yon Neumann’s universal
constructor/calculator, rather than Codd’s. Von
Neummann’s 2D trails are only 1 cell wide, whereas
Codd’s 2D version are 3 cells wide, with the central
message trail being surrounded by two sheath cells. The
trick to using yon Neumann’s approach is incorporating
the direction of motion of the cell as part of the state. The
author’s colleague Jacqueline Signorinni advises that
CAM-Brain could be implemented at a higher density (i.e.
more filled CA cells in the CA space) and without the use
of a lookup table. The control of the new states would be
implemented far more simply she feels, by simple IF-
THEN-ELSE type programming. "yon Neumann-izing"
the 3D version of CAM-Brain might be a good task for the
author’s next grad student.

With the benefit of hindsight, if the 3D version is
reimplemeted (and it is quite likely that my boss will have
other members of our group do just that), then the author
would advise the following. If possible (if you are
implementing a Codd version) give the four sheath cells
in a 3D CA trail cross section the same state. This would
obviously simplify the combinatorial explosion of the
number of collision cases during synapse formation. But,
how then would the 3D growth insmlctions be interpreted
when they hit the end of a trail, and how would you define
the symmetry rotations? If possible, it would also be
advisable to use the minimum number of gating cell states
at growth junctions for all growth instructions. Whether
this is possible or not, remains to be seen. However, if
these simplifications can be implemented (and of course
the author thought of them originally, but was unable to
find solutions easily), then it is possible that the number of
3D CA rules might be small enough to be portable to the
CAMS, which would allow 3D neural circuits to be

evolved at 200 million CA cells per second (actually less
because of the subeell phenomenon).

Once the 3D rules are ready, two immediate
things need to be done. One is to ask ATR’s graphics
people to display these 3D neural circuits in an interesting,
colorful way, perhaps with VR (virtual reality) 3D goggles
with interactivity and zoom, so that viewers can explore
regions of the dynamic circuits in all their 500 colors
(states). This could be both fun and impressive. The
second thing is of course to perform some experiments on
the 3D version. As mentioned earlier, this will have to be
done on a workstation, until a SuperCAM is built.
Another possibility, as mentioned earlier is to redesign
the 3D CA rules, to simplify them and reduce their
number so that they can fit within the 64K 16 bit confines
of the CAM8 machine.

As soon as the 2D rules have been fully ported to
the CAMS, experiments can begin at speed. Admittedly
the 2D version is topologically different from the 3D
version (in the sense that collisions in 2D are easier than
in 3D), it will be interesting to try to build up a rather
large neural system with a large number of evolved
modules (e.g. of the order of a hundred, to start with). 
this stage, a host of new questions arise. Look at Fig. 14,
which is van Essen’s famous diagram of the modular
architecture of the monkey’s visual and motor cortex,
showing how the various geographical regions of the brain
(which correspond to the rectangles in the figure, and to
distinct signal processing functions) connect with each
other. Physiological techniques now exist which enable
neuro-anatomists to know which distinct cortical regions
connect to others. Thus the geography (or statics) of the
biological brain is increasingly known. What remains
mysterious of course, is the dynamics. How does the brain
function.

Van Essen’s diagram is inspirational to the
author. The author would like to produce something
similar with CAM-Brain, i.e. by evolving neural modules
(corresponding to the rectangles, or parts of the
rectangles) and their interconnections. This raises other
questions about sequencing and control. For example,
does one evolve one module and freeze its circuits and
then evolve another module, freeze its circuits and finally
evolve the connections between them, or does one evolve
the two modules together, or what? Will it be necessary to
place walls around each module, except for hand crafted
I/O trails? The author has no clear answers or experience
yet in these matters. The author’s philosophy is "first
build the tool, and then play with it. The answers will
come with using the tool".

Another possibility for future work is to try to
simplify the whole process of rule making. Perhaps higher
level rules can be made which are far fewer in number
and allow the author’s low level rules to be generated from
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them. If such a thing can be done, it would be nice, but
the author believes there are still so many special cases
in the specification of 3D CAM-Brain, that the number of
high level rules may still be substantial. If these high level
rules can be found, it might be possible to use them and
put them on the CAM8, so that 3D evolutionary
experiments can be undertaken at CAM8 speeds.
Another idea is to use FPGAs (field programmable gate
arrays) which code these high level rules and then to use
them to grow 3D neural circuits. Each 3D CA cell could
contain pointers to its 3D neighbors. In this way, it would
be possible to map 3D neural circuits onto 2D FI’GAs.
This is longer term work. FPGAs are not cheap if many
are needed. The author’s RAM based solution has the
advantage of being cheap, allowing a billion (one byte)
CA cell states to be stored reasonably cheaply.

A recent suggestion coming from NTT concerns
the use of an existing "content addressable memory"
machine, which may be able to update CA cells
effectively. There is a "CAMemory" research group at
HTT that ATR is now collaborating with. If a small
enough number of CAMemory Boolean function rules
corresponding to CAM-Brain can be found (a big if), it 
possible that a NITs CAMemory could be thousands of
times faster than the CAM8. Obviously, such a possibility
is worth investigating, and if successful, could be
extremely exciting, since it would mean hundreds of
billions of CA cell updates a second.

The author feels that the nature of his research in
1996 will change from one of doing mostly software
simulation (i.e. generating masses of CA rules), 
learning about the biological brain (i.e. reading about
brain science to get ideas to put into CAM-Brain),
hardware design, and evolvable hardware. These activities
will proceed in parallel. Of course, evolutionary
experiments, on CAM8 for the 2D version of CAM-Brain,
and on a 256 Mbyte RAM (DEC Alpha) workstation for
the 3D version, will also be undertaken in parallel.

Further down the road, will be the attempt to
design a "nanoCAM" or "CAM2001" based on
nanoelectronics. The Brain Builder Group at ATR is
collaborating with an NTF researcher who wants to build
nano-scale cellular automata machines. With the
experience of designing and building a "SuperCAM", a
nanoscale CAM should be buildable with several orders
of magnitude greater performance. Further research aims
are to use CAs to make Hebbian synapses capable of
learning. One can also imagine the generation of artificial
"embryos" inside a CA machine, by having CA rules
which allow an embryological "unfolding" of cell groups,
with differentiation, transportation, death, etc. resulting in
a form of neuro-morphogenesis similar to the way in
which biological brains are built. The author’s "CAM-
Bryo" program is an early example of this kind of neuro-
morphogenetic research.
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9. Summary

The CAM-Brain Project at ATR, Kyoto, Japan, intends to
build/grow/evolve a cellular automata based artificial
brain of a billion artificial neurons at (nano-)electronic
speeds inside Cellular Automata Machines (CAMs) by the
year 2001. Quoting from a paper by Margolus and Toffoli
of MIT’s Information Mechanics group, "We estimate
that, with integrated circuit technology, a machine
consisting of a trillion cells and having an update cycle of
100 pico-second for the entire space will be
technologically feasible within 10 years" (i.e. by 2000)
(Margolus and Toffoli 1990). In a trillion 3D CA cells
(cubes), one can place billions of artificial neurons. Such
an artificial nervous system will be too complex to be
humanly designable, but it may be possible to evolve it,
and incrementally, by adding neural modules to an
already functional artificial nervous system. In the
summer of 1994, a 2D simulation of CAM-Brain using
over 11000 hand crafted CA state transition rules was
completed, and initial tests showed the new system to be
evolvable. By early 1996, a 3D simulation will be
completed.

If the CAM-Brain Project is successful, it will
revolutionize the field of neural networks and artificial
life, because it will provide a powerful new tool to evolve
artificial brains with billions of neurons, and at electronic
speeds. The CAM-Brain Project will thus produce the first
Darwin Machine, i.e. a machine which evolves its own
architecture. The author is confident that in time a new
specialty will be established, based partly on the ideas
behind CAM-Brain. This specialty is called simply "Brain
Building".

The author and his colleague Felix Gers are about
to port the 2D version of CAM-Brain to the CAMS. Hence
in early 1996, it will be possible to evolve neural circuits
with 25,000 neurons (or 100,000 neurons, with 16 Mbit
memory chips) at 200 million CA cell updates a second.
As mentioned earlier, the author expects that when this
happens, the world will sit up and take notice. Twenty
years from now, the author envisages the brain builder
industry (i.e. intelligent robots etc.) as being one of the
world’s top industries, comparable with oil, automobile,
and construction. He sees an analogy between the efforts
of the very early rocket pioneers (e.g. the American
Goddard, and the German (V2) yon Braun) and the 
NASA mission to the moon which followed. Today’s
100,000-neuron artificial brain is just the beginning of
what is to come. With adiabatic (heat generationless)
reversible quantum computation, it will be possible to
build 3D hardware circuits that do not melt. Hence size
becomes no obstacle, which means that one could use
planetoid size asteroids to build huge 3D brain like
computers containing ten to power 40 components with
one bit per atom. Hence late into the 21st century, the
author predicts that human beings will be confronted with
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Fig. 9 2D CAM-Brain Early Growth
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Fig. 10 2D CAM-Brain Completed Growth
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Fig. U 2D CAM-Brain Neural Signaling
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Fig. I2 3D CAM-Brain Non-Synaptic
Growth

258 MSL-96

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



Fig. 13 2D CAM-Bryo
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Fig. 15 2D CAM-Brain on MIT’s "CAM-8"
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the "artilect" (artificial intellect) with a brain vastly
superior to the human brain with its pitiful trillion
neurons. The issue of "species dominance" will dominate
global politics late next century. The middle term
prospects of brain building are exciting, but long term they
ate terrifying. The author has written an essay on this
question (de Garis 1995). If you would like to be sent 
copy, just emaii him at degaris@hip.atr.co.jp (The author
will set up his home page on the web in 1996, after
making the effort to learn html).

Finally, by way of a postscript - as the author was
preparing the final draft, there were 6 people at ATR
working on CAM-Brain (the author (3D CA rules), 
his colleague Felix Gets (porting 2D to CAM-8), the
author’s Japanese colleague Hemmi and his programmer
assistant Yoshikawa (translating CA rules to Boolean
expressions), and two M. Sc. students from Nara Institute
of Science and Technology (NAIST). At NIT, there were
3-4 people from the Content Addressable Memory
machine group who were finding ways to apply their
machine to CAM-Brain. So, things are certainly hotting
up.

(Note added, April 1996) - Fig. 15 shows about
800 artificial neurons with their axons and dendrites
grown using the CAM-8 machine with 128 Mega words
of 16 bits. This figure is taken from an 8 square meter
poster containing 100,000 neurons. In a year, this number
will probably be a million. Felix Gers thinks he can port
the 3D version to the CAM-& The 3D rules are almost
complete and number over 160,000, i.e. nearly 4 million
with (24) rotations.

Nets and Genetic Algorithms, R.F. Albrecht, C.R. Reeves,
N.C. Steele (eds.), Springer Verlag, NY, 1993.

Hugo de Garis, "Genetic Programming : Evolutionary
Approaches to Multistrategy Learning", Ch.21 in book
"Machine Learning : A Multistrategy Approach, Vol.4",
R.S. Michalski & G. Tecuci (eds), Morgan Kauffman,
1994.

Hugo de Garis, "Cosmism : Nano Electronics and 21st
Century Global Ideological Warfare", (to appear in 
future nanotech book).

K.E. Drexler, Nanosystems : Molecular Machinery,
Manufacturing and Computation. Wiley, NY, 1992.

D..E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley,
Reading, MA, 1989.

T. Toffoli & N. Margolus, Cellular Automata Machbzes,
MIT Press, Cambridge, MA, 1987: and Cellular Automata
Machines, in Lattice Gas Methods for Partial Differential
Equations, SFISISOC, eds. Doolen et al, Addison-Wesley,
1990.

References

E.F. Codd, Cellular Automata, Academic Press, NY,
1968.

Hugo de Garis, "Genetic Programming: Modular
Evolution for Darwin Machines,"ICNN-9OWASH-DC,
(Int. Joint Conf. on Neural Networks), January 1990,
Washington DC, USA.

Hugo de Garis, "Genetic Programming", Ch.8 in book
Neural and Intelligent Systems Integration, ed. Branko
Soucek, Wiley, NY, 1991.

Hugo de Gaffs, "Artificial Embryology : The Genetic
Programming of an Artificial Embryo", Ch.14 in book
Dynamic, Genetic, and Chaotic Programming, ed.
Branko Soucek and the IRIS Group, Wiley, NY, 1992.

Hugo de Garis, "Evolvable Hardware : Genetic
Programming of a Darwin Machine", in Artificial Neural

262 MSL-96

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 


