
Automated Extraction of Expert System Rules from Databases
based on Rough Set Theory

Shusaku Tsumoto and Hiroshi Tanaka
Department of Information Medicine

Medical Research Institute, Tokyo Medical and Dental University
1-5-45 Yushima, Bunkyo-ku Tok~ 113 Japan
TEL: +81-3-5803-5840 FAX: +81-3-5803-0247

E-maih tsumoto.com@tmd.ac.jp, tanaka~cim.tmd.ac.jp

Abstract

Automated knowledge acquisition is an important re.
search area to solve the bottleneck problem in devel-
oping ezpert systems. For this purpose, several meth-
ods of inductive learning, such as induction of decision
trees, AQ method, and neural networks, have been in-
troduced. However, most of the approaches focus on
inducing rules which classifT/ cases correctly. On the
contrary, medical experts also learn other information
which is important for medical diagnostic procedures
from databases. In this paper, a rule-induction sys-
tem, called PRIMEROSE3( Probabilistic Rule Induc-
tion Method based on Rough Sets version 3.0), is intro-
duced. This program first analyzes the statistical char-
acteristies of attribute.value pairs from training sam-

ples, then determines what kind of diagnosing model
can be applied to the training samples. Then, it ex-
tracts not only classification rules for differential di-
agnosis, but also other medical knowledge needed for
other diagnostic procedures in a selected diagnosing
model. PRIMEROSE3 is evaluated on three kinds of
clinical databases and the induced results arc compared
with domain knowledge acquired from medical experts,
including classification rules. The experimental re-
sults show that our proposed method correctly not only
selects a diagnosing model, but also extracts domain
knowledge.

Keywords: learning and data mining, rule
induction, rough sets

1. Introduction

One of the most important problems in develop-
ing expert systems is knowledge acquisition from ex-
perts (Buchanan and Shortliffe: 1984). While there
have been developed many knowledge acquisition tools
to simplify- this process, it is still difficult to automate
this process. In order to solve this problem, many in-
ductive learning methods, such as induction of deci-
sion trees (Breiman, 1984; Cestnik, et al., 1987; Quin-
Inn, 1986), rule induction methods (Clark and Niblett,
1989; Indurkhya and Weiss, 1991; Michaiski, 1983;
Michalski, et al. 1986) and rough set theory (Pawlak,

1991; Ziarko, 1991), are introduced in order to discover
knowledge from large databases.

However, most of the approaches focus on inducing
classification rules, which classifies cases correctly. On
the contrary, medical experts also learn other kinds of
knowledge, which are important for medical diagnostic
procedures, from clinical cases.

In this paper, a rule induction system, called
PRIMEROSE3( Probabilistic Rule Induction Method
based on Rough Sets version 3.0), is introduced. This
program first analyzes the statistical characteristics of
attribute-value pairs from training samples, then deter-
mines what kind of diagnosing model can be applied to
the training samples. Then, it extracts not only clas-
sification rules for differential diagnosis, but also other
medical knowledge needed for other diagnostic proce-
dures in a selected diagnosing model. PRIMEROSE3
is e,~luated on three kinds of clinical databases and the
induced results are compared with domain knowledge
acquired from medical experts, including classification
rules. The experimental results show that our pro-
posed method correctly not only selects a diagnosing
model, but also extracts domain knowledge.

The paper is organized as follows: Section 2 dis-
cusses rough set theory. Section 3 illustrates three di-
agnosing models. Section 4 presents our new method,
PRIMEROSE3 and Section 5 gives experimental re-
sults. Section 6 and Section 7 discuss the problems of
PRIMEROSE3 and related work, respectively. Finally’,
Section 8 concludes this paper.

2. Rough Sets and Rules

2.1 Rough Set Theory

Rough set theory(Pawlak, 1991) clarifies set-theoretic
characteristics of the classes over combinatorial pat-
terns of the attributes in order to acquire some sets of
attributes for classification and to evaluate how pre-
cisely attributes in a database can classify data.

Let us illustrate the main concepts of rough sets
which are needed for our formulation. Table 2 is
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Table 1: A Small Database
age loc nat prod nan M1 class

1 50-59 occ per 0 0 1 m.c.h.
2 40-49 who per 0 0 1 m.c.h.
3 40-49 lat thr 1 1 0 migra
4 40-40 who thr 1 1 0 migra
5 40-49 who rad 0 0 1 m.c.h.
6 50-59 who per 0 1 1 m.c.h.
DEFINITIONS: |OC: location, nat: nature, prod:
prodrome, nan: nausea, MI: tenderness of M1,
who: whole, occ: occular, lat: lateral, per:
persistent, thr: throbbing, tad: radiating,
m.c.h.: muscle contraction headache,
migra: migraine, 1: Yes, 0: No.

a small database whose patients chiefly complain of
headache. First, let us consider how an attribute
"loc" classify the headache patients’ set of the table.
The set whose value of the attribute "loc" is equal to
"who"is {2,4,5,6}(In the following, the numbers repre-
sent each record number). This set means that we
cannot classify {2,4,5,6} further solely by using the
constraint R - [loc = who]. This set is defined as
the indiscernible set over the relation R, denoted by
[z]s = {2,4, 5, 6}. In this set, {2,5,6} suffer from
muscle contraction headache(~n.c.h."), and {4} suf-
fers from migraine(’Ynigra’). Hence ~ need other
additional attributes to discriminate between ’~nigra"
and "m.c.h." Using this concept, we can evaluate the
classification power of each attribute. For example,
"prod=l" is specific to the case of migraine ("migra").
We can also extend this indiscernible relation to mul-
tivariate cases, such as [Z][Ioc=~ho]^[Ml=t] = {2, 5, 6}
and [z][toc=~ho]v[M,=l] = {1,2,5,6}, where A and V
denote "and" and "or" respectively. In the frame-
work of rough set theory, the set {2,5,6} is called
strictly definable by the former conjunction, and also
called roughly definable by the latter disjunctive for-
mula. Therefore, the classification of training samples
D can be viewed as a search proceduze for the best set
[z]s supported by the relation R. In this way, we can
define the characteristics of classification in the set-
theoretic framework. For example, accuracy (SI) and
coverage, or true positive rate (CI) can be defined as:

as(D) = [[z]s n D[
[[z]s n D[

][zls] , and ~a(D) = ID]

where [D[ denotes the cardinality of D and where
aa(D) denotes an accuracy of R with respect to clas-
sification of D, SI(R, D) and us(D) denotes a true
positive rate of R to D, CI(R, D), respectively.

For example, let R be equal to [loc = who]
and D be equal to a set of "m.c.h." Then, [z]s

and D is equal to {2,4,5,6} and {I,2,5,6}, respec-
tively, and the intersection of both sets, [z]a f3 D,
is {2,4,5,6} N {1,2,5,6} = {2,5,6}. Thus, aR(D)
is equal to [{2,5,6}[/[{2,4,5,6}[ = 3/4 = 0.75 and
~R(D) is obtained as: 1{2,5,6}[/[{1, 2,5,6}l = 3/4 =
0.75, respectively.

It is notable that as(D) measures the degree of the
sufficiency of a proposition, R ~ D, and that ss(D)
measures the degree of its necessity. For example, if
as(D) is equal to 1.0, then R -t D is true. On the
other hand, if ~a(D) is equal to 1.0, then D -~ R 
true. Thus, if both measures are 1.0, then R ~ D.

For further information on rough set theory, read-
ers could refer to (Pawlak, 1991; Ziarko, 1991; Ziarko,
1993).

2.2 Probabilistic Rules

In order to describe diagnosing rules, we first define
probabilistic rnles, using notations of rough set the-
ory(Pawlak, 1991). To illustrate the main ideas, 
use a small database shown in Table 1.

First, a combination of attribute-value pairs, corre-
sponding to a complex in AQ terminology(Michalski,
1983), is denoted by an equivalence relation R!, which
is defined as follows.

DefinitiOn 1 (Equivalence Relation) Let U be a
universe, and V be a set of values. A total function y
from U to V is called an assignment function o] an at-
tribute. Then, we introduce an equivalence relation R!
such that for any u, v E U, u =_- Rye iff f(u) -- .f(v).

For example, [age = 50 - 59]&[loc = occular] will be
one equivalence relation, denoted by R/ = [age =
50 - 59]&[loc = occular]. Secondly, a set of sam-
ples which satisfy R! is denoted by [z]al, correspond-
ing to a star in AQ terminology. For example, when
{2,3,4, 5} is a set of samples which satisfy [age =
40 - 49], [z][ase=4o-o] is equal to {2, 3, 4, 5}. x Fi-
naUy, thirdly, U, which stands for "Universe", denotes
the whole training samples.

According to this notation, probabiiistic rules are
defined as follows:

Definition 2 (Probabillstlc Rules) Let R! be an
equivalence relation specified by some assignment func-
tion f, D denote a set whose elements belong to a class
d, or positive ezamples in the whole training samples
(the universe), U. Finally, let [D[ denote the cardi-
nality of D. A probabilistie rule of D is defined as
a quadruple, < R/ ~ d, aRt (D), sat (D) >, where

*In this notation, Un~ denotes the nth sample in a
dataset (Table 1).
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ILl ~ d satisfies the following conditions.2

(1) [x]R, FI D # ,,
I[~]R, rl D)l

(2) aa, CD) I[ z]R,I ’

I[~]R, rl D)I(3) ~R,(D) -- IDI

In the above definition, a corresponds to the accuracy
measure: if a of a rule is equal to 0.9, then the ac-
curacy is also equal to 0.9. On the other hand, ~ is
a statistical measure of how proportion of D is cov-
ered by this rule, that is, a coverage or a true positive
rate: when ~ is equal to 0.5, half of the members of
a class belongs to the set whose members satisfy that
equivalence relation.

For example, let us consider a rule [age = 40-49] -~
m.c.h. Since [x][aae=4o-491 = {2,3,4,5} and D =
{1,2,5,6), c~[aoe=4o_49](D) = ]{2, 5}]/]{2, 3, 4, 5}] =
0.5 and/~[aee=4o-49](D) = l{2,5}l/[{1,2,5,6)l = 0.5.
Thus, if a patient, who complains a headache, is 40 to
49 years old, m.c.h, is suspected with accuracy 0.5,
and this rule covers 50 % of the cases.

3. Diagnosing Model

3.1 Simplest Diagnosing Model

The simplest diagnosing model is that which only uses
classification rules which have high accuracy and high
coverage,s This model is applicable when rules of high
accuracy can be derived. Such rules can be defined as:

where 6a and $~ denote given thresholds for accuracy
and coverage, respectively. It is notable that this rule is
a kind of probabilistic proposition with two statistical
measures, which is one extension of Ziarko’s variable
precision model(VPRS) (Ziarko, 1993). 4 It is 
notable that this model only uses inclusive rules of a
RHLNOS diagnosing model which is also defined below.

2It is notable that this rule is a kind of probabilis-
tic proposition with two statistical measures, which is
one kind of an extension of Ziarko’s variable precision
model(VPRS) (Ziarko, 1993).

Sin this model, we assume that accuracy is dominant
over coverage

4In VPRS model, the two precisions of accuracy are
given, and the probabilistic proposition with accuracy and
two precision conserves the characteristics of the ordinary.
proposition. Thus, our model is to introduce the proba-
bilistic proposition not only with accuracy, but also ~qth
co~rage.
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3.2 Weak Diagnosing Model

In some probabilistic domains, it is difficult to derive
classification rules which have high accuracy. In these
cases, the way to overcome this problem is to induce
rules which have high coverage. Such rules can be de-
fined as:

Thus, in this model, it is assumed that coverage is
dominant over accuracy and this model only induces
the necessity condition of diagnosis of class d.

In the subsequent subsection, we introduce the com-
bination of the above two diagnosing models.

3.3 RHINOS Diagnosing Model

RHINOS is an expert system which diagnoses the
causes of headache or facial pain from manifesta-
tions (Kimura, et al., 1985; Matsumura, et al., 1986).
In this system, a diagnosing model proposed by Mat-
sumura is applied, which is composed of the following
three kinds of reasoning processes: exclusive reason-
ing, inclusive reasoning, and reasoning about compli-
cations.

Firstly, exclusive reasoning is the one that when a
patient does not have a symptom which always ap-
pears in any case on a disease, such a disease can be
excluded. Secondly, inclusive reasoning is the one that
when a patient has symptoms specific to a disease,
the disease can be suspected. Finally, thirdly, reason-
ing about complications is that when some symptoms
which cannot be explained by that disease, complica-
tions of other diseases can be suspected.

Using the above diagnosing model, we consider three
kinds of rules corresponding to each process, which can
be described in terms of rough set theory as follows.

(1) Exclusive Rule

R 9~ d s.t. R = A,R, = A V~ [a~ = vh],
and ~[~=~,](D) = 1.0.

Strictly Speaking, this proposition should be written
as: d ~ R. However, for comparison with other two
rules, we choose this notation. In the above example,
the relation R of the exclusive rule for "classic" is de-
scribed as:
[age = 40 - 49] A ([loc= lat] V [loc= ~uho]) A [nat 
th~] A ~ott = 1] A ~od = 1] ̂  [,~ = 1] A [~Xl : 0].

From: Proceedings of the Third International Conference on Multistrategy Learning. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



(2) Inclusive Rule

s.t.

In the above example, the simplest relation R of the
inclusive rule for "classic", is described as: [nat =
thr] V [jo/t = 1] V [M1 = 1]. However, induction of
inclusive rules gives us two problems. First, accuracy
and coverage are overfitted to the training samples.
Secondly, the above rule is only one of many rules
which are induced from the above training samples.
Therefore some of them should be selected from pri-
mary induced rules under some preference criterion.
These problems ~-ill be discussed in the next section.

(3) Disease Inmge:

R d s.t. R --- -- v[a = vj],
aR,(D) > 0 (D) > 

In the above example, the relation R of the disease
image for "classic" is described as:
[age = 40 - 49] V [loc = lat] V [Ioc = who] V [nat =
thr] V [nau = 1] V [jolt = 1] V [M1 = 0].

It is notable that coverage ~ play an important role
in the definition of these rules, compared with simplest
diagnosing model.

4. PRIMEROSE3
In this section, we introduce a rule-induction sys-
tem, called PRIMEROSE3( Probabilistic Rule Induc-
tion Method based on Rough Sets version 3.0). This
program first analyzes the statistical characteristics of
attribute-value pairs from training samples, then deter-
mines what kind of diagnosing model can be applied
to these training samples. Then, it extracts not only
classification rules for differential diagnosis, but also
other medical knowledge needed for other diagnostic
procedures, based on a selected diagnosing model.

4.1 Selection of Diagnosing Model

As discussed in Section 3, coverage plays an impor-
tant role in selection of a diagnosing model. Thus,
PRIMEROSE3 first measures the statistical character-
istics of coverage of elementary attribute-value pairs,
which corresponds to selectors. Then, it measures the
statistical characteristics of accuracy of the whole pat-
tern of attribute-value pairs observed in a dataset.

In this algorithm, we use the following characteristic
of coverage.

Table 2: Frequency Table of Coverage

0.00 0.25 0.50 0.75 1.00
m.c.h. 5 6 5 4 2
classic 10 10 6 0 6

Proposition 1 (Monotonicity of Coverage) Let

P~+I denote an attribute-value pair, Ri A [ai+l = vj].
Then,

PvooI. Since Ix]R,+, c_ Ix]p.., holds, =

Furthermore, in rule induction methods, P~+x is se-
lected to satisfy an,+, (D) > ap~ (D). Therefore, it is
sufficient to check the behavior of coverage of elemen-
tary attribute-value pairs in order to estimate which
diagnosing model should be selected, while it is nec-
essary to check the behavior of accuracy both of ele-
mentary attribute-value pairs and of patterns observed
in the databases in order to estimate the characteris-
tics of induced rules. From these considerations, the
selection algorithm is defined as follows.

(1)

(2)

(3)

(4)

(5)

Calculate a coverage and an accuracy of each at-
tribute value pair [ai = vii.

Calculate an accuracy of each pattern Ai[ai = vj].

Construct a frequency table with respect to coverage
and accuracy for each class.

If each class has at least one attribute value pair
whose coverage is equal to 1.0 and if more than half
of coverage values is larger than 6~, goto next. Else,
select simplest diagnosing model.

If the median of accuracy of each is larger than
6~, then select RHINOS diagnosing model and quit.
Else select weak diagnosing model and quit.

For the above example sho~m in Table I, frequency
tables of coverage and accuracy is obtained as Table
2 and Table 3. Thus, let us consider a case when
6~ is set to 0.5, and 6a is set to 0.75. Candidates of
diagnosing model will be weak diagnosing model and
RHINOS diagnosing model from Table 2. Next, from
Table 3, RHINOS diagnosing model will be selected,
since the median of accuracy of elementary pairs is
exactly 1.0.
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Table 3: Frequency Table of Accuracy

Elementary At.tribute Value Pairs
0.00 0.25 0.33 0.50 0.07 0.75 1.00

m.c.h. 5 0 2 1 4 1 9
classic 9 1 4 1 2 0 5

Patterns Observed in a Dataset
a 0.00 0.25 0.33 0.50 0.67 0.75 1.00

m.c.h. 0 0 0 0 0 0 4
classic 0 0 0 0 0 0 2

4.2 Algorithm for Rule Induction

For the limitation of space, we only discuss an algo-
rithm for induction of RHLNOS rules. However, since
the other two models can be viewed as specific forms
of RHINOS model, it is easy to derive each algorithm
from the induction algorithm shown below.

An induction algorithm for RHINOS rules consists of
two procedures. One is an exhaustive search through
all the attribute-value pairs (selectors in the AQ termi-
nology (Michalski, 1983)), and the other is a heuristic
search for inclusive rules through the combinations of
all the attribute-value pairs (complezes in the AQ ter-
minology).

Exhaustive Search Let D and 5 denote training
samples of the target class d (positive ezamples) and 
threshold to select attributes for inclusive rules. Then,
this search procedure is defined as follows.

procedure Ezhaustive Search;
vat

L : List;/* A list of elementary relations */
begin

L :-- Po;/* Po: A list of elementary relations */
while (L ~ {}) 

begin
Select one pair [ai -~ vj] from L;
if ([x][a~ffi~] I"1D ~ ~b) then do

/* D: a set if positive examples */
begin

~ := ~ v [a~ = v~];
/* Disease Image */

if (~b,f~](D) > 
then Li, := Li, + {[ai = vj]};
/* Candidates for Inclusive Rules */

if (~b~ffi=j](D) = 1.0)
then Rer := Rer A [ai = vj];
/* Exclusive Rule */

end
L :--- L - {[a~ ---- vj]};

end
end { Ezhaustive Search};

The above procedure is repeated for all the attribute-
value pairs, and computes exclusive rules, disease im-
ages, and candidates of inclusive rules. These candi-
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dates are input into the heuristic search procedure, dis-
cussed in the next subsection.

In the above example in Table 1, let d be "clas-
sic", and [age -- 40- 49] be selected as [ai = vj].
Since [z][ase=40-49] n D(= {3, 4}) ~ ~, this pair 
included in the disease image. However, when 6 is
set to 0.5, this pair is not included in the inclusive
rule, because ¢~[age=40_49](D) 0.5. Fi nally, si nce
D C [~][age=40--49](----" {2,3,4,5}), this pair is also in-
cluded in the exclusive rule.

Next, [age = 50- 59] is selected. However,
this pair will be abandoned since the intersection of

[z][age=5o-50] and D is empty, or [x][age=SO_Ss]ND = ~b.

Heuristic Search Since the definition of inclusive
rules is a little weak, many inclusive rules can be ob-
tained. For the above example, a relation [nau = 1]
satisfies D N [z][na~=11 ~ ~b, so it is also one of the
inclusive rules of "m.c.h.", although accuracy of that
rule is equal to 1/3. In order to suppress induction of
such rules, which have low classificatory power, ordy
equivalence relations whose accuracy is larger than $a
is selected. For example, when 6 is set to 1/2(=0.5),
the above relation [age = 40 - 49] is eliminated from
the candidates of inclusive rules, because accuracy of
this relation is less than the precision, Furthermore,
PRIMEROSE3 minimizes the number of attributes not
to include the attributes which do not gain the classi-
ficatory power, called dependent variables. This proce-
dure can be described as follows:

procedure Heuristic Search;
vat

i : integer; M, Li : List;
begin

Lx :=- Lit;/* Candidates for Inclusive Rules */
i:=l; M:={};
for i := 1 to n do

/* n: Total number of attributes */
begin

while ( L~ ~ {} ) 
begin

Select one pair R -- A[a~ -= vj] from Li;
Li :---- Li - {R};
if (aR(D) >6a) and (sR(D) 

then do S~r := Sir + {R};
/* Include R as Inclusive Rule */

else M :-- M + {R};
end

L~+x := (A list of the whole combination of
the conjunction formulae in M);

end
end {Heuristic Search};

In the above example in Table 1, the coverage of
[M1 = 1] for "m.c.h" is maximum. Furthermore, since
a[MI=I](D) 1.0, it is included in inc lusive rul es
of "m.c.h". The next maximum one is [nau = 0],
whose coverage is equal to 3/4. Since this accuracy is
also equal to 1.0, it is also included in inclusive rules.
At this point, we have two inclusive rules as follows:
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[M1 = 1] ~,=1..~,~=1.o "m.c.h." and [nau = O] a=x.~o.75
"m.c.h." Repeating these procedures, all the inclusive
rules are acquired.

4.3 Estimation of Accuracy and Coverage

The abo~ definition of accuracy and coverage shows
that small training samples cause the overestimates of
accuracy and coverage. In the above example shown in
Table 1, both of accuracy and coverage of the simplest
rule for "classic" are equal to 1.0. This means that
this rule correctly diagnoses and covers all the cases of
the disease "classic". However, in general, these mean-
ings hold only in the world of the small training sam-
pies. In this sense, accuracy and coverage are biased.
Thus, these biases should be corrected by introducing
other estimating methods, since the biases cannot be
detected by the induced method.

Note that this problem is similar to that of error
rates of discriminant function in multivariate analy-
sis (Mclachian, 1992), the field in which resampling
methods are reported to be useful for the estimation.

Hence the resampling methods are applied to esti-
mation of accuracy and coverage, as shown in the fol-
lowing subsection.

4.4 Cross-Validation and the Bootstrap
method

Cross-validation method for error estimation is per-
formed as following: first, the who training samples
£ are split into V blocks: {£*,£~,"’,£v}. Sec-
ondiy, repeat for V times the procedure in which rules
are induced from the training samples £- £i(i 
1,..., V) and examine the error rate erri of the rules
using £i as test samples. Finally, the whole error
rate err is derived by averaging erri over i, that is,
err = ~=1 erri/V (this method is called V-fold cross-
validation). Therefore this method for estimation of
accuracy or coverage can be used by replacing the cal-
culation of err by that of accuracy or coverage, respec-
tively, and by regarding test samples as unobserved
cases.

On the other hand, the Bootstrap method is
executed as follows: first, empirical probabilistic
distribution(Fn) is generated from the original train-
ing samples (Efron, 1982). Secondly, the Monte-Carlo
method is applied and training samples are randomly
taken by using Fn. Thirdly, rules are induced by using
new training samples. Finally, these results are tested
by the original training samples and then statistical
measures, such as error rate are calculated. These four
steps are iterated for finite times. Empirically, it is
shown that about 200 times repetition is sufficient for
estimation (Efron, 1982).

Table 4: Information about Databases

Domain Samples Classes Attributes
headache 1477 I0 20
meningitis 198 3 25
CVD 261 6 27

Interestingly, Efron shows that estimators by 2-fold
cross-validation are asymptotically equal to predictive
estimators for completely new pattern of data, and
that Bootstrap estimators are asymptotically equal to
maximum likelihood estimators and are a little over-
fitted to training samples (Efron, 1983). Hence, the
former estimators can be used as the lower bound of
accuracy and coverage, and the latter as the upper
bound of accuracy and coverage.

Furthermore, in order to reduce the high variance
of estimators by cross-validation, we introduce re-
peated cross-validation method, which is first intro-
duced by Walker (Walker and Olshen, 1992). In this
method, cross-validation methods are executed repeat-
edly(safely, 100 times), and estimates are averaged o~r
all the trials. In summary, since our strategy is to avoid
the overestimation and the high variabilities, combina-
tion of repeated 2-fold cross-validation and the Boot-
strap method is adopted in this paper.

5. Experimental Results

PRIMEROSE3 is applied to headache(RI-IINOS’s do-
main), meningitis, and cerebrovascular diseases, whose
precise information is given in Table 4. The experi-
ments are performed by the following three procedures.
First, these samples are randomly split into pseudo-
training samples and pseudo-test samples. Secondly,
by using the pseudo-training samples, PRLMEROSE3
selects a model, induces rules and the statistical
measures.5 Thirdly, the induced results are tested
by the pseudo-test samples. These procedures are re-
peated for 100 times and average each accuracy and the
estimators for accuracy of diagnosis over 100 trials.

Table 5 shows the results about selection of a diag-
nosing model. In the domain of headache and meningi-
tis, the dominant model is RHINOS diagnosing model
and the simplest model, respectively, which matches
with decision of medical experts. On the other hand,
both models can be applied in the domain of CVD, al-
though experts select the RHINOS diagnosing model.
In the subsequent subsections, we only discuss the re-

~The thresholds 6o and 6~ is set to 0.75 and 0.5, respec-
tively in these experiments.
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Table 5: Selection of Diagnosing Model Table 7: Experimental Results of Estimation

Domain Simplest Weak RHINOS Experts’ Model
headache 11 7 82 RHINOS

meningitis 65 13 22 Simplest
CVD 43 18 39 RHINOS

Table 6: Experimental Results on Headache (Aver-
aged)

Method ER IR DI CPU time
PR3 95.0% 88.3% 93.2% 10.9 rain
RHINOS 98.0% 95.0% 97.4%
C4.5 - 85.8% - 15.6 rain
CN2 - 87.0% - 17.3 rain
AQ15 - 86.2% - 17.2 min
DEFINITIONS: PR3:PRIMEROSE3
ER: Exclusive Rule Accuracy
IR: Inclusive Rule Accuracy
DI: Disease Image Accuracy

suits of two domains in which PRIMEROSE3 correctly
selects a diagnosing model.

5.1 Headache

Experimental results on headache are summarized in
Table 6 and 7. In Table 6, the first column, exclu-
sive rule accuracy denotes how many training samples
that do not belong to a class are excluded correctly
from the candidates. The second column is equivalent
to the averaged classification accuracy and the third
column shows how many symptoms, which cannot be
explained by diagnostic conclusions, are detected by
the disease image. And the fourth column show-s CPU
time needed to induced rules. The first row of Table
6 is the result of PRIMROSE3, and the second one
is that of medical experts. And, for comparison, we
compare the classification accuracy of inclusive rules
with that of C4.5 (Quinlan, 1993), CN2 (Clark 
Niblett, 1989) and AQ-15 (Michalski, et al. 1986),
which is shown in the third to fifth row of Table 6.
Table 7 shows the results of estimation derived by us-
ing repeated cross-validation method (R-CV) and the
bootstrap method (BS).

These results is summarized to the following four
points. First, the induced inclusive rules perform worse
than those of medical experts, exclusive rules and dis-
ease images gain the same performance, compared with
experts’ rules. Secondly, our method performs a little
better than four classical empirical learning methods,
although the differences are not statistically significant.

Method Accuracy R-CV BS
PR3 88.3% 78.7% 91.6%
C4.5 85.8% 77.2% 90.7%
CN2 87.0% 72.9% 93.2%
AQ15 86.2% 74.6% 92.3%

Table 8:
aged)

Experimental Results of Meningitis (Aver-

Method Accuracy CPU time
PRIMEROSE3 83.9% 69 sec
Expert Rules 93.0% -

C4.5 74.0% 57 sec
CN2 75.0% 60 sec

AQ15 84.7% 62 sec

Thirdly, PRIMEROSE3 is faster than the other meth-
ods. Finally, fourthly, R-CV estimator and BS esti-
mator can be regarded as the lower boundary and the
upper boundary of each rule accuracy. Hence the inter-
val of these two estimators can be used as the estimator
of performance of each rule.

5.2 Meningitis

Table 8 and 9 show the experimental results derived
from databases on meningitis. The first row of Table
8 is the result of PRIMROSE3, and the second one is
that of medical experts. And, for comparison, we com-
pare the classification accuracy of inclusive rules with
that of C4.5 (Quinlan, 1993), CN2 (Clark and Niblett,
1989) and AQ-15 (Michalski, et al. 1986), which 
shown in the third to fifth row.

In Table 9, the results of estimation are derived by
using repeated cross-validation method (R-CV) and
the bootstrap method (BS).

As shown in Table 8, PRIMEROSE 3 performs as
well as the other methods.

5.3 CVD

Experimental results on CVD are summarized in Table
10 and 11. The notations of both tables are the same
as those of Table 6 and Table 7.

These results is summarized to the following four
points. First, the induced inclusive rules perform worse
than those of medical experts, exclusive rules and dis-
ease images gain the same performance, compared with
experts’ rules. Secondly, our method performs a little
better than four classical empirical learning methods,
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Table 9: Experimental Results of Estimation Table 11: Experimental Results of Estimation

Method Accuracy R-CV BS
PR3 88.3% 78.7% 91.6%
C4.5 74.0% 70.9% 85.7%
CN2 75.0% 71.2% 85.7%
AQI5 84.7% 75.6% 87.3%

Method Accuracy R-CV BS
PR3 84.3% 68.7% 88.6%
C4.5 79.7% 67.2% 87.7%
CN2 78.7% 62.3% 89.2%
AQI5 78.9% 64.9% 92.3%

Table 10: Experimental Results on CVD (Averaged)

Method ER IR DI CPU time
PR3 91.0% 84.3% 94.3% 59 sec
RHINOS 97.5% 92.9% 93.6%
C4.5 - 79.7% - 91 sec
CN2 - 78.7% - 72 sec
AQ15 - 78.9% - 81 sec
DEFINITIONS: PR3:PRIMEROSE3
ER: Exclusive Rule Accuracy
IR: Inclusive Rule Accuracy
DI: Disease Image Accuracy

although the differences are not statistically significant.
Thirdly, PRIMEROSE3 is faster than the other meth-
ods. Finally, fourthly, R-CV estimator and BS esti-
mator can be regarded as the lower boundary and the
upper boundary of each rule accuracy. Hence the inter-
val of these two estimators can be used as the estimator
of performance of each rule.

6. Discussion
6.1 Exclusive Rule

As discussed in Section 3, we intend to formulate in-
duction of exclusive rules by using the whole given at-
tributes, although the original exclusive rules are de-
scribed by the six basic questions, as shown in Ap-
pendix. Therefore induced exclusive rules have the
maximum number of attributes whose conjunction R
also satisfies ~R(D) --- 1.0. If this maximum combi-
nation includes the six basic attributes as a subset,
then this selection of basic attributes is one of good
choices of attributes, although redundant. Otherwise,
the given six attributes may be redundant or the in-
duced results may be insufficient. For the above ex-
ample shown in Table 1, the maximum combination of
attributes is {age, loc, nat, jolt, prod, nau, M1 } is
included in both exclusive rules.

On the contrary, in the database for the above ex-
periments, the maximum combination is 13 attributes,
derived as follows: Age, Pain location, Nature of the
pain, Severity of the pain, History since onset, Exis-

tence of jolt headache, Tendency of depression, and
Tenderness of M1 to M6, which is a superset of the six
basic attributes. Thus, this selection can be a good
choice.

In this way, the induction of maximum combination
can be also used as a "rough" check of induced results
or our diagnosing model on exclusive rules, which can
be formulated as below, s

Let A and E denote a set of the induced attributes
for exclusive rules and a set of attributes acquired from
domain experts. Thus, the following four relations can
be considered. First, if A C E, then A is insufficient or
E is redundant. Secondly, if A -- E, then both sets are
sufficient to represent diagnosing model in an applied
domain. Thirdly, if A D E, then A is redundant or
E is insufficient. Finally, fourthly, if intersection of A
and E is not empty (A N E ~ ~b), then either or both
sets are insuffident.

Reader may say that the above relations are weak
and indeterminate. However, the above indefinite
parts should be constrained by information on domain
knowledge. For example, let us consider the case when
A C E. When E is validated by experts, A is in-
sufficient in the first relation. However, in general,
E can be viewed as A obtained by large samples, and
A D E should hold, which shows that a given database
is problematic. Moreos~r, the constraint on exclusive
rules, an(D) = 1.0, suggests that there exist a class
which does not appear in the database, because the al-
ready given classes cannot support sR(D) = 1.0, that
is, [zJR N D ~ D will hold in the future.

On the other hand, when E is not well given by ex-
perts and A is induced from sufficiently large sanlples,
E will be redundant, which means that the proposed
model for E does not fit to this database or this do-
main.

This kind of knowledge is important, because we
sometimes need to know whether samples are enough
to induce knowledge and whether an applied inducing
model is useful to analyze databases.

eThis discussion assumes that the whole attxibutes are
sufficient to classify the present and the future cases into
given classes.
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Thus, the above four relations give simple examina-
tions to check the characteristics of samples and the
applicability of a given diagnosing model. It is our
future work to develop more precise checking method-
ology for automated knowledge acquisition.

6.2 Precision for Inclusive Rules

In the above experiments, a threshold 6 for selection
of inclusive rules is set to 0.5 because of the following
reason. Since the database on headache supports 10
classes, the naive "a priorf’ probability for each class
is equal to 1/10 = 0.1. Thus, when the probability
of one disease should be set to 0.5, the other disease is
suspected with probability 0.5/9 ,~ 0.055, which means
that the assigned accuracy will become half.

Although this precision contributes to the reduction
of computational complexity, this methodology, which
gi~es a threshold in a static way, cause a serious prob-
lem. For example, there exists a case when the ac-
curacy for the first, the second, and the third candi-
date is 0.5, 0.49, and 0.01, whereas accuracy for other
classes is almost equal to 0. Formally, provided an
attribute-value pair, R, the following equations hold:
aR(Di) = O.5, Q’R(D2) = 0.49, aR(Ds) 0.01, an d
aR(Di) ~, 0(i = 4,.-.,10). Then, both of the first
and the second candidate should be suspected because
those accuracies are very close, compared with the ac-
curacy for the third and other classes. However, if a
threshold is statically set to 0.5, then this pair is not in-
cluded in positive rules for Da. In this way, a threshold
should be determined dynamically for each attribute
value pair. In the above example, an attribute-value
pair should be included in positive rules of DI and D2.

From discussion with domain experts, it is found
that this type of reasoning is reD’ natural, which may
contribute to the differences between induced rules and
ones acquired from medical experts. Thus, even in
a learning algorithm, comparison between the whole
given classes should be included in order to realize
more plausible reasoning strate~u

Unfortunately, since the proposed algorithm runs for
each disease independently, the above type of reasoning
cannot be incorporated in a natural manner, which
causes computational complexity to be higher. It is
also our future work to develop such interacting process
in the learning algorithm.

7. Related Work

7.1 AQ Algorithm

AQ is an inductive learning system based on incremen-
tal STAR algorithm(Michalski, 1983). This algorithm
selects one "seed" from positive examples and starts
from one "selector"(attribute-value pair) contained 
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this "seed" example. It adds selectors incrementally
until the "complexes" (conjunction of attributes) ex-
plain only positive examples, called a bounded star.
Since many complexes can satisfy these positive exam-
ples, AQ finds the most preferred ones, according to a
flexible extra-logical criterion.

It would be worth noting that. the positive exam-
ples which supports the complexes corresponds to the
lower approximation, or the positive region in rough
set theoD’. That is, the rules induced by AQ are
equivalent to consistent rules defined by Pawlak when
neither constructive generalization(Michalski, 1983;
Wnek and Michalski) nor truncation(Michalski, et al.
1986) are used, and when the length of STAR is not
restricted. As a matter of fact, AQ’s star algorithm
without constructive generalization can be reformu-
lated by the concepts of rough sets. For example, a
bounded star denoted by G(eIU - D, too) in Michal-
ski’s notation is equal to G = {Ril[x]R~ = Dj},
such that [GI = m0 where [G[ denotes the cardi-
naiity of G. This star is composed of many com-
plexes, which is ordered by LEFi, lexicographic eval-
uation functional, which is defined as the following
pair:< (-negcov, 7"1), (poscxrv, ~z) > where negcov and
poscov axe numbers of negative and positive examples,
respectively, covered by an expression in the star, and
where 7"1 and ~’2 axe tolerance threshold for criterion
poscov, negcov (r E [0..100%]). This algorithm shows
that AQ method is a kind of greedy algorithm which
finds independent variables using selectors which axe
equivalent to equivalence relations in terms of rough
sets.

Thus, our heuristic search method is very similar to
AQ method, while our method uses statisticai mea-
sures, rather than LEF criterion, which implicitly in-
cludes the notions of accuracy and coverage. The dif-
ference between our heuristic search procedure and AQ
method is that PRIMEROSE3 explicitly uses accu-
racy and coverage and that it only uses elementary
attribute-value pairs selected by the exhaustive search
procedure, according to the characteristics of cover-
age, although AQ implicitly uses the criteria for both
measures. The main reason why PRIMEROSE3 uses
statistical measures is that discussion about the statis-
tical characteristics of both measures is easier and that
the definition of probabilistic rules is much clearer. As
shown in Section 4, three kinds of rules are easily clas-
sifted into three category with respect to accuracy and
coverage. Especially, since coverage plays an important
role in the classification of rules, it is very easy to im-
plement an induction algorithm of exclusive rules and
disease image. Thus, PILLMEROSE3 can be viewed
as a combination of AQ algorithm and the exhaustive
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search method.

7.2 Discovery of Association Rules

Mannila et al.(Mannila, 1994) report a new algorithm
for discovery of association rules, which is one class of
regularities, introduced by Agrawal et al.(Agrawal, et.
al, 1993). Their method is very similar to ours with
respect to the following two points.

(1) Association Rules The concept of association
rules is similar to our induced rules. Actually, associa-
tion rules can be described in the rough set framework.

That is, we say that an association rule over r (train-
ing samples) satisfies W =~ B with respect to 7 and #,
if

[[z]w N [z]Bl _~ ~rn, (I)

and
l[xlw n

l[x]wl >
(2)

where n, % and # denotes the size of training samples,
confidence threshold, and support threshold, respec-
tively. Also, W and B denotes an equivalence relation
and a class, respectively. Furthermore, we also say that
W is covering, if

I[x]wl _> (3)

It is notable that the left side of the above formulae
(6) and (8) correspond to the formula (3) as to s, 
erage, and the left side of the formula (7) corresponds
to (2) as to c~, accuracy. The only difference is that 
classify rules, corresponding to association rules, into
three categories: exclusive rules, inclusive rules, and
disease image.

The reason why we classify these rules is that this
classification reflects the diagnosing model of medical
experts, by which the computational speed of diagnos-
tic reasoning is higher.

(2) Mannila’s Algorithm Mannila et al. intro-
duce an algorithm to find association rules based on
Agrawal’s algorithm. The main points of their algo-
rithms are database pass and candidate generation.
Database pass produces a set of attributes L, as the
collection of all covering sets of size s in C,. Then, can-
didate generation calculates Ca+l, which denotes the
collection of all the sets of attributes of size s, from
Ls. Then, again, database pass is repeated to produce
L~+I. The effectiveness of this algorithm is guaran-
teed by the fact that all subsets of a covering set are
covering.

The main difference between Mannila’s algorithm
and PRIMEROSE3 is that Mannila uses the check
algorithm for covering to obtain association rules,

whereas we use both accuracy and coverage to com-
pute and classify rules.

In the discovery of association rules, all of the com-
bination of attribute-value pairs in C, have the prop-
erty of covering. On the other hand, our algorithm
does not focus on the above property of covering. It
removes an attribute-value pair which has both high
accuracy and high coverage. That is, PRIMEROSE3
does not search for regularities which satisfy covering,
but search for regularities important for classification.

Thus, interestingly enough, when many attribute-
value pairs have the covering property, or covers many
training samples, Mannila’s algorithm will be slow, al-
though PRIMEROSE3 algorithm will be fast in this
case. When few pairs cover many training samples,
Mannila’s algorithm will be fast, and our system will
not be faster.

8. Conclusion
In this paper, we introduce a system, called
PRIMEROSE3 which selects a diagnosing model, ex-
tracts not only classification rules for differential di-
agnosis, but also other medical knowledge which is
needed for diagnosis, based on the selected diagnosing
model. We evaluate this system by using three clini-
cal databases, and compared the induced results with
rules acquired from medical experts. The results show
that our proposed method correctly induce RHINOS
rules and estimate the statistical measures of rules.
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Appendix: RHINOS Rules
Using the diagnosing model introduced by (Mat-
sumura, et al., 1986), we consider the following three
kinds of rules corresponding to each process and de-
velop the following algorithms for acquiring these rules
from medical experts~

(1)Excluslve Rule This rule corresponds to exclu-
sive reasoning. In other words, the premise of this
rule is equivalent to the necessity condition of the di-
agnostic conclusion. From the discussion with medical
experts, we selected the following six basic attributes
which are minimally indispensable to defining the ne-
cessity condition: 1. Age, ~. Pain location, 3. Nature
of the pain, ~. Seuerity of the pain, 5. History since
onset, 6. Existence of jolt headache.

For example, the exclusive rule of common migraine
is the following:

In order to suspect common migraine,
the followin E symptoms are required:
pain location: not eyes and
nature: throbbing or persistent or radiating
and history: paroxysmal or sudden and
jolt headache: positive.

One of the reason why we selected the six attributes
is to solve the interface problem of expert systems: if
the whole attributes are considered, we also have to
input all the symptoms which are not needed for diag-
nosis. To make exclusive reasoning compact, the only
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minimal requirements are chosen. It is notable that
this kind of selection can be viewed as the ordering

of given attributes, and it is expected that such or-
dering can be induced from databases. Therefore, in
PRIMEROSE3, an algorithm for induction of exclusive
rules scans the whole given attributes. It is because the
minimal requirements for describing exclusive rules can
be computed after all the exclusive rules are induced.
Furthermore, this ordering can be viewed as a "rough"
check of induced results and applicability of our diag-
nosing model. This issue is discussed in Section 6.

(2)Inclusive Rule This rule consists of a set of pos-
itive rules, the premises of which are composed of a
set of manifestations specific to a disease to be in-
cluded. If a patient satisfy one set, we suspect this dis-
ease with some probability. This rule is derived from
medical experts by using the following algorithm for
each disease: 1. Take a set of manifestations by which
we strongly suspect a disease. 2. Set the probability
that a patient has the disease with this set of manifes-
tations:SI(Satisfacto~ Index) 3. Set the ratio of the
patients who satis~ the set to all the patients of this
disease:CI(Covering Index) 4. If sum of the derived
CI(tCI) is equal to 1.0 then end. If not, goto 5. 
For the patients of this disease who do not satisfy all
the collected set of manifestations, goto 1. Therefore
a positive rule is described by a set of manifestations,
its satisfactory index (SI), which corresponds to accu-
racy measure, and its covering index (CI), which cor-
responds to total positive rate or coverage. Note that
SI and CI are given empirically by medical experts.

Formally, each positive rule is represented as a
quadruple:

(d, Ri,SIi,Cli), where d denotes its conclusion,
and R~ denotes its premise. Hence each inclu-
sive rule is described as: ({(d, R1,SII(,CI1)),".,

(d, Rk, Sl~(, CIk))}, tCI), where total CI(tCI) is de-
fined as the CI of a total rule, composed of a disjunctive

formula of all rules, R1 V R2 V-.. V R~.
Let us show the inchisive rule of common mi-

graine (tCI=0.9) as an example, which is composed
of the following three rules:

If history: paroxysmal, Jolt headache:
positive, nature: throbbing or persistent,
prodrome: no, intermittent symptom: no,
persistent time: more than 6 hours, and

pain location: not eye,
then common migraine is suspected

with accuracy 0.9 (SI=0.9) and this rule
covers 60 percent of the total cases
(ciffi0.6).

If history: paroxysmal, jolt headache:
positive, nature: throbbing or persistent,
prodrome: no, intermittent symptom: no,
and pain location: not eye,
then common migraine is suspected
with accuracy 0.8 (SI=0.8) and this rule
covers 80 percent of the total cases
(CIffiO.8).

If history: sudden, jolt headache:
positive, nature: throbbin E or persisted,
and prodrome: no,
then common migraine is suspected
with accuracy 0.5 (Slffi0.5) and this rule
covers 30 percent of the total case
(CIffiO .3).

In the above rules, tCI shows that the disjunctive form
of above three rules covers 90 percent of total cases of
common migraine.7

It also means that 10 percent of common migraine
cannot be diagnosed by the above rules.

(3)Disease Image This rule is used to detect com-
plications of multiple diseases, acquired by all the
possible manifestations of a disease. Using this rule,
we search for the manifestations which cannot be ex-
plained by the diagnosed disease. Those symptoms
suggests complications of other diseases. For exam-
ple, the disease image of common migraine is shown as
follows:

The following symptoms can be explained
by common miEraine:
pain location: any or
tendency of depression : negative or
jolt headache: positive or ........

Therefore, when a patient who suffers from common
migraine is depre~ing, it is suspected that he or she
may also have other disease, because this symptom
cannot be explained by common migraine.

As shown above, these algorithms are straightfor-
ward, and is based on ~t-theoretic framework.

7Since tCI is based on total coverage by the disjunctive
form of rules, it is not equal to total sum of CI values of all
rules.
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