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Abstract

Protein structure analysis from DNA sequences is an
important and fast growing area in both computer sci-
ence and biochemistry. One of the most important
problems is that two proteins, both of which have
the similar three-dimensional structure, have differ-
ent functions, such as ll/sozyme and lactalbumin. In
such cases, comparative analysis of both amino acid se-
quences is effective to detect the functional and struc-
tural differences. In this paper, we introduce a s~stem,
rolled MWI.5 (Molecular biologists’ Workbench ver-
sion 1.5), which eJztracts differential knowledge from
amino-acid sequences by using rowh-set based clas-
sification, statistical analysis and change of repre-
sentation. This method is applied to the follo~dng
two domain: comparative analysis of lysozyme and
a-lactalbumin, and analysis of immunoglobulin struc-
ture. The results show that several interesting results
from amino-acid sequences, are obtained which have
not been reported before.

I. Introduction
Protein structure analysis from DNA sequences is an
important and fast growing area in both computer sci-
ence and biochemistry.

One of the most important problems is that two pro-
teins both of which has the similar three-dimensional
structure have different functions, such as lysozyme
and lactalbumin. In such cases, comparative analysis
of both amino acid sequences is effective to detect the
functional and structural differences, since local struc-
ture should be of primary importance to contribute to
the characteristics of theses proteins.

However, in general, only knowledge from sequences
is insufficient for analysis, because protein function is
thought to be realized by chemical interaction between
the components in amino-acid sequences. That is, it
is necessary to incorporate domain knowledge, such as
chemical knowledge to make comparative analysis be
sufficient. Therefore we need to introduce a mechanism
which controls the application of domain knowledge in
order to analyze the characteristics of induced results
and to extract as much information as possible from
d~t ~ h~.q(Zvtkow, 1992).

In order to incorporate the above control strategy
into machine learning methods, we introduce a system,
called MWl.5 (Molecular biologists’ Workbench ver-
sion 1.5), which extracts knowledge from amino-acid
sequences by controlling application of domain knowl-
edge automatically.

MWl.5 consists of the following five procedures.
First, it exhaustively induces all the classification
rules from databases of amino-acid sequences. Sec-
ondly, MWl.5 changes representation of amino-acid
sequences with respect to the main chemical features.
Then, thirdly, all the rules are induced from each trans-
formed databases. Next, fourthly, the program esti-
mates the secondary structure of amino-acid sequences
via Chou-Fasman method (Chou and Fasman, 1974).
Finally, fifthly, MW1.5 induces all the rules from the
databases of secondary structure.

This method is applied to comparative analysis of
lysozyme and a-lactalbumin, and analysis of struc-
ture of immunoglobulin. The results show that
several interesting results are obtained from amino-
acid sequences, which has not been reported be-
fore. Based on these new discovered knowledge, sev-
eral experiments are being planned in order to val-
idate discovered results. Interestingly enough, some
of them are recently confirmed by biochemical exper-
iments (Tsumoto, 1994; Tsumoto, 1995). The evalua-
tion of other results will be reported when the whole
experiments will have been completed.

The paper is organized as follows: Section 2 dis-
cusses the problems of empirical learning methods
when the method is applied to amino acid sequences.
Section 3 presents the discovery strategy of MW1.5 and
how it works. Section 4 shows the results of application
of this system to comparative analysis of lysozyme IIc
and a-lactalbumin, and to analysis of structure of im-
munoglobulin. Section 5 discussed related work, and
finally, Section 6 concludes this paper.

2. Problems of Empirical Learning

Methods

It is easy to see that simple application of machine
learning methods to DNA or amino-acid sequences
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without using domain-specific knowledge cannot in-
duce enough knowledge.

For example, simple application of induction of de-
cision trees (Breiman, et al. 1984; Quinlna, 1993) gen-
erates only one rule from many possible rules. How-
ever, many attributes (exactly, 52 attributes) have the
maximum value of information gain. Thus, we have to
choose one of such attributes. If simplicity is preferred,
that is, if the number of leaves should be minimized,
then location 44 will be selected as shown below.

44 = N . . . lysozyme ... (45eases)
44 = V ...a- lactalbumin --. (23cases)

In this case, we get a simple tree, which consists of one
node and two leaves. Unfortunately, this result is not
enough, since our objective is not to find a simple rule
for classification, but to find as much information as
possible.

However, exhaustive induction of possible rules also
causes another problem: it is very difficult to interpret
all the possible rules without using domain knowledge.

Hence it is very crucial to control application of do-
main knowledge, according to what problem we want
to solve. If we need only some evidential knowledge,
we should strictly apply domain knowledge, and focus
only on several attributes of training samples. These
cognitive aspects of machine discovery system are dis-
cussed by researchers on machine discovery (Zytkow,
1992).

3. Discovery Strategy

In order to implement discovery strategy of molecular
biologists, we develop a system, called MW1.5 (Molec-
ular biologists’ Workbench version 1.5), which extracts
knowledge from amino-acid sequences by controlling
application of domain knowledge automatically.

MW1.5 consists of the following five procedures.
First, it applies PRIMEROSE-EX2, which will be dis-
cussed in the next subsection, and exhaustively induces
all the classification rules from databases of amino-
acid sequences. Secondly, MW1.5 changes represen-
tation of amino-acid sequences with respect to the
main chemical features of amino acids, such as the
characteristics of electronic charge (i.e., basic, neu-
tral, or acidic) (Primary Structure Rearrange-
merit). That is, MW1.5 generates new databases fo-
cused on a certain chemical property from original
databases. Then, thirdly, PRIMEROSE-EX2 will be
applied again, all the rules are induced from each
database generated by the second procedure. Fur-
thermore, the statistics of each chemical character-
istic are calculated. Next, fourthly, the program
estimates the secondary structure of amino-acid se-
quences using Chou-Fasman method (Chou and Fas-
man, 1974)(Secondary Structure Rearrange-
ment). Finally, fifthly, MW1.5 induces all the rules
from the databases of secondary structure, applying
PRIMEROSE-EX2.

3.1 PtLIMEROSE-EX2

In order to induce rule exhaustively, we introduce
a program, called PRIMEROSF_,-EX2 (Probabilistic
Rule Induction Method based on Rough Sets for Ex-
haustive induction ver 2.0). This method is based on
rough set theory, which gives a mathematical approach
to the reduction of decision tables, corresponding to
the exhaustive search for possible rules. For the lim-
itation of the space, we only discuss the definition of
probabilistic rules of PRIMEROSE-EX2 and an induc-
tion algorithm of this system. Readers, who would like
to know further information on rough sets, could refer
to (Pawlak, 1991; Ziarlm, 1991).

Rules of PRIMEROSE-EX2 In the framework of
rough set theory, we have several specific notations as
follows. First, a combination of attribute-value pairs,
corresponding to a complex in AQ terminology, is de-
noted by an equivalence relation Rf, which is defined
as follows.

Definition 1 (Equivalence Relation) Let U be 
universe, and V be a set of values. A total function /
from U to V is called an assignment function of an at-
tribute. Then, we introduce an equivalence relation R!
such that for any u, v ¢ U, u =- Rtv iff /(u) =/(v).

For example, [a = 1]&[b = 1] will be one equivalence
relation, denoted by R! = [a = 1]&[b = 1]. Secondly,
a set of samples which satisfy R! is denoted by [x]2t,
corresponding to a star in AQ terminology. For exam-
ple, when ~1, 2, 3} is a set of samples which satisfy R,
[z]2f is equal to {I, 2, 3} i. Finally, thirdly, U, which
stands for "Universe", denotes the whole training sam-
ples.

According to this notation, probabilistic rules are
defined as follows:

Definition 2 (ProbabLllstlc Rules) Let R! be an
equivalence relation specified by some assignment func-
tion f, D denote a set whose elements belong to a class
d, or positive ezamples in the whole training samples
(the universe), U, and [z]Rt denote the set of training
samples which satisfy an equivalence relation R1. Fi-
nally, let ]D[ denote the cardinality of D, that is, the
total number of samples in D.

A probabilistic rule of D is defined as a quadruple,
< R! a,~p d, a, ~,p >, where R! a.~p d satisfies the
following conditions:

(1) [x]R, ND~, (1)

l~]-tnv)l(2) a= [[ffi]n,I ’ (2)

(3) (3)
(4) p:p-valueofx2-statisties, (4)

tin this notation, "1" denotes the first(lst) sample in 
dataset.
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where p is a p-value of X2-statistics when the relation
between [z]Rt, D, and U is tested as a contingency
table. []

The intuitive meaning of the above three variables, a,
~, and p-value is given as follows. First, a corresponds
to the accuracy measure. For example, if a of a rule
is equal to 0.9, then the accuracy is also equal to 0.9.
Secondly, ~ is a statistical measure of how proportion
of D is covered by this rule, that is, coverage or a
true positive rate. For example, when ~ is equal to
0.5, half of the members of a class belongs to the set
whose members satisfy that equivalence relation. Fi-
nally, thirdly, p-value denotes the statistical reliability
of a rule R o~;P d. For example, when p is equal to
0.95, the reliability of the rule is 95% 2

As to the calculation of p-value, we view the relation
between [z]st, D, and U as a contingency table as
shown in the following table.

d -~d Total
R! s t s +t
-~R! u v u + v
Total s + u t + v s + t + u + v(= n)

In the above table, -~R! and -~d denotes the negation of
R and d, respectively. Note that each items in the table
can be described in the framework of rough set theory,
that is, s, t, u, v can be described as I[x]Rt n D[(= s),
I[x]R! n (U - D)I(= t), [D - t n DI(=u), a
[(U - D) - [z]Rt n (U - D)[(= v), respectively. 
also notable that s + t = [[z]Rt[, s + u = [DI, and
s+t+u+v=lU[.

From the above table, X2-statistic can be calculated
as:

n(sv - tu)2
x2 = (s + u)(t + v)Cs + t)(u (5)

where n, s, t, u, v is given in the above table. This mea-
sure is a test statistic to check whether R is indepen-
dent of d. In other words, it indicates whether R is not
useful for classification of d or not. From the value of
this statistics, p-value of null hypothesis3 is calculated
from where this value is located in the x2-distribution.
For example, when the p-value of X2-statistics X0 is
equal to 0.01, the region whose X2-statistics is below
X0 occupies 1% of the whole distribution. Thus, the
probability with which this event will occur is 99%.

According to those values, we classify the induced
probabilistic rules into the following four categories:

2This definition is different from that in statistical test.
In statistical test setting, p-value denotes the probability
that null hypothesis, or a negation of a hypothesis to he
proved, is true. Thus, p-value calculated from statistical
distribution, ~ is equal to the probability that null hypoth-
esis is true. On the other hand, in our setting, p-value
is equal to 1 - ~, which denotes the probability that null
hypothesis is false.

SAs discussed above, null hypothesis is negation of the
hypothesis to be proved.

316 MSL-96

1. Definite Rules: a = 1.0 and ~ = 1.0,
2. Significant Rules: 0.5 < a < 1.0 and 0.9 _ p < 1.0

3. Strong Rules: 0.5 < a < 1.0 and 0.5 < p < 0.9,

4. Weak Rules: 0 < a _< 0.5 or 0 < p _< 0.5.

An algorithm for PRIMEROSE-EX2 Let D de-
note training samples of the target class d, or positive
ezamples. In the following algorithm, we provide two
kinds of specific sets. The one is L~, which denotes
a set of equivalence relations whose size of attribute-
value pairs is equal to i - 1. For example, La in-
cludes [a : 1]&[b -- 1], whereas L2 includes [a -- 1]
and [b : 1]. The other is Mi, which denotes a set
of equivalence relations for weak rules. For example,
when M2 includes a [a = 1]8~[b = 1], the accuracy of
[a = 1]&[b = 1] as to the target concept is lower than
0.5 or the p-value of X2-statistics as to the target con-
cept is lower than 0.5. Thus, an equivalence relation
in Mi is weak for classification or do not cover enough
training samples.

Based on these notations, the search procedure can
be described as a kind of the greedy algorithm shown
in Fig. 1. The above procedure is repeated for all the
attribute-value pairs. In the above algorithm, equiv-
alence relations for significant rules and strong rules
in Li are removed from candidates for the generation
of Li+l, because they are not included in Mi. Thus,
if significant members of Li are not included in Mi,
then computational complexity of generation of Li+l
is small.

How to Deal with Continuous Data Almost all
the chemical charcteristics of amino acids are pro-
vided as continous data. For example, a coefficient
of hydrophobicity of K(Lysine) is equal to 2.27, which
means that it takes 2.27 kcal/mol energy to remove
water around Lysine. Thus, it is necessary to deal with
continous data in order to extract knowledge from the
chemical characteristics.

For solution, PRIMEROSE-EX2 transforms conti-
nous data into categorical data, some of which is
similar to C4.5 (Quinlna, 1993), in the following
ways. First, provided the attribute ai, the system
sort database with respect to the value of a~, such as
~vl,v2,v3,-..,vj~, where vx < v2 < ... < vj. Sec-
ondly, for each member in the above list, the attribute-
value pair is translated into the following binary form:
[ai ~ vk] and [a~ > vk] (1 ~ k ~ j). Thus, new j binary
attributes will be generated. And thirdly, a, ~, and X2-

statistics will be calculated for each generated binary
attribute. Finally, fourthly, the pair which induces the
best rule is selected as a candidate of transformation.

However, this tranlation is only effective to each
level4. That is, for each level, the above transformation
algorithm should be peformed.

4In the subsequent sections, a level I is defined as the
number of attribute-value pairs in the premise of a proba-
billstic rule. For example, a level 2 means that the number
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Thus, continuous attributes should be always in-
cluded in a list M in Fig. 1, which is a list of candidates
to generate the whole combination of the conjunctive
formulae. For example, at the level 2, let al, a2 and
as be attributes whose values are continous. Then,
when al is included only in a list of weak rules at the
level 1 ([al <__ vk] and In1 > va])5, the tranformation
of al at this level will be used to generate the combi-
nation. That is, an attribute al is fixed to a binary
atrribute. Next, the following combination is consid-
ered: ai&a2, al&as. Then, the translation procedure
is performed for each combination under the condition
which [ai ~ vk] or which [al > vk].

3.2 Change of Representation

We introduce two kinds of change of representation.
One is to ~enerate new databases which focus on a
certain chemical characteristic from original databases,
called primary structure rearrangement. The other one
is to transform original databases, according to the es-
timation of the secondary structure, called secondary
structure rearrangement.

Primary Structure Rearrangement The most
important chemical characteristics of amino acids
which are thought to contribute to determine a protein
structure are the following: hydrophobicity, polarity or
electronic charge of a side chain, the size of an amino
acid, and the tendency of an amino acid to locate the
interior of proteins.

For example, in the case of hydrophobicity, which
denotes how much an amino acid is intimate with wa-
ter molecule, a coetBcient is assigned to each amino
acids: a value 3.95 is assigned to R(Arginine), which
is the least hydrophobic amino acid, and a value -2.27
is assigned to F(Phenylalanine). Therefore, in the lat-
ter case, F will be translated into: [hydrophobicit~ =
-2.27]. Using these notations, we can change repre-
sentation of amino acid sequences. For example, let us
consider a case when an attribute-value pair of an orig-
inal database is [33 -- F], which denotes that the 33th
amino acid of a protein is F (phenylalanine). Because
phenylalanine (F) is hydrophobic, this attribute-value
pair is transformed into: [33 -- [hyd~ophobicity --
-2.27]]. This procedure is repeated for all the amino-
acids in an original sequence.

Then, for rule induction, the translation procedure
introduced in 3.1.3 is used.

Secondary Structure Rearrangement Next,
MW1.5 estimates secondary structure from amino-acid
sequences using the Chou-Fasman method (Chou and
Fasman, 1974), which is the most popular estimation

of attribute-value pairs is equal to 2, such as [a = 1]&[b =
1].

~If no attribute is in list of weak rules, then the attribute
which gives the worst rules will be selected.

method 6. This Chou-FasmGn method outputs the
place where specific secondary structures: a - heliz,

- sheet, and t~rn. According to this estimation,
MW1.5 changes representation of original databases.
For example, the 4th to 10th amino acids are estimated
to form c~-helix structure. Based on the above results,
the value of each attribute, which is the address of a
primary sequence, are replaced by the above knowledge
on secondary structure. In the above example, the val-
ues of the 4 th to 10th attributes are substituted for
a-helix, a-helix, c~-helix, a-helix, a-helix, and a-helix.
That is,

Primary Structure E R C E L k
1 1 1 1 1 1 1

Secondary Structure a a c~ a a a.

It is notable that some attributes may have no spe-
cific secondary structure. In these cases, the value of
these attributes are replaced by one of the four char-
acteristics: {hydrophobic, polar, acidic, basic), since
they play an important role in making secondary struc-
ture, as discussed in the section on primary structure
rearrangement. For example, let us consider a case
when an attribute-value pair of an original database
is [86 -- D], which denotes that the 86th amino acid
of a protein is D (asparatic acid). Because asparatic
acid (D) is acidic, this attribute-value pair is trans-
formed into: [86 = acidic] 7

4. Experimental Results and Discussion

4.1 Lysozyme and c~-Lactalbumin

Lysozyme IIc is a enzyme which dissolves the bacterial
walls and suppress the growth of bacteria. All living
things have this kind of enzyme, and especially, in the
category of vertebrate animals, such as fishes, birds,
and monkeys, the sequences are almost preserved.

On the other hand, a-lactalbumin functions as a co-
enzyme of one reaction which dissolves the chemicals
in milk into those easy for babies to take nutrition.
So this enzyme only exists in the mammals, such as
monkeys, and the marsupials, such as kangaroos.

The comparative analysis of these two proteins is
one of the most interesting subjects in molecular bi-
ology because of the following two reasons (McKenzie
and White, 1991). First, a-lactalbumin are thought
to be originated from lysozyme IIc, since both of the
sequences are very similar. According to the results
of homological search, about 60 % of the sequences of
a-iactalbumin matches with those of lysozyme, which
suggests that they are of the same origin. In addition

Slt is notable that our method is independent of this es-
timation method. Thus, we can replace the Chou-Fasman
method with the new methods which may gain more pre-
dictive accuracy, when such methods are obtained.

Vlt is notable that this information can be retrieved from
the database generated in the process of p~mary structure
rearrangement.
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Table h Results of Primary Structure Rearrangement Table 3: Results of IgG sequences

Protein Amino Acid and its Location
lysozyme c N 27 (A,L 31)
a-lact E 27 T 31
lysozyme c E 35 N 44
a-lact (I,S,T 35) V 44
lysozyme c (A,G 76) (A,R 107)
a-lact 1 76 D 107
lysozyme c (G,D,Q 117) L 129
a-lact S 117 E 129

K33
F 33

(Y,D 53)
E 53

Table 2: Results of Secondary Structure Rearrange-
ment

Protein Location
70-77 83-94 98-104

lysozyme c hydrophobic hydrophobic loop
a-lact polar acidic a-helix

107-110 113-117
lysozyme c a~helix basic
a-lact hydrophobic hydrophobic

to this similarity, the global three-dimensional struc-
ture of these two proteins is almost the same. Sec-
ondly, it is not well known what kinds of sequences
mainly contribute to the functions of both enzymes,
although many experiments suggest that interactions
of several components play an important role in those
functions.

We apply MW1.5 to 23 sequences of a-lactalbumin
and 45 sequences of lysozyme from PIR databases,
both of which are used as original training samples.
Then, as inputs of MW1.5, we use the sequences pro-
cessed by multiple alignment procedures.

The induced results are shown in Table 1 and 2,
where the following three interesting results are ob-
tained s. First, Table 1 shows the induced definite
rules before change of representation. From the sec-
ond to sixth columns, alphabets denote amino-acids,
and the numbers denote the location in the sequence
of a protein. For example, N 27 means that the 27th
amino acid of lysozyme IIc is N, or aspargine. These
results mean that these amino acids are specific to
each protein. In other words, the most characteris-
tic regions are expected to be included. Actually, it is
known that E 35, and Y or D’ 53 are the active site of
lysozyme, and also K 33, N 44 and A or R 107 are said
to play an important role in its function (McKenzie
and White, 1991). However, N 27 and L 129 are new

SThe shown results are mainly induced definite rules
and significant rules, because including strong and weak
rules takes much more space. Thus, due to the limitation
of space, we only discuss the results of definite rules and
significant rules.
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Protein Location
(51) 52A,B,C (59) 60 61

Glycosamide (Ile) Pro (Tyr) Ala Pro
Protein (Ile) Lys (Tyr) Asn Glu

discovery results, and no observations or experimental
results are reported. Thus, these acids may contribute
to the function of lysozyme. Secondly, Table 2 shows
the results of the definite rules after secondary struc-
ture rearrangement. The second row shows the loca-
tion in sequences, for example, 70-77 means 70th to
77th amino acid in sequences of lysozyme c. Interest-
ingly, although specific amino acids are mainly located
at the lower address part (called it N-terminal), spe-
cific local structure are mainly located at the higher
address part (called it C-terminal). The most signifi-
cant regions are 98-104 and 113-117, because each sec-
ondary structure is very different. Other regions also
show that hydrophobic regions of lysozyme correspond
to non-hydrophobic regions of a-lactalbumin, and vice
versa. Thus, these regions may play an important role
in realizing each function 9

4.2 Structure of Immunoglobulin

The main function of Immunoglobulin G(IgG) is 
an antibody to specific chemical agent, such as bacte-
rial wall(Lewin, 1994). There are many kinds of IgG,
some of which bind small chemicals, other of which
bind large proteins. It is thought that such speci-
ficities can be determined by characteristics of "vari-
able" region, called CDR-1, CDR-2, and CDR-3(Ka-
bat, 1991). Those IgGs are classified into two cate-
gories: those which bind a chain of glycosamides, which
is hydrophobic, and those which bind a protein, which
is hydrophilic. Thus, it is expected that these charac-
teristics are coded in the "variable" region.

We apply MW1.5 to 1438 sequences of IgG, which
consists of 349 IgG specific to hydrophobic chemical
agents, 1089 IgG specific to hydrophilic ones.

In this domain, no definite rules are derived, and
the most important results are induced as significant
rules, shown in Table 3, where Glycosamide and Pro-
tein denotes IgG which bind hydrophobic chemicals
and IgG which bind hydrophilic chemicals, respectively
and where the second row shows the location in se-
quences. For example, 52 means 52th amino acid in
the sequences of IgG. (51) and (59) denotes the 
mon amino acids in both types of immunoglobulin se-
quences.

Interestingly, in the neighbors of (51) and (59), there

9Tsumoto, K. and Kumagai, I. obtain interesting re-
sults, which suggest that 98-104th amino acids play impor-
tant roles in lysozyme function (Tsumoto, 1994).
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exists sequences specific to each type of IgG. As to Gly-
cosamide type, Proline(Pro) seems to play an impor-
tant role, because Pro is a typical hydrophobic pro-
tein. On the other hand, as to Protein type, Ly-
sine(Lys/, Asparatic acid(Asp), and Glutamine(Glu)
seems to play an important role in its function. These
chemical characteristics are also detected by significant
rules induced after secondary structure rearrangement:
Glycosamide type has a hydrophobic region from 51 to
65 amino acids, but Protein tye has a-helix region in
this area 10

5. Related Work
5.1 Discovery of Association Rules

Mannila et ai.(Mannila, 1994) report a new algorithm
for discovery of association rules, which is one class of
regularities, introduced by Agrawal et al.(Agrawal, et
al. 1993). Their method is very similar to ours with
respect to the following two points.

(11 Association Rules The concept of association
rules is similar to our induced rules. Actually, associa-
tion rules can be described in the rough set framework.

That is, we say that an association rule over r (train-
ing samples/satisfies W =~ B with respect to ~ and ~,
if

I[ ]w n -> (8)
and

I[ ]w n [ ]BI >__ (7)I[ ]wl
where n, % and ~ denotes the size of training samples,
confidence threshold, and support threshold, respec-
tively. Also, W and B denotes an equivalence relation
and a class, respectively. Furthermore, we also say that
W is covering, if

I[x]wl (8)
It is notable that the left side of the above formulae
(6) and (8) correspond to the formula (3) as to ~, 
erage, and the left side of the formula (71 corresponds
to (2) as to a, accuracy. The only difference is that 
classify rules, corresponding to association rules, into
three categories: definite rules, significant rules, and
strong rules.

The reason why we classify these rules is that this
type of classification can be viewed as the ordering of
rules or hypothesis. That is, definite rules correspond
to the strongest hypotheses. However, these strongest
rules may not be interesting for discovery. Then, sig-
nificant rules will be considered for the candidates of
discovery. If they are not so important, then strong
rules will be considered. Finally, all the three kinds of
rules are found to be not important, then we should
search for weak rules. In this way, we simulate the

1°Recently, our co-authors have got the results which sug-
gest that Tyr(59) and its neighbors play an important role
in function of lgO (Tsumoto, 1995).

discovery strategy of biochemists by using the classifi-
cation of classification rules.

(2) Mannila’s Algorithm Mannila et al. intro-
duce an algorithm to find association rules based on
Agrawal’s algorithm. The main points of their algo-
rithms are database pass and candidate generation.
Database pass produces a set of attributes La as the
collection of all covering sets of size 8 in Ca. Then,
the candidate generation calculates C,+1, which de-
notes the collection of all the sets of attributes of size
s, from La. Then, again, database pass is repeated to
produce L~+I. The effectiveness of this algorithm is
guaranteed by the fact that all subsets of a covering
set are covering.

The main difference between Mannila’s algorithm
and our MW1.5 algorithm is that Mannila uses the
check algorithm for covering to obtain association
rules, whereas we use statistical analysis to compute
and classify rules.

In the discovery of association rules, all of the combi-
nation of attribute-value pairs in Cj have the property
of covering. On the other hand, our algorithm does not
focus on the above property of covering. It removes an
attribute-value pair which has both high accuracy and
high coverage from L, and does not include in Mj.
That is, PRIMEROSE-EX does not search for regular-
ities which satisfy covering, but search for regularities
important for classification.

Thus, interestingly enough, when many attribute-
value pairs have the covering property, or covers many
training samples, Mannila’s algorithm will be slow, al-
though PRIMEROSE-EX algorithm will be fast in this
case. When few pairs covers many training samples,
Mannila’s algorithm will be fast, and our system will
not be faster.

5.2 Ziarko’s KDD-R

Ziarko and Shan develop a comprehensive system for
knowledge discovery in databases using rough sets,
called KDD-R (Ziarko, 199561. Their system consists
of the four functional units: data processing unit, a
unit for analysis of dependencies, a unit for computa-
tion of rules from data, and decision unit.

The most important unit is one for computation of
rules from data. This unit computes all, or some, ap-
proximate rules with decision probabilities, where the
probabilities are restricted by lower and upper limit
parameters specifying the area of user interest. The
rules can be computed for a selected reduct using the
method of decision matrix (Ziarko,1995al, which is an
extention of discerniblity matrix (Skoworn and Rauzer,
19921.

The main difference between KDD-R and our system
is that PRIMEROSE-EX adopts statistical measures
to prune attribute-value pairs. In PRIMEROSE-EX,
attribute-value pairs which have high accuracy and
high coverage will be used for rule generation and re-
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procedure PRIMEROSE - EX2
%,at

i : integer; /* Counter */
M, L~ : List;

begin
L1 :- (In, = ~]l[x][a.ffi.,] n D ~ ~};

/* a set of all the attribute-value pairs */
/* [ai - ~j](selectors in terms of AQ method) 
/* such that a > 0. */

i := I;
M := {};

while ( i := 1 or M ~ {} ) 
begin

while (Li~{})do
begin

Select one pair R(= A[ai = vj]) from L~;
Li := Li - {a};
if ( aa = 1.0 and ~s = 1.0 

then Save the quadruple as a Definite rule of d;
if ( aa > 0.5) then

begin
Check the p-value;
if (p > 0.9), then Register the quadruple as a Significant rule of 
if (2 > 0.5), then Register the quadruple as a Strong rule of 
else/* (2 -< 0.5) 

begin
I=nclude the quadruple in a list of Weak rules of d;
Append R to M (M := M + {R})

end
end

else/* ( a < 0.5) */
begin

Include the quadruple in a list of Weak rules of d;
Append R to M (M := M + {R})

end
end

i:=i+1;
Li+t := (a List of the whole combination of the conjunctive formulae in M)

end
end {PRIMEROSE - EX2}

Figure h An Algorithm for PRIMEROSE-EX2
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moved from the candidates of complexed rules. On the
other hand, KDD-R fizst removes dependent superflu-
ous attributes using the extension of rough set model,
called Variable Precision Rough Set model and then
calculates rules using the technique of decision matrix,
which is very useful to generate all approximate rules.

Thus, KDD-R focuses mainly on dependencies of
attributes with respect to selection of attribute-value
pairs, whereas PRIMEROSE-EX focuses on mainly
on the statistical significance of attribute-value pairs,
which is used for selection of attribute-value pairs.
Therefore the performance of each system may depend
on the characteristics of an applied domain. That is,
KDD-R may outperform our method when a dataset
has many dependent attributes.

6. Conclusion
In this paper, a system based on combination of a prob-
abilistic rule induction method with domain knowl-
edge is introduced, called MW1.5 (Molecular biolo-
gists’ Workbench version 1.5) in order to detect the
structural differences by using compartive analysis.
This method is applied to comparative analysis of
lysozyme and a-lactalbumin and to analysis of struc-
ture of immunoglobulin. The results show that we
get some interesting results from amino-acid sequences,
which have not been reported before.
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