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Abstract
Innovative diagnostic testing techniques must be
developed and applied in order to meet the
increasing challenges associated with testing
complex systems in an era of budget and personnel
reductions. Research in testing and evaluation
systems in manufacturing at the U.S. Army
Research Laboratory Materials Directorate has
focused on automating conventional test systems
via the development of Intelligent Testing Systems
(ITS). An ITS can be defined as a computer based
system that utilizes state-of-the-art classification or
decision making technology, often artificial
intelligence (AI) techniques, to enable the system 
make decisions or perform functions previously
made by human operators. This paper begins by
discussing the defining characteristics and
advantages of automated test systems. This is
followed by a discussion of the advantages of
applying neural networks to data pattern analysis
and classification. The reasons for using the
backlm3pagation neural network algorithm in the
case study A Smart Shock Absorber Test Stand
(SSATS) are then given. The motivation for and
the development of the SSATS system is described.
Fmally, this paper describes the benefits of utilizing
the SSATS system and of implementing the
methods used to develop it to other Intelligent
Testing Systems.

Introduction

era of significant budget and personnel reductions. Test
and evaluation systems research at the U.S. Army
Research Laboratory Materials Directorate has focused
on automating conventional test and evaluation systems
by the development of Intelligent Testing Systems (ITS).
An ITS can be defined as a computer based system that
utilizes state-of-the-art classification and/or decision
making technology, often artificial intelligence (AI)
techniques, to enable the system to make decisions and
perfcerm functions previously made by competent human
operators. Advancements In computers, data acquisition
and analysis, and AI technology have made these types
of systems possible at reasonable cost. The development
and implementation of Intelligent Testing Systems have
shown high Returns on Investment in a wide variety of
industries, including airlines, aerospace, banking, real
estate, and government agencies.

The case study, A Smart Shock Absorber Test Stand
(SSATS), will be discussed in this paper. This
automated ITS utilizes a hydraulic test stand to oscillate
a shock absorber under test. A data acquisition system
collects data from sensors located on the test stand and
attached to the shock absorber. The data is then
analyzed to determine if the shock absorber meets
predetermined load specifications. If the shock absorber
does not meet the specifications the data is processed for
input to a neural network classification scheme, which
then classifies the shock absorber as one of four fault
types. If the shock absorber meets the specifications it is
considered nominal (not faulted). The process 
acquiring data and determining the condition of the
shock absorber under test occurs in real-time.

New and powerful diagnostic testing techniques must be
developed and applied in order to meet the increasing
challenges associated with testing complex systems in an
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Neural Networks in Automated
Test Systems

An important goal of both the manufacturing industry
and the government is the automation of test and
evaluation procedures and systems in order to minimize
or eliminate entirely functions performed by human
operators. Characteristics of automated test systems
include simplicity of use, data acquisition and analysis
speed, data accuracy, data representation and the user
interface, and decision making capability. Automated
test systems generally consist of a computer based
control unit, often a PC, testing equipment, sensors from
which to acquire data, data acquisition hardware and
software, and data analysis hardware and software. It is
critical that data acquisition and analysis in an automated
test system be properly matched to the system to
minimize the inmxluction of error when acquiring sensor
data. Basic parameters of analog inputs that must be
considered include number of channels, sampling rate,
resolution, and input range. Sampling rate determines
how often conversions can take place. A faster sampling
rate acquires more points in a given time, therefore often
forming a better representation of the original signal.
Resolution is the number of bits that the analog-to-digital
converter (ADC) uses to represent the analog signal.
The higher the resolution, the higher the number of
divisions the signal range is broken into, and therefore,
the smaller the detectable voltage change. Range refers
to the minimum and maximum voltage levels that the
ADC can quantize. The multifunction data acquisition
boards offer selectable ranges so that the signal range
can be matched to that of the ADC to take best
advantage of the resolution available to accurately
measure the signal. The range, resolution, and gain
available on a data acquisition board determine the
smallest detectable change in voltage. This change in
voltage represents 1 Least Significant Bit (LSB) of the
digital value, often called the code width. Other
parameters of analog inputs that must be considered
include the DNL, relative accuracy, settling time of the
instrumentation amplifier, and noise. The DNL is a
measure in LSB of the worst-case deviation of code
widths from their ideal value of 1 LSB.

Well constructed automated test systems utilize an
integrated user interface, most often a graphical
interface, that is capable of controlling testing and
displaying acquired data in real-time in an efficient and
easily understood format. Secondly, a well constructed
system will acquire accurate data and process and
analyze the data in real-time. Finally, a well
constructed system will make a decision on what the
data infers about the item being tested in real-time.
Automated test systems significantly decrease testing,
analysis, and decision making or classification time,
thereby minimizing labor and increasing Return on
Investment. Implementation of automated test systems
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in high volmne applications can result in very significant
positive changes in these areas.

Many testing applications rely on the ability of the
test to recognize and subsequently classify data patterns.
For instance, fault diagnosis can be cast as a pattern-
recognition problem, in which patterns of input data
representing the behavior of a physical system are
associated or mapped to patterns interpretable as normal
(nominal) or abnormal (faulted) operation. It is also 
that operational state behavior of many complex systems
can be accurately represented by only a few critic’,d
variables and that these variables form unique data
patterns for different operational fault conditions. In
SSATS the critical variables which deternline the
condition of a shock absorber are load (force) applied 
the shock absorber and the associated displacement
(position). The load vs. displacement plot or phase
diagram has different shapes for different fault
conditions. In general, application of neural networks to
pattern recognition and classification problems requires
far less restrictive assumptions about the structure of the
input data than existing pattern recognition and signal
processing techniques. In addition, the inherent
parallelism of these networks allows very rapid parallel
search and best-match computations, alleviating much of
the computational overhead incurred when applying
traditional non-parallel techniques to signal
interpretation problems (Gorman & Sejnowski 1988).
Secondly, neural networks are resistant to noisy sensor
data and they are capable of producing accurate results
even with incomplete sensor data. Automated testiug
systems that utilize neural network methodologies in
data processing/analysis and decision making processes
offer the promise of exceedingly fast and robust
implementations that can conveniemly and flexibly be
trained to respond to a set of given data patterns
representative of a set of anique operational faults.
These systems can yield great benefits in terms of system
speed, robusmess, and knowledge acquisition (Dictz.,
Kiech, & Ali 1989). The number of previously
developed systems exemplifying this are too numerous
to note here. However, they do include a real-time jet
and rocket engine fault diagnosis system developed at
the University of Tennessee Space Institute (Dietz,
Kiech, & Ali 1989) and a real-time sonar target
classification system developed by Allied-Sigtml
Aerospace Technology Center and Johns Hopkins
University (Crorman & Sejnowski 1988).

The Back Propagation Neural
Network Paradigm

In the case study di~ussed in this paper the
backpropagation neural network paradigm was utilized.
The backpropagation paradigm and several variants have
been independently derived by numerous people from
varying backgrounds. Rumelhart, Hinton, and Williams
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presented a description of the backpropagation paradigm
in 1986 (Rumelhart, Hinton, & Williams 1986). This
paper refocused the attention of the scientific community
on the backpropagation paradigm by exploiting the
power of the paradigm and also answered many of the
questions regarding the limitations of neural networks
that had been discussed in a critique published by
Minsky and Papert (Minsky & Papert 1969). Later 
was found that Werbos had discovered the
backpropagation algorithm while working on his
doctoral thesis in statistics at Harvard University
0Verbos 1974). Parker rediscovered the
backpropagation algorithm while conducting graduate
work at Stanford (Parker 1982). Although Rumelhart 
al created a renewed excitement in the scientific
community with their work, there were still critics of the
backpropagation algorithm. The convergence proof that
Rumelhart et al presented was based on a calculus limit
the.~y, therefore requiring infinitesimal weight
adjustments. This would theoretically require infinite
Waining times to solve real world problems. Although
the backpropagation algorithm is not the solution to all
classification problems, it can be a powerful tool if the
appropriate learning coefficient is selected. Care must
be taken not to select a value that is too large, preventing
the network from converging, or too small, requiring
large training times. Experience in implementing the
backpropagation paradigm is still the best guide.
Another criticism of the algorithm is that complex
problems require long training times. This problem can
be minimized by intelligently preprocessing the data and
by exploiting technological advances, such as utilizing a
coprocessor board for network calculations. Rumelhart,
Hinton, and Williams have developed a method to
reduce training times by adding a momentum term to the
delta rule (Rumelhart, l-Iinton, & Williams 1986). Hush
and Salas have also reduced training times by reusing the
gradient several times in succession (Hush & Salas
1988). Several other research efforts focused on
reducing training times have shown promise, including
(Dahl 1987), (Jacobs 1988), and (Cater 1987).

Another criticism of the algorithm is that the network
can converge to a local error minimum rather the global
e.rt~ minimum. This results in weight oscillation, which
causes the network to stop training. However,
independent studies have determined that the
backpropagation algorithm can be implemented to solve
a wide range of pattern recognition and classification
problems to any desired degree of accuracy (Le Cunn
1987, Moore & Poggio 1988). Unfortunately, these
studies state that the backpropagation algorithm can find
the correct mapping, but they do not state how the
mapping is detenitined. The key to solving this problem
is to properly select the network parameters, including
the number of nodes, number of layers, learning rate,
data mapping, etc. Research efforts have been
conducted to assist with the proper selection of these
parameters (Surkan & Chen 1988). Improvements to the

backpropagation paradigm have made it a popular choice
to solve pattern recognition and classification problems.
Many successful applications have been developed in the
areas of diagnostics, including (Dietz, Kiech, & All
1989) and (Baum & Wilczek 1988), and signal
processing (Gorman & Sejnowski 1988, Rosenberg 
Sejnowski 1987). For these reasons, a backpropagation
paradigm was chosen to solve the shock absorber
classification problem.

Case Study: A Smart Shock

Absorber Test Stand (SSATS)

Motivation for the SSATS System

The need to develop an improved testing methodology
for armored vehicle shock absorbers was identified at the
Red River Army Depot (RRAD). Armored Fighting
Vehicles (AFV), including the Bradley Armored Vehicle
(BAV), are brought to RRAD for scheduled maintenance
and overhaul procedures. The vehicles are completely
disassembled upon arrival. Diagnostic testing is
performed on individual components, such as the track
and engine. The vehicles are then reassembled using
nominal components and subsequently performance
tested by driving them around a test track for a
predetermined amount of time and distance. If a vehicle
meets or exceeds all of the performance criteria it is
released back into the field. As previously stated, there
are various diagnostic tests performed on individual
components during the disassembly phase. However,
until the development of SSATS, there was no diagnostic
functional test for the AFV shock absorbers. The shock
absorbers were being reinstalled or discarded based upon
the results of a visual inspection and a unscientific
"touch test". This testing methodology led to a high
percentage of faulted shock absorbers being reinstalled
and entering the field, as well as numerous nominal
shock absorbers being discarded. Failure rates as high as
78% occurred in the field. The resulting rise in expense
and vehicle downtime created the demand for a
diagnostic testing capability for AFV shock absorbers

Development of the SSATS System

Testing Equipment and Hardware Development. An
existing hydraulic test stand manufactured in the mid
80"s was acquired from RRAD. The test stand was in
poor physical and mechanical condition. The capability
of the test stand was returned to the high performance
level required to develop and implement a diagnostic
testing capability for AFV shock absorbers. The test
stand consists of an electronic control console interfaced
with a hydraulic power supply. Hydraulic fluid is
supplied to a servo cylinder mounted on a load frame. A
shock absorber is mounted vertically into the load frame
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and is subjected to a sinusoidal motion of 38 cycles per
minute (CPM) (adjustable to 50 CPM. I00 CPM, 
CPM, and 290 CPM) through a 2 to 3 inch stroke.
Sensors are mounted to the test stand and the shock
absorber under test in order to acquire data relating to
the force (load) on the shock absorber, the resulting
displacement (position), the temperature of the shock
absorber, and the cycle rate. A PC-based system was
developed to automate the acquisition and analysis of
data provided by the test stand. Analog voltage signals
representing the force applied to the shock absorber
under test, the resulting displacement, the temperature of
the shock absorber, and the cycle rate are input to an
ADC board plugged into an expansion slot of an 80486
PC. The dam signals are connected to the ADC board in
a Referenced Single Ended (RSE) configuration. The
data acquisition (DAQ) system was designed to acquire
data at the five testing cycle rates (frequencies)
previously mentioned. The DAQ system also calculates
velocity data using acquired displacement data and time
data based on the system scan rate. The analog input
parameters discussed previously, including sampling
rate, resolution, input range, relative accuracy, settling
time, and noise were properly taken into account in the
DAQ system. Parameters derived from the DAQ scan
rate (500 scans per second) and the test frequency were
coded into the DAQ software routine to assure accurate
data measurements.

Data Analysis, Preprocessing, and Repre~ntation.
Testing procedures for Bradley Armored Vehicle (BAV)
shock absorbers were developed with the assistance of
the shock absorber original equipment manufacturer
(OEM) and the quality assurance team at RRAD. The
first test requirement specifies that the shock absorber
under test must be at a temperature within an acceptable
range. The DAQ software automatically determines if
the temperature is within the required range. Next, force
values representing the compressive load at midstroke (
displacement = 0), rebound load at midstroke, load at
10% into the compressive stroke, and load at 10% into
the rebound stroke are acquired from load cell sensors
and then compared by the DAQ software to
predetermined force requirements. If the shock absorber
falls to meet any of the force requirements it is
considered to be a faulted shock absorber and is further
analyzed by a neural network classification scheme.
Based on shock absorber theory (Harris & Crede 1988),
it was concluded that the condition of a Bradley
Armored Vehicle shock absorber (and AFV shock
absorbers in general) could best be evaluated by
analyzing the load (force) vs. displacement (position)
plot or phase diagram of the shock absorber. A standard
testing procedure was developed which specifies that
data is acquired as the shock absorber is vertically
oscillated at 38 CPM. Preliminary analysis of data
acquired from BAV shock absorbers showed that the
condition could best be classified into one of four fault
categories. These categories are named Fault Type I,
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Fault Type 2, Fault Type 3, and Fault Type 4,
respectively. These shock absorber fault types are the
result of thC presence of anomalies such as a bent rod,
leaky seal, damaged casing, etc. Figure 1 shows the
force vs. displacement phase diagram for a nominal (not
faulted) shock absorber. Figures 2, 3, and 4 are typical
phase diagrams for Fault Types 1, 2, and 3, respectively.
The Fault Type 4 category was defined to acconnt for
unique types of faults and for shock absorbers with some
combination of Fault Types 1, 2, or 3.

The raw force and displacement data were processed
in three distinct steps to produce a representation that
would maximize performance of the neural network.
First, for each test, five cycles of raw force and
displacement data were acquired from the hydraulic test
stand. These values were averaged (evenly weighted),
resulting in one representative cycle of data. The
averaged cycle of data was then statistically analyzed to
determine the midstroke position during the compression
stroke. The averaged cycle of data was then shifted such
that it always began at the compression midstroke point
in time. Second, after experimentation with various data
representations, it was decided to normalize the
averaged/shifted data. The force data was normalized to
values ranging from -1.0 to 1.0. The displacement data
was normalized to values ranging from 0.0 to 1.0. The
input data for the neural network was derived from the
normalized data. The normalized phase diagrmn was
broken into one set of tour 1/4 cycle intcrv~ds and one
~t of sixteen 1/16 cycle intervals for purpo~s of
analysis. In the first case, the first quarter interval
represents the compression stroke and the third quarter
interval represents the rebound stroke, respectively. The
second and fourth quarter intervals represent
intermediate strokes occurring between the compression
and rebound strokes. In the second case, the first 1/16
cycle interval is centered around the compresskm
midstroke position and the other intervals are evenly
spaced about it. The first and third input node to the
neural network is the mean square error (MSE) of the
normalized force data in the first and third quarter
intervals, respectively. The second and fourth input
node to the neural network is the MSE of the normalized
displacement data in the second and fourth quarter
intervals, respectively. Inputs for nodes 5 - 20 were
determined by calculating the averages of the force data
within the set of 16 specified intervals.

Training and Testing the Neural Network. A fully
connected feed forward backpropagation neural network
was developed to classify the faulted condition of used
BAV shock absorbers. The network architecture consists
of an input layer, one hidden layer, and an output layer
(see Figure 5). The input layer comprises 20 input
nodes. Their values were discussed in the previous
section. The hidden layer comprises eight nodes. The
output layer compri~s three nodes. Table 1 summarizes
the output values associated with each fault
classification. If the network output does not meet any
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Figure 5. Backpropagation Architecture Used to Classify Faulted Shock Absorbers

Fault Tv~ Node 1 Node 2 Node 3

1 >0.85 <0.35 <0.35
2 <0.35 >0.85 <0.35
3 <0.35 <0.35 >0.85

Table 1. Neural Network Output Nodes Classification
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of the criteria outlined in Table 1, then the shock
absorber is classified as Fault Type 4. Fault Type 4 can
be a unique type of fault for which the network was not
trained to recognize, or it could be any combination of
Fault Types 1, 2, or 3. There is no corresponding output
for a nominal shock absorber since the network is only
implemented once the preliminary data analysis
determines that the shock absorber is faulted. A total of
84 BAV shock absorbers were acquired from RRAD to
train the neural network. Eight of the shock absorbers
were new and the other 76 had previously been
determined to be faulted by RRAD. Data was then
acquired and stored for each individual shock absorber.
This data was then manipulated into the format described
in the previous section in order to train the
backpropagation network using Fault Types 1, 2, and 3.
After experimenting with various parameters including
learning rate, number of hidden layer nodes, etc. the
network was successfully trained to classify the faulted
BAV shock absorbers. Once the network was adequately
trained, it was tested using shock absorbers of known
condition. The network successfully classified 100% of
the shock absorbers used. The neural network was then
converted to C code and integrated with the previously
written DAQ software.

Conclusions and Future Work

Automated test systems significantly decrease testing,
analysis, and decision making or classification time,
thereby minimizing labor and increasing Return on
Investment. Automated testing systems that utilize
neural network methodologies in data
processing/analysis and decision making processes offer
the promise of exceedingly fast and robust
implementations that can conveniently and flexibly be
trained to respond to a set of given dam patterns
representative of a set of unique operational faults.
These systems can yield great benefits in terms of system
speed, robustness, and knowledge acquisition (Dietz,
Kiech, & All 1989).

The U.S. Army Research Laboratory Materials
Directorate (ARL/MD) has successfully developed and
implemented a Smart Shock Absorber Test Stand
(SSATS) to evaluate the condition of armored vehicle
shock absorbers. This system is an automated ITS that
performs data acquisition and shock absorber evaluation
in real-time. The system utilizes a hydraulic test stand to
vertically oscillate the shock absorber at a preset
frequency. The data acquisition system acquires data
from sensors mounted on the test stand and attached to
the shock absorber, including the force on the shock
absorber, the resulting displacement of the shock
absorber, the temperature of the shock absorber, and the
oscillation frequency. This data is analyzed in order to
classify the shock absorber a~ nominal or faulted. If the
shock absorber is classified as faulted, the data is further

178 AI & Manufacturing Workshop

analyzed by a neural network based classification
scheme. A fully connected feed forward
backpropagati0n network was successfully trained and
tested to classify the faulted shock absorbers as Fault
Type 1, 2, 3, or 4. These shock absorber fault
characteristics are present due to physical anomalies
such as a bent rod, leaky seal, "damaged casing, etc. A
significant advantage of SSATS, and of automated
intelligent testing systems in general, is the capability to
easily archive test results, enabling the user to track
problems associated with shock absorbers and to monitor
any significant trends with very little difficulty. For
example, a high percentage of shock absorbers with
leaky seals may represent a design problem which can be
corrected by the manufacturer. The SSATS system
provides a Statistical Process Control (SPC) routine for
data archiving and product assurance.

Once developed and tested, the SSA’I’S system was
transitioned to Red River Army Depot, where it is being
utilized to evaluate the condition of Bradley Armored
Vehicle shock absorbers. The system was developed and
first implemented to evaluate shock absorbers that had
been previously tested at RRAD by visual inspection and
an unscientific "touch test". It must be emphasized that
the testing methodology utilized by RRAD resulted in
incorrect classification of 40% of these shock absorbers.
The SSATS system provides an accurate funclional
testing capability for Bradley Armored Vehicle shock
absorbers. The utilization of this system significantly
reduces vehicle downthne and shock absorber
misclassification, resulting in an increase in combat
readiness and a significant financial savings. World-
wide the Bradley Armored Vehicle program spent
$1,909,920 on replacement shock absorbers in 1993.
The Bradley Armored Vehicle has continued to be a
major part of the armored vehicle forces. Therefore, full
utilization of SSATS will savc an estimated $760,lX) per
year.

The methods used to develop the automated SSATS
system can be implemented to develop other automated
Intelligent Testing Systems, especially for other AFV
shock absorbers. This is due to the fact that the
backpropagation neural network algorithm can be
utilized to create a classification scheme to correctly
evaluate the condition of systems in which unique data
patterns exist for different operational states. Future
work will concentrate on "retraining" the neural network
classification scheme to classify the condition of shock
absorbers for different vehicles.
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