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Abstract

In this paper, we demonstrate the use of stochas-
tic dynamic programming to solve over-constrained
scheduling problems. In particular, we propose a de-
cision method for efficiently calculating, prior to start
of execution, the optimal decision for every possible
situation encountered in sequential, predictable, over-
constrained scheduling domains. We present our re-
sults using an example problem from Product Quality
Planning.

Introduction

In this paper, we demonstrate the use of stochastic dy-
namic programming to solve over-constrained schedul-
ing problems. In particular, we propose a decision
method for efficiently calculating, prior to start of ex-
ecution, the optimal decision for every possible sit-
uation encountered in sequential, predictable, over-
constrained scheduling domains.

Over-constrained scheduling is a problem frequently
encountered in the manufacturing industry. The gen-
eral situation can be described as having a time-
constrained goal that requires the execution of a set
of tasks that have priorities, required durations, and
ordering constraints’. In the “over-constrained” situa-
tion, the amount of time available before the deadline
is less than the sum of the tasks’ durations. Decisions
must, therefore, be made about how to schedule the
inadequate amount of time available to optimize the
results. As also frequently happens, because task ex-
ecution is nondeterministic, we may find that in the

!We define the term ordering constraint to mean that
one task is only of value if executed before the other. There-
fore, a before task is no longer considered for execution if the
after task has already been executed. We do not, though,
consider execution of the before task as a prerequisite for
executing an after task.
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middle of executing our tasks, we are either ahead or
behind where we had planned to be. We would like our
decision method to tell us immediately what is the best
action to take from any of these unexpected states.

For our current model of the over-constrained
scheduling domain, we assume that there is value in
partially completing tasks, but because most tasks are
more coherent if executed entirely in sequence, we as-
sume tasks are preemptable but not continuable. We
also assume domains where all tasks can be anticipated
prior to execution and are executed sequentially.

The work presented here builds on the earlier work of
(Krebsbach 1993) who introduced the use of stochastic
dynamic programming to construct sensor schedules.

The ability of our method to allow immediate and
continuous update of the optimal decision to make
from any situation is a distinct advantage it possesses
over other decision methods (PERT/CPM, linear pro-
gramming, etc) (Anderson, Sweeny, & Williams 1994).
Our automated method precomputes the optimal de-
cision from every possible state, whereas other meth-
ods require recomputation when the current situation
no longer matches the expected situation of the plan.
Other decision methods also do not generally deal with
the problems of over-constrained scheduling.

A Motivating Example:
Over-Constrained Product Quality
Planning

We now present an instance of the over-constrained
scheduling problem using as an example Product Qual-
ity Planning. Suppose you work for a small company
and are assigned a Product Quality Planning Project
for a new generation of an existing product. Because
you will be the only person working on the project,
sequential (nonconcurrent) execution is required. Let
the following be the general tasks, priorities (higher is

Sobiesk 195



Framoredsaqgurgent jhdurationsyandmegessasx orderimgof/orkshop. CoplagtholrdscPresesnResignAndeyslormentq.

tasks:

r Task Priority Durationl

1. Plan and Define Pro- 1 2
gram

2. Product Design and 3 5
Development

3. Process Design and 3 4
Development

4. Product and Process 2 2
Validation

5. Feedback Assessment 1 2
and Corrective Action

Figure 1: Tasks for the Product Quality Planning ex-
ample problem. Durations are in months.

Many methods could be used to produce the same
general schedule when the required time is available:

Month 1-2 : Plan and Define Program

Month 3-7 : Product Design and Development

Month 811 : Process Design and Development

Month 12-13: Product and Process Validation

Month 14-15: Feedback Assessment and Cor-
rective Action

Now suppose you are told that because of the com-
petitive race to market your product, instead of the re-
quired 15 months, you will only be allotted 12 months.
How do you decide how much time to spend on each
task? Most of the time, you would have to use intuition
and experience to judge what to do. You would like
to accomplish as much as possible of the most impor-
tant tasks. However, to maximize your productivity,
you would need to take into account how much of each
task can be achieved in each time unit spent on it.
Dcciding exactly on the optimal allocation is not triv-
ial. Based on the new 12 month constraint, you would
want a decision method that would give you the new
optimal schedule of:

Month 1 : Plan and Define Program
Month 2-6 : Product Design and Development
Month 7-9 : Process Design and Development

Month 10-11: Product and Process Validation
Month 12 : Feedback Assessment and Cor-
rective Action

Now, what if at five months before the deadline, you
have completed all of tasks 1 and 2, but no part of the
remaining three tasks? You would want your decision
method to give you the optimal schedule of:
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Month 4 : Product and Process Validation
Month 5 : Feedback Assessment and Cor-
rective Action

The above examples illustrate exactly the ability
that stochastic dynamic programming possesses. We
will now explain the technique that we use, and how
our method guarantees that all decisions are optimal.

In the remainder of the paper, we will first give a
description of the general methodology of stochastic
dynamic programrming. We will then cover its specific
implementation for the over-constrained scheduling do-
main. Next, we will show the results of our method and
reveal the statistics and computation that resulted in
the decisions for our Product Quality Planning exam-
ple. We will conclude the paper with a brief discussion
of the strengths and limitations of our method, and
related work.

Stochastic Dynamic Programming

A decision method tells an agent what decision to
make at each decision point. Constructing a sequence
of decisions can be viewed as a sequential decision
problern (SDP)? (Boddy 1991b; Hillier & Lieberman
1980). Stochastic dynamic programming (Ross 1983;
Howard 1960) is a solution method for problems of
this sort. We now formally describe the components of
stochastic dynamic programming.

Fundamental Characteristics

e The problem can be divided into stages. Each stage
has a number of associated states with a decision
required for every state. Each state contains infor-
mation sufficient for making the decision. Let S be
the set of states the system can assume and D be
the set of decisions that can be made at cach deci-
sion point.

e The effect of a decision on a state is to transform the
current state into a state in the next stage. Let ¢ :
SxD — S be a stochastic function mapping from
the current state and a decision to a sct of states
in the next stage according to a given probability
distribution.

e Given the current state, optimal decisions for
states in the remaining stages can be considered in-
dependently of the decisions adopted in previous
stages. This crucial property means that knowledge
of the current state of the system conveys all the in-
formation about its previous behavior necessary to

2Sequential decision problems are a special case of so-
called multi-stage decision problems(Bellman 1957).
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(Bellman 1957), and is a special case of the Marko-
vian property, which says that the conditional prob-
ability of any future event, given any past event and
the present state is independent of the past event
and depends only upon the present state of the pro-
cess. Let G : S xD — R be a gain function
mapping from the current state and a decision to
the real numbers®. Conceptually the gain function
represents the expected execution gain that a given
decision in a given state implies. Of course, the re-
sulting solution is highly dependent on our choice
of gain function, which must take into account the
expected gains resulting from its decision. The gain
function can be thought of as a numerical represen-
tation of the relative advantages and disadvantages
of one decision over another given a particular state.

Computational Method

1. The solution procedure begins by finding an opti-
mal decision for all possible states of the final stage.
This is often trivial.

2. A recursive function is available which identifies
an optimal decision for each state at stage i, given a
one-step local gain function and already computed
optimal decisions for each state at the successor
stage (i + 1). For our purposes, finding an opti-
mal (one step) decision from a state in stage ¢ thus
begins with computing the local gain of each legal
decision for that state. It then finds the global gain
for each of these possible decisions by adding the
decision’s local gain to the accumulated (backed up)
global gain from the relevant successor state at stage
i+ 1. It chooses the decision which maximizes this
overall global gain towards the goal state. All other
(state, decision) pairs can be discarded because the
principle of optimality holds. This is where a great
deal of computation and storage is saved by using dy-
namic programming because only the optimal states
are stored and referenced for future computation.
The function that identifies an optimal decision for
each state at stage ¢ is traditionally expressed as:

.f."(s) = maz{g,,‘. + f:+1($i)}

where

f1(8) is the global gain for state s.

fi11(zs) is the global gain for the state at stage i+1
entered by making decision z; at stage i.

3This is traditionally called the reward function in op-
erations research.

s the decision being considered at deci 1on oint,
9). All rig ts reserved.

gsz; is the local gain of the transition from state s at
stage i to the appropriate successor state in stage
i + 1 by choosing action z;.

An optimal decision method consists of finding the
value of z; that maximizes f;(s).

3. Using this recursive relationship, the solution proce-

dure moves backward stage by stage, each time de-
termining an optimal decision for the states at that
stage. This optimizes the sequence of decisions from
that state forward. This continues until it finds an
optimal decision at the initial stage. Note that in-
tuitively this entails storing optimal decisions in a
table that can be referenced by a state. While it
is possible to proceed forward from the first to final
stage for some dynamic programming problems, it
is generally not possible when stages correspond to
time periods. This is because possibly optimal se-
quences of decisions might be discarded if they look
more costly early on when some commitments must
be made about optimal subsequences of decisions.
However, this is never a problem when working back-
ward from the final to initial stage. As long as the
principle of optimality holds, an optimal decision for
each state in the current stage can be assumed opti-
mal regardless of how that state is reached.

Over-Constrained Scheduling Decision
Table Generation

The purpose of this section to explain our specific ap-
plication of stochastic dynamic programming to the
over-constrained scheduling domain.

The execution of the application requires several user
inputs. It is important to note that our method’s guar-
antee of optimality is conditionalized on the accuracy
of these user inputs. The inputs required include:

o Task Naomes

e Task Priorities The algorithm is designed such that
higher priorities are more important.

e Tasks Durations Must be all in the same time unit.

o Estimated Percentages Completed per Time Period
This input is required for each task. It is a vector of
the fractions of the task that the user believes will
get accomplished with each sequential time period
spent on the task. As an example, for the Product
Quality Planning task of Plan and Define Program,
we chose a task duration of two and our EstPer-
cComp vector was (4/5 1/5). This is equivalent to
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plished during one month's work, and that the re-
maining 20% of the task will be accomplished work-
ing on it a second month. Note that the EstPerc-
Comp vector fractions must sum to one. A major
strength of our decision method is that by using the
EstPercComp vector to calculate the anticipated lo-
cal gain of a task for each time period of execution,
we allow the user a nonlinear method of expressing
anticipated task accomplishment.

o Ordering Constraints Any ordering constraints that
exist between tasks. The default order of execution
is by task priority from highest to lowest.

e Number of Stages The number of time periods until
the deadline.

o Time Period Type The time period unit being used.
For our example, we chose months.

Figure 2 contains the algorithm we use for construct-
ing an optimal decision table in the over-constrained
scheduling domain. The algorithm is fairly straight-
forward. The outer loop moves the process backward
from the final stage to the initial stage. All possible
states at each stage are generated and stored in the
list S;. For each of these states, we compute the ex-
pected one-step gain of making cach possible decision
by multiplying the appropriate EstPercComp by the
Task Priority. We add these one-step gains to the ac-
cumulated global gains from the projected next stage
states. States are projected using the function ¢ de-
fined earlier. We store the decision which yields the
maximum GlobulGein for the state. The general form
of the gain function describing the expected gain from
making decision d in state s is simply:

LocalGain(s,d) =
EstPercComp(s,d) * TaskPriority(d)

GlobalGain(s) =
mazq[LocalGain(s,d) + GlobalGain(¢(s,d))]

The specific part of the EstPercComp vector used in
the calculation of LocalGain is based on how many
time periods we have worked so far on the task. For
instance, for the task Plan and Define Program, the
EstPercComyp vector is (4/5 1/5) and the Task Prior-
ity is 1. So, LocalGain for the first time period spent
working on the task would be 4/5 * 1 = 4/5.

We utilize the combination of a state with the num-
ber of stages remaining as the index to the optimal
decision table. So the index for the initial situation in
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begin
;: make a list of all possible states for stage i
S; + PossibleStates(i)
;; for each state find optimal decision
For each s in S;
begin
;; SlackTime is default decision
Decision(s) + SlackTime
GlobalGain(s) « 0
;; for each legal decision for the state
For each legal decision d for s
begin
LocalGuin(s,d) + EstPercCompx
TaskPriority
GlobalGain(d) «— LocalGain(s,d)+
GlobalGain(d(s,d))
If GlobalGain(d) > GlobalGain(s)
begin
GlobalGain(s) + GlobalGuain(d)
Decision(s) + d
end
end
Store GlobalGain(s)andDecision(s)
as optimal decision and gain at
Table Index(1, s)
end
end

Figure 2: Algorithm for gencrating the optimal deci-
sion table.

For i «+ 1 to Stages
begin
Update the CurrentState
d + GetStoredDecision(i, CurrentState)
Ezxecute(d)
end

Figure 3: Utilizing the optimal decision table during
execution.

the over-constrained 12 month Product Quality Plan-
ning example would combine the number of stages re-
maining with the Tasks Durations for cach task. So
the index would be (12254 2 2).

Figure 3 shows how the optimal decision table can
be used at execution time to make the proper state-
dependent, optimal decisions. To avoid burdening the
user with determining what state he is in, an inter-
face will be designed to take information from the user



aboyt, how

task he est

The method we have described has been fully imple-
mented and applied to many problems in the over-

%%&mr&m%&%@

es is completed. Base

Results

constrained scheduling domain.

Figures 1 and 4 show the input used for our Prod-
uct Quality Planning example problem. Here is the
output of our scheduler for the original 15 month un-

constrained scheduling problem:

Month 1 :
Month 2 :
Month 3 :
Month 4 :
Month 5 :
Month 6 :
Month 7 :
Month 8 :
Month 9 :
Month 10:
Month 11:
Month 12:
Month 13:

Month 14:

Month 15:

The generated table of optimal decisions is now used
to find the optimal decision given that only 12 months
are left and nothing has been done yet. The schedule

18:

Plan and Define Program
Plan and Define Program
Product Design and Devel-
opment

Product Design and Devel-
opment

Product Design and Devel-
opment

Product Design and Devel-
opment

Product Design and Devel-
opment

Process Design and Devel-
opment

Process Design and Devel-
opment

Process Design and Devel-
opment

Process Design and Devel-
opment

Product and Process Vali-
dation

Product and Process Vali-
dation

Feedback Assessment and
Corrective Action
Feedback Assessment and
Corrective Action

&gggré# ﬁgﬁhing Wo

on the user’s
EstPercComp, the program will then calculate how
many time periods are left to complete each task, index
the appropriate state, and output the optimal decision.

Gain:
Gain:
Gain:
Gain:
Gain:
Gain:
Gain:
Gain:
Gain:
Gain:
Gain:
Gain:
Gain:
Gain:

Gain:

10.0
9.2
9.0
8.1
7.2
6.6
6.3
6.0
5.7
4.5
3.3
3.0
1.6

1.0

0.3

Month 1: Plan and Define Program Gain: 9.2

Month 2:

Month 3:

Product Design and Devel-
opment
Product Design and Devel-
opment

Gain:

Gain:

8.4

7.5

shop. Copyright © 1996, AAAI ( W.aaai.ﬁgef%q,g@gﬂsserved.
Task T2 [314]5
1. Plan and Define Pro- | 0.8 | 0.2

gram

2. Product Design and [ 0.3 |03 |0.2]0.1{0.1
Development

3. Process Designand De- | 0.1 | 0.4 ] 0.4 | 0.1
velopment

4. Product and Process | 0.7 | 0.3

Validation

5. Feedback Assessment | 0.7 | 0.3

and Corrective Action

Figure 4: Estimated percentages of task completed per

month.

Month 4 :
Month 5 :
Month 6 :
Month 7 :
Month 8 :
Month 9 :
Month 10:
Month 11:

Month 12:

Product Design and Devel-
opment

Product Design and Devel-
opment

Product Design and Devel-
opment

Process Design and Devel-
opment

Process Design and Devel-
opment

Process Design and Devel-
opment

Product and Process Vali-
dation

Product and Process Vali-
dation

Feedback Assessment and
Corrective Action

Gain:

Gain:

Gain:

Gain:

Gain:

Gain:

Gain:

Gain:

Gain:

6.6

6.0

5.7

5.4

5.1

3.9

2.7

1.3

0.7

The table is used again to find the optimal decision
given that five months are left and only the first 2 tasks
have been completed. Here is the schedule:

Month 1:

Month 2:

Month 3:

Month 4:

Month 5:

Process Design and Devel-
opment

Process Design and Devel-
opment

Process Design and Devel-
opment

Product and Process Vali-
dation

Feedback Assessment and
Corrective Action

Gain: 4.8

Gain: 4.5

Gain: 3.3

Gain: 2.1

Gain: 0.7

Sobiesk
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As we have demonstrated throughout the paper, our
method has many strengths. The most important of
these is its ability to precompute the optimal decision
for all possible states. For reusable domains, this will
have the benefit of a one time computation that can
then be used by an executing agent. Another major
advantage of our method is its flexibility due to the
user determining the input statistics. While this puts
the burden of expertise on the user, it does allow for
the adaptability of our method to numerous diverse do-
mains. Although our Product Quality Planning exam-
ple utilized month time periods, we believe our method
would be especially useful in over-constrained problems
involving hour time periods. The automation of our
method provides great speed, and its guarantee of op-
timality would be extremely beneficial at times when
stress and tiredness may impair human judgement and
intuition. Finally, since the optimal decisions are comn-
puted and stored using stochastic dynamic program-
ming, this method has been shown to be polynomial
in both space and time (Krebsbach 1993).

The two major limitations of our method are the
size of the generated table of optimal decisions and
the requirement of our method to have all task infor-
mation input prior to start of execution. We believe,
though, that many important domains exist for which
our method is applicable.

As we stated in the introduction, our current imple-
mentation makes a few assumptions. We schedule only
sequential tasks. We assume no task is absolutely es-
sential, and so tasks can be completely skipped. The
priority of the tasks, and how much of each task can
be accomplished in each time unit determine how much
time to devote to each task. We assume that the goal
requires a set of known tasks which can be anticipated
from the beginning and will not change throughout ex-
ecution. This assumption is essential for precomputing
all possible states and optimal decisions. We assume
there is value in a partially completed task (an 80%
solution on time is better than a perfect solution too
late), so we allow tasks to be preempted. However,
once a task is preempted we do not allow it to be re-
sumed. Finally, we assume the ability to measure the
accomplishment of tasks in a discrete manner. This al-
lows us to index the current progress towards the goal
by the status of how much has been accomplished on
each task so far.

Related Work

Decision-theoretic methods have been used for a wide
variety of optimization and control problems, includ-
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9: o} ¥ proposes the use of dy-
namic programming for constructing anytime algo-
rithms (Boddy 1991a). Hager and Mintz (1991) have
proposed methods for sensor planning based on proba-
bilistic models of uncertainty. Goodwin and Simmons
(1992) use a decision-theoretic approach to incorpo-
rate the achievement of a new goal into a partially
executed plan, and Chrisman and Simmons employ
Markov Decision Processes in order to handle a sig-
nificant amount of uncertainty in the outcomes of ac-
tions (1991). Hansen (Hansen 1994) incorporates sens-
ing costs in the framework of stochastic dynamic pro-
gramming. Wellman and Doyle (Wellman & Doyle
1992) propose modular utility functions for decision-
theoretic planning. Modular functions allow specifying
preferences, and composition methods allow combining
them.

The method we propose can be considered similar
to universal planning (Schoppers 1987) and to “tree
plans” (Nilsson 1994). We generate a complete set of
schedules that will work for all possible contingencics.
The advantage of our method is that we guarantee the
optimality of all the decisions, while universal planning
is more concerned with having a plan for all contingen-
cies, not necessarily the optimal plan.

Conclusion

We have demonstrated the use of stochastic dy-
namic programming to solve over-constrained schedul-
ing problems. In particular, we proposed a dccision
method for efficiently calculating, prior to start of ex-
ecution, the optimal decision for every possible sit-
uation encountered in sequential, predictable, over-
constrained scheduling domains. The chief idea behind
our method is that optimal decisions are calculated
prior to start of execution and stored in a table. The
actual state of the world is then used as an index into
the table during execution.
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