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Abstract

Agent-based technologies can be applied to many aspects of
manufacturing. The need for responsive, flexible agents is
pervasive in manufacturing environments due to the complex,
dynamic nature of manufacturing problems. Two critical aspects
of agent capabilities are the ability to: (1) classify agent behaviors
according to autonomy level, and (2) adapt problem-solving roles
to various problem-solving situations during system operation.
This issue is addressed by research on Sensible Agents, capable
of Dynamic Adaptive Autonomy. In Sensible Agent-based
systems, levels of autonomy constitute descriptions of agent
problem-solving roles. These roles are defined along a spectrum
ranging from command-driven, to consensus, to locally
autonomous, to master. Dynamic Adaptive Autonomy allows
Sensible Agents to change autonomy levels during system
operation to meet the needs of a particular problem-solving
situation. This paper provides an overview of the Sensible Agent
testbed, and provides examples showing how this testbed can be
used to simulate agent-based problem solving in manufacturing
environments.

Introduction

Manufacturing environments are inherently complex and
dynamic. These characteristics create many challenges for
the automation of manufacturing tasks such as planning and
scheduling. The use of agent-based systems offers
significant advantages to automated manufacturing
including distribution of control and processing as well as
adaptable automated or semi-automated problem-solving
(Liu, 1996). However, simply applying the agent-based
paradigm to manufacturing problems may not be enough to
address the real-time demands of production systems.
Agent-based systems operating in the manufacturing
domain are subject to dynamic situational changes across
many dimensions:

s certainty of information held by an agent or
acquired by an agent about other agents in the
system (e.g. inventory status, product status on
factory floor, machine processing performance),
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¯ resource accessibility for a particular agent (e.g.
which tools are performing within tolerance);

¯ goal constraints for multiple goals (e.g. deadlines
for goal completion, goal priorities); and

¯ environmental states (e.g. air quality in clean
room).

Therefore, manufacturing requires agent-based problem
,solving to be flexible and tolerant of faulty information,
equipment, and communication links. This research uses
Sensible Agent-based systems to extend agent capabilities
in dynamic and complex environments (Barber, 1996).
Sensible Agents achieve these qualities by representing and
manipulating the interaction frameworks in which they plan
to achieve their goals. Agent interactions for planning can
be defined along a spectrum of agent autonomy as shown in
Figure I. An agent’s level of autonomy for a goal specifies
the interaction framework in which that goal is planned.
Although autonomy is traditionally interpreted as an
agent’s degree of freedom from human intervention, the
concept of autonomy in this context refers to an agent’s
degree of freedom with respect to other agents.

SPECTRUM OF AUTONOMY

Commend- Consensus Locally Master
driven Autonomous

Figure 1: The Autonomy Spectrum

The autonomy spectrum is grounded in four discrete
autonomy level categories:

Command-driven -- The agent does not plan and
must obey orders given by another (master) agent.

Consensus -- The agent works as a team member,
sharing planning tasks with other agents.

Locally Autonomous -- The agent plans alone,
unconstrained by other agents.

Master -- The agent plans for itself and its followers
who are command-driven.

Agents can be designed to operate at a single level of
autonomy if: (I) the application is simple, (2) the designer
correctly predicts the types of problem that agents will
face, and (3) the environmental context and problem types
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remain constant. However, for complex applications in
dynamic environments (i.e. most manufacturing problems),
the appropriate level of autonomy may depend on the
agent’s current situation. An agent’s optimal autonomy
level may be affected by the agent’s state, overall set of
goals, and/or its environmental context. All of these
characteristics may be dynamic and change during system
operation. For example, scheduling agents in charge of
directing parts to various process workstations to achieve
maximum throughput may perform best by changing their
problem-solving configurations as a result of load
imbalance, the introduction of a new high-priority job, or
machine failure. A Sensible Agent maintains solution
quality in dynamic environments by using a technique that
we call Dynamic Adaptive Autonomy (DAA). DAA is 
capability that allows a Sensible Agent to modify its
autonomy level for any goal during system operation. The
process through which an agent chooses the most
appropriate autonomy level for a given situation is called
autonomy reasoning.

Related Work

The organizational structure of agent-based systems, which
provides the mechanism through which agents coordinate
or cooperate to achieve system goals, has been the subject
of much research over the past few decades
(Chandrasekaran, 1981 ; Fox, 1981; Kirn, 1996; Nirenburg
and Lesser, 1986; Singh, 1990; Smith, 1980; Werner and
Demazeau, 1991; Wesson et al., 198 I). One overall goal of
multi-agent-systems research is adaptive self-configuration:
allowing agents to reason about and change the
organization of their coordination frameworks (Gasser,
1988). Most self-organizing systems rely on explicit,
predefined differences in agent behavior and limit the
reorganization primitives to a fixed number of predefined
behaviors (Gasser and lshida, 1991; Glance and Huberman,
1993; lshida et al., 1992). Others are based on adapting
application-specific roles that agents can play during
problem solving (Glaser and Morignot, 1997). These
systems do not explicitly represent the agent’s problem-
solving role. This limits the ability of these systems to
reason about the appropriateness and potential modification
of an agent’s problem-solving interactions in an
application-independent fashion.

Multi-agent researchers use simulation environments to
test algorithms and representations in order to accurately
measure the impact of new research. Existing simulation
environments include: DVMT (now DRESUN) (Lesser,
1991), MACE (Gasser et al., 1989), and MICE (Duffee
and Montgomery, 1990). Additionally, a number of single-
use simulations have been used to measure or compare
performance for many research topics including swarm
behavior (Beslon et al., 1998), constraint planning (Liu,
1996), and hierarchical organizations (Glance and
Huberman, 1993). Unfortunately, most of these testbeds do
not support distributed heterogeneous computing
environments. Additionally, these simulation environments

are not designed to support third-party connections. Third-
party connections allow researchers to compare the
performance of different algorithms and representations
within a common simulation enviromnent.

Sensible Agent Architecture

As defined for this research, an "agent" is a system
component that works with other system components to
perform some function. Generally, agents have the ability
to act and perceive at some level; they communicate with
one another; they attempt to achieve particular goals and/or
perform particular tasks; and they maintain an implicit or
explicit model of their own state and the state of their
world. In addition, Sensible Agents have many other
capabilities supported by the Sensible Agent architecture
shown in Figure 2.

Each Sensible Agent consists of five major modules
(Martin et al., 1996):

The Self Agent Modeler contains the behavioral model of
this agent (the self-agent) as well as declarative information
specific to this agent. A system designer can specify the
desired services, data, and interfaces of each system agent
through the Self Agent Modeler. This module interprets
internal or external events acting on the agent and changes
its state accordingly. Other mcxlules (within the self agent)
can access this model for necessary state information.

The External Agent Modeler contains knowledge about
other agents and the environment. This module maintains
beliefs about states and events external to the self-agent and
predicts the actions of other agents. Other modules within
the self-agent can monitor this module for changes that

........................

Interaction with
other system agents

Interaction with
the Environment

/
Perception of

Environment and
external agents

Autonomy
Requests

SYSTEM MODEL

Figure 2: The Sensible Agent Architecture.
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Figure 3: Functional View of Simulation Coramunication

affect their reasoning processes.
The Action Planner module solves domain problems and

executes problem solutions. This module interacts with the
environment and other agents in its system. Domain-
specific problem solving information, strategies, and
heuristics are placed inside this module. The Action
Planner is able to interpret, plan to achieve, and execute
solutions for domain-specific goals. This module draws
information from all other modules in the self-agent.

The Conflict Resolution Advisor identifies, classifies, and
generates possible solutions for conflicts occurring between
the self-agent and other agents. This module monitors the
Action Planner, Self-Agent Modeler, and External Agent
Modeler to identify conflicts. It also offers suggestions to
the Action Planner or Autonomy Reasoner so these
modules may resolve the conflict.

The Autonomy Reasoner determines the appropriate
autonomy level for each goal, assigns an autonomy level to
each goal, and reports autonomy level constraints to other
modules in the agent. It also handles all autonomy level
transitions and requests for transition made by other agents.

Testbed Design

Accurate simulation of complex domains requires an
environment that handles complex modeling issues and
produces reasonable visual and numerical output of the
current world state. The Sensible Agent simulation testbed
will provide us with an environment for running repeatable
experiments in which Sensible Agent functionality can be
evaluated. The wide-ranging functionality and
implementations of each module requires us to support a
multi-platform and multi-language research environment.
Our current implementation allows us to integrate C++,
Java, Lisp and MOdSIM implementations on Solaris,
WindowsNT and Linux platforms.

Figure 3 illustrates the current Sensible Agent simulation
architecture. The different modules and the environment
simulator are implemented as CORBA objects that can
communicate through the Xerox Inter-Language
Unification (ILU) distributed object environment (Xerox,
1998). ILU provides the necessary cross-language and
distributed object support for our research environment.

ILU’s support of the Object Management Group’s
(OMG) Common Object Request Broker Architecture

(CORBA) standards allows us to use the OMG Interface
Definition Language (IDL) to formally define the
interactions among agents and their modules. The use of
IDL permits continued Sensible Agent evolution in an
implementation-language-independent manner and
facilitates parallel research initiatives within the framework
of an integrated distributed object system. Additionally,
ILU’s support of the CORBA Internet Inter-Orb Protocol
(IIOP) standard will allow us to connect the simulation
with external ORBs (OMG, 1998) -- and other applications
that support IIOP - to further enhance the Sensible Agent
Testbed’s extensibility. The use of IIOP combined with the
OMG’s CORBAServices Object Naming Services
(COSNaming) allows us to present a public interface to our
Sensible Agent Testbed, allowing external entities to
connect with our testbed for experimentation and
collaboration. We are currently in the process of
integrating the different modules and testing the IIOP
communication channel.

The far right of Figure 3 shows how the different
modules within a Sensible Agent can communicate with
each other without loading the inter-agent communication
medium with unnecessary message traffic. Figure 4 shows
a logical view of these communication pathways. The
Sensible Agent Template (SAT) provides a single handle
which other Sensible Agents and the environment can use
for the messaging and naming of an individual agent. The
separation of the user interface from other agent
functionality (the far left of Figure 3) allows us to collect
data and view the simulation state without local access to
the heavy computing power needed by the individual agents
and modules.

I

~i’i::’, :-:.:~
"?’:’" :~i~::..:.p" "~ ..:

,~ ~ ~":’;i.i.:~

.~:’:~.’~

ModSim Environment Simulator

Figure 4: Logical View of Simulation Communication
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Figure 5: Sensible Agent System User Interface

Manufacturing Example

As applied to the manufacturing domain, the domain-
specific planning responsibilities assigned to each agent
result from object-oriented analysis and design for the
application problem. Decisions regarding levels of
abstraction per agent functional responsibility are made in
the system analysis and design phase. For example, a
process-planning agent may be defined which encapsulates
resource selection, process selection, and costing services.
Alternatively, each of these services may be assigned to
individual agents (e.g. process selection agent).

A complete specification for agents comprising a
particular Sensible Agent-based system in the
manufacturing domain is beyond the scope of this paper.
However, for the purposes of the following discussions, we
assume a Sensible Agent-based system for job-shop
scheduling. Resources on the factory floor (e.g. material
handling devices, robots, machine operators) can be
assigned to respective agents. Each of these agents controls
access to production lines (to perform load balancing
between lines) and job scheduling between machines on
different lines (to reduce idle times for any one machine).
The agent makes these decisions by monitoring resource
availability and status, execution, and goal achievement.
The following sections provide examples describing the
Sensible Agent Testbed as it might apply to a
manufacturing simulation. Individual module prototypes
are provided. We are currently in the process of fully
integrating these modules.

System Designer Interface
The Sensible Agent System User Interface, shown in
Figure 5, provides facilities to initialize the system and

view behavior of the agents during the simulation.
Initialization consists of defining the agents in the system,
assigning the initial goals to the agents, and defining the
environmental stimuli for the simulation. The definition of
each agent includes declarative knowledge, behavioral
knowledge, and the goal tree from which the agent plans.
During execution, the behavior of each agent can be
displayed, including the internal workings of each of the
modules, interactions among modules, and interactions
among agents.

Figure 5 shows an example of the definition of a goal
tree. Agents plan from AND/OR goal trees which
represent the agents’ alternatives (Jennings, 1993; Lesser,
1991). The goal/subgoal relationship reflects a task-
reduction planning paradigm. Autonomy levels can be
assigned at a single level or at each step of task reduction
(to each goal, its subgoals, and any further subgoals these
subgoals may have).

The goal tree displayed in Figure 5 defines how an agent
would manufacture a part. The top-level goal displayed is
an example of a goal template that would then be
instantiated when placed in an agent’s Intended Goals
Structure. The items in curly braces, "{ }", identify those
variables which must be instantiated in order to begin
planning for a goal. For example, the top-level goal has
{ Agent }, { Part }, and { Process Plan } as variables that must
be defined for an agent to accomplish that goal.

Intended Goals Structure

A Sensible Agent represents the goals it has chosen to
pursue in an Intended Goals Structure (IGS). The IGS
differs from a goal tree. The goal tree contains templates
for candidate goals, which have not been accepted by any
agent. On the other hand, the IGS is an agent’s
representation of the actual goals it will attempt to achieve
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Figure 6: The IGS Viewer

(its own intended goals) as well as any additional goals for
which it must plan (external goals, intended by other
agents). For a formal definition of agent intention, see
(Cohen and Levesque, 1990). The IGS contains AND-only
compositions of these goals and therefore does not
represent alternative solutions or future planning strategies
as goal trees do. Instead, the IGS represents what an agent
has decided to do up to this point. Each agent maintains a
unique IGS as shown in Figure 6.

The example IGS Viewer in Figure 6 shows that
autonomy levels are assigned to each goal in each agent’s
IGS. For example, the information displayed for Agent l’s
goal "Job-Shop Production Agent 1, Job-Shop Production

- ,.~ agent1

Lii N. AWAnD

FJ:~ ALANNOUNCEMENT
I~ I’ib BID

LB AL AWARD
B̄ OOALASSlONMENT

GOAL ASSIGNMENT
agent2

t
B N.ANNOUNCEMENT

ii By
Lll AL J~WRD

m GOAL ASSIGNMENT
~3 agent3

tB N.ANNOUNCEMENT
BI BID
Lli~ N.AWARD

¯
B gOAL AssigNMENT

Message ID agent1 m3 ~.
Parent ID agentlmO -l=

8ending Agent ageflt2 i
ReceMng ADent agent1 _-=-_
Subject AL ANNOUNCEMENT

Figure 7: Communication Viewer

Agent 2, Job-Shop Production Agent 3" shows that Agent 1
is a master agent for this goal. Note that Agent I, as
master, must consider its own goal as well as goals
intended by Agents 2 and 3 when it is planning for job-shop
production. This goal is actually a combination of three
intended goals, one for each agent in the planning
framework. The combination of one or more goals is
referred to as a goal element. Each constituent intended
goal in this case is derived from the goal template "Job-
Shop Production { Agent },’" where "{ Agent }" is a variable
as described in Figure 5. Agent 2 is command-driven to
Agent I for its corresponding goal "Job-Shop Production
Agent 2." The model of Agent 3’s IGS is not shown.

The details of Agent I’s autonomy assignment for the
selected goal are described in the window to the right of its
IGS display. For a formal discussion of autonomy levels
and their representations, see (Martin, 1997). These details
reflect that Agent 1 is planning alone for this goal. Agent I
has therefore allocated some amount (10%) of its planning-
resources toward this goal. As part of this overall goal,
Agent 1 is considering its own intended goal (id=l) as well
as two external goals intended by Agent 2 (id=2-1, Agent
2-Goal Element Id 1) and Agent 3 (id=3-2). Agent I 
authorized to allocate subgoals to Agents 1, 2, and 3, and
Agent 1 is completely committed to achieving this goal.
The details of the complementary assignment for Agent 2,
as a command-driven agent, are shown to the right of
Agent 2’s IGS window. These details reflect that Agent 2
knows Agent I is planning and has the authority to allocate
subgoals to Agent 2. Notice that Agent 2 is not planning
and therefore allocates no planning-resources to the task.

Agent Communication
Sensible Agents use their communication abilities for
allocation of goals, negotiating Autonomy Level
Agreements (ALA), and general information passing.
Sensible Agents currently use a protocol based on the
Contract Net Protocol (Smith, 1980; Smith and Randall,
1988) for allocating goals and for allocating planning
responsibility through ALAs. A contract negotiation
begins with a contract announcement, followed by bids
from interested agents. Finally the announcing agent
makes a decision and awards the contract to one of the
bidders.

Figure 7 demonstrates this process. An initial¯

announcement message is highlighted. Agent 2 is
proposing to enter an ALA with Agent 1. The body of the
message describes the proposed AL: Agent 2 has a goal,
Minimize {machine} Idle Time, and would like Agent 1 to
be its master for that goal. We can see that Agent 1 bid and
was awarded the contract. Both sent and received
messages are displayed as threaded conversations under
both sending and receiving agents. A similar conversation
occurs between Agents I and 3. Subsequent threads show
that Agent 1 uses the GOAL ASSIGNMENT message to
assign goals to Agents 2 and 3 under the authority granted
by the Master/Command-driven Autonomy Level.
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Figure 8: SAM/EAM Graphical User Interface

Self and External Agent Modelers

An agent’s behaviors are described by its internal states and
external events as well as system and local goals. An
agent’s understanding of the external world is built from its
interpretations of the states, events, and goals of other
agents and the environment. A Sensible Agent must be
able to readily perceive, appreciate, understand, and
demonstrate cognizant behavior. Behavioral and declarative
knowledge are equally important for an agent to understand
itself, other agents, and the environment.

Extended State.charts (ESCs) (Suraj et al., 1997), 
derivative of Statecharts (Harel, 1987) with respect 
temporal and hierarchical extensions, have been developed
as a comprehensive mechanism for the behavioral
modeling of Sensible Agents. ESCs allow for the explicit
representation of declarable, problem-specific failures.
Exit-safe states represent states wherein a sub-state is in a
stable state to process the transition out of a parent state.
That is, events causing a transition between higher level
(parent) states are handled only if the sub-state of the
parents’ state is exit-safe. This extension explicitly allows
the developer to specify certain non-interruptible critical
operations. Non exit-safe states do not allow for higher-
level state transitions. For example, a part cannot make the
transition directly to the robot-move state from the on-
conveyer sub-state; the part must be in the ready-for-pickup
¯ sub-state before the part can be moved to the robot agent.
Figure 8 shows ESC graphical notations and an example of
the behavioral model for an agent. The declarative
knowledge in the SAM is a set of attributes for the self
agent and in the EAM is a set of attributes for other agents.
The upper left of Figure 8 is a representative set of
declarative knowledge for this domain. Each tab represents
agent 3’s beliefs about the other agents and the
environment. If a new agent joins the system, a new tab is
dynamically added to the view.

Action Planner and Conflict Resolution Advisor
Agents must interact intelligently, cooperating towards the
completion of goals. The Action Planer (AP) uses a two
staged planning methodology to (I) improve coordination
among agents through the use of autonomy levels, and (2)
leverage previous work in the planning field as applied to
various domains (Barber and Han, 1998). The first stage
consists of a hierarchical planner, providing the ability to
differentiate between those activities that are critical to
success and those that are replaceable details. This stage
builds the IGS through the selection of subgoals and
formation of ALAs. ALAs are formed among agents
through the use of KQML in regards to the selected
subgoals. The second stage provides an interface to plug in
a domain specific planner. For each primitive goal in the
IGS, this stage creates a plan by selecting the appropriate
actions to execute. Autonomy levels are used as a selection
aid for both stages (Barber and Han, 1998). During the
planning process, ccmflicts may occur, including goal, plan,
and belief conflicts. Both the IGS and the plan can be
passed to the Conflict Resolution Advisor(CRA) to check
for inconsistencies among agents.

A Sensible Agent can dynamically select a suitable
conflict resolution strategy according to: (I) the nature 
conflict (i.e. goal conflict, plan conflict, belief conflict), (2)
the agenrs social roles (represented by its autonomy
levels), and (3) its solution preferences. Utility is used for
decision making, which is the total weighted utility value of
a specific solution for its attributes (see (Goel et al., 1996)
for details of definition and calculation of utility based on
AL). In addition to using utility to evaluate potential

es ae.~,
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% / I-II ,,,,,u,,,:,s
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Figure 9: User Interface for CRA

solutions, agents should also use certain indices (e.g.
effectiveness, performance, agent properties, and system
properties) to evaluate available CR strategies. Finally the
agent must conduct some trade-off reasoning between
solutions and CR strategies (Liu and Barber, 1998).

There are three kinds of decision-making styles that
agents can make by tuning the weight factors:

I. CR strategies are selected after preferred potential
solutions -- preferred solutions are the most
important targets,

2. CR strategies are selected before preferred potential
solutions -- the solutions will be the natural results
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of applying specific CR strategies, and
3. Balanced consideration between preferred solutions

and CR strategies.
In our preliminary experiments (Liu et al., 1997) 

followed the second style to design a CR strategy selection
algorithm for robot path planning. The results show that
conflicts can be successfully resolved and the system can
endure highly dynamic and uncertain environments.

The decision making approach proposed here can also be
applied to conflict resolution problems in multi-agent
systems which require the flexibility of applying multiple
CR strategies. Figure 9 shows the user interface of the
CRA for one Sensible Agent. The tree structure shows all
messages this CRA has sent and received, threaded
causally. The two panels on the right display detailed
information about the selected message. In the scenario
shown, the Action Planner (AP) has requested that the CRA
detect conflicts. After checking its own IGS and those of
external agents, the CRA reports on detected conflicts and
explains the reason in the displayed message. CRA also
recommends solutions and CR strategies to AP which
executes CR strategies to eliminate conflicts. Execution of
strategies may involve re-planning at either of the stages of
the AP or adjusting the beliefs held in the SAM and EAM.

CONCLUSIONS AND FUTURE WORK

The need for responsive, flexible, and sensible agents is
pervasive in manufacturing environments due to the
complex, dynamic nature of manufacturing problems.
Sensible Agents can be applied to many aspects of
manufacturing from incorporation of manufacturing
knowledge in design to shop floor control, and the
capability of DAA may prove critical to the
implementation of agile manufacturing via multi-agent
systems. System designers cannot predict every
combination of run-time conditions on the factory floor.
Tool status, operator availability, raw material quality and
accessibility, unscheduled maintenance, and machine wear
can all introduce unexpected problems in the process plan.
In order to maintain both high productivity and market
responsiveness, manufacturing systems must be adaptive
and flexible. Dynamic Adaptive Autonomy can provide
agent systems which are capable of being both.

Although the Sensible Agent testbed currently provides
much of the functionality required for testing Sensible
Agents in manufacturing applications, much work remains.
Future work for the AP module includes the construction of
methods to facilitate the extension of planners or planning
methods with DAA through incorporation into SA-based
systems. In addition, automation of the task of autonomy
reasoning (selecting the optimal planning framework in
which to plan) is critical to the future development of
Sensible Agent-based systems. We are investigating
techniques of reinforcement learning and case-based
reasoning for this task. These techniques will also be
introduced in the CRA. We are currently working on a
series of conflict resolution experiments for the CRA.

Future work for the SAM and EAM modules includes
incorporating more advanced reasoning capabilities and
continuation of work on ESC knowledge representation to
model uncertainty and time. The communication
capabilities of Sensible Agents will soon be extended to
include a variety of negotiation techniques. Sensible
Agents will also be equipped to reason about which
technique to use in various situations. The simulation
environment is currently being extended to include support
for inter-ORB communication and is undergoing testing to
ensure that all internal and external agent messages are
delivered appropriately.
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