
Designing Agents for Manufacturing Control

Sven Briickner #, Jo Wyns, Patrick Peeterst, Martin Kollingbaum*

#
Daimler-Benz AG

Research and Technology 3
AIt-Moabit 96A
D- 10559 Berlin

Germany
Sven.Brueckner @ dbag.bln.daimlerbenz.com

tKatholieke Universiteit Leuven
Department of Mechanical Engineering

Celestijnenlaan 300B
B-3001 Leuven

Belgium
{Jo.Wyns, Patrick.Peeters } @ mech.kuleuven.ac.be

~University of Cambridge

Manufacturing Automation and Control Systems Group
Mill Lane

Cambridge

UK, CB2 IRX
mjk27@eng.cam.ac.uk

Abstract

The hype in agent research will not last forever. If the agent
research community does not succeed in bringing its results
into real-world application within the next two or three years
it will share the fate of some other AI sections which are
today thought to be just academic. Multi-agent systems
applied to manufacturing are candidates for bringing the first
breakthrough. To achieve that, methodologies l’or the design
of agent systems for manufacturing by software developers
are needed. This paper reports on the design process chosen
in the MASCADA project, whose goal is not only to
develop an algorithmic solution to manufacturing problems
but also to show a transfer strategy for these results.

Introduction
This paper reports on the design process of a multi-agent
system for manufacturing control. This work is embedded
in the MASCADA project, which aims at the development
of an agent-based manufacturing control system and a
design methodology to enable software developers to bring
this algorithm finally into real-world applications. To
illustrate the design process, the car body painting at the
Daimler-Benz AG plant in Sindelfingen (Germany) is taken

Copyright O 1998, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

as an example. It is also the main test case of the
MASCADA project.

The focus of this paper is not a description of the agent-
based control system for Sindelfingen, but the design
process chosen to come to such an application. The design
process itself is still being evaluated and revised in the
MASCADA project.

It is important for the agent research community to
transfer their results to software companies in order to get
this new and exciting technology finally implemented in
real-world applications. Therefore not only the results
themselves are important, but also the metht,dology to
apply these results in real-world applications without being
an agent researcher. If the agent community does not get
the scientific results into the real world, the agent hype of
the last years will vanish as fast as it has started.

The design process itself is going to be introduced in the
first section. And the reminder of this paper will elaborate
on each of the steps of this process. To give the examples a
solid foundation and to show that the application covers a
real-world problem, the first design step, the application
analysis, is going to be rather detailed.

The Design Process

The design process chosen is an evolutionary method,
based on several iteration steps to optimize and refine the

4O AIMW-98

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

reached solution.
It starts with a very intensive analysis of the domain.

This is necessary to enable the agent designer to understand
the real-world processes and the optimization goals. It is
assumed that there is already an existing production system
which has to be provided with a new control system. That
assumption reflects not only the situation in Sindelfingen
but it also applies to most of today’s agent projects. This
assumption is offering a migration strategy.

The outcome of this first step is a process model and an
ontology. The process model will be used to identify the
single agents. The ontology helps to specify the distribution
of knowledge in the agent system and gets useful when a
larger or wider distributed group of project partners is
supposed to cooperate.

After the application domain analysis, the design of the
multi-agent system begins. The design is an iteration
process where each loop results in a more and more refined
and optimal agent system. This process can be stopped after
any nl ,nber of loops depending on the criteria the control
system has to fulfill. The single steps in this design loop
are;

1. Domain analysis / Determination of the goals of that
iteration.

2. Specification of the agent types and their typical
interactions.

3. Specification of each agent type’s knowledge,
abilities and behavior.

4. Identification of the agents in the application.
5. Evaluation of the system.
This design process is a specialization of design

methodologies suggested in (Parunak 1997) and
(Burmeister 1996). These methodologies do not focus
the manufacturing domain and therefore they cannot
suggest, as this paper does, an abstract concept from where
to start the design. The Parunak paper presents techniques
for an informal evaluation of the design which should be
applied here as well. The distinction in three models (agent
model, organizational model, cooperation model) as
Burmeister suggests is not that explicit in the
manufacturing control domain. But its aspects are still valid
issues to apply.

The examples in the following sections show, how the
design process is applied to the Sindelfingen domain.

The Application Domain1

The domain considered is the last section of the painting
cent~:r of the Daimler-Benz AG passenger car plant in
Sindelfingen, Germany. This section covers two painting
steps and their corresponding recovery procedures, all used
to produce a perfectly painted car body.

I Different domain analyses can be found in the deliverable

of work package one in the MASCADA project. It will be
available on the MASCADA WWW-site:
www.mech.kuleuven.ac.belproject/mascada/welcome.html

At first glance it seems to be a simple, straight forward
task for a control system to transport the car bodies to the
different processing stations and eventually out of the
building.

However, a deeper analysis reveals two problems:
feedbacks and buffering.

A feedback loop inserts car bodies after one or more
recovery steps back into the production system. Because it
is not possible to throttle back the input stream into the
system, this results in an increased and mixed input stream
of car bodies, every time a car body does not pass a quality
check. The increased input stream increases the load of the
processing units, which on their turn results in more
reparations and as a consequence in an even more increased
feedback.

The following picture shows an abstract model of the
production process. The nodes in the depicted graph are the
processing steps, while the arcs are virtual streams of car
bodies.
The picture shows three main feedback loops. One into the
first main processing step ,,Basic Layer Painting" via the
recovery processing ,,Basic Layer Grinding" and the other
two leading into the ,,Final Layer Painting" step via ,,Final
Layer Grinding" or ,,Repair Preparation" respectively.

"J Final Layer Grinding (FLG)IIFinal Layer Painting (FLPI ~q I

I ;
~ Repair Preparat,on (RPI

[Spot Repair (SR)I

Picture 1 - Feedback Loops in the Process Model
A quality check is performed after each main processing

step determining if a car body can pass on to the next main
step (or to the exit) or if it has to come back via one of the
recovery steps. Which of the recovery actions is to be taken
is decided there as well.

Buffering between the processing steps is another control
problem. Two types of buffering are possible in the system.
One is used to store car bodies during shift changes and
breaks or to buffer breakdowns and other delays in the
succeeding resources. The buffers of this kind are simple,
roughly first-in-first-out storage buffers.

The other, more complicated buffer type is a sorting

Brtlckner 41

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

buffer. These buffers are able to access virtually any car
body within its storage for the next output. The function of
these sorting buffers is to rearrange car streams. Because
the performance of the "Final Layer Painting"-yield mainly
depends on the hatch size of cars that have to be painted in
the same color, each "Final Layer Painting" unit has a
preceding sorting buffer to rearrange the input stream in a
stream of cars that have to be painted in the same color. As
a consequence, the performances of these buffers have a
great impact on the overall performance of the
manufacturing

In order to get a complete model of the manufacturing
process, it is necessary to specify the number of processing
units of each type and the transport and buffering
conditions between them.

I

f
. r

RP: i

V

V

Picture 2 - Complete Process Model
The transport system imposes strong constraints on the

ability of the control system to shift the streams between
the processing units during an efficiency breakdown of the
processing units. An efficiency breakdown is a situation
where the overall number of cars going into a feedback
loop increases drastically and therefore the load of the
system reaches dangerous levels.

As long as the load of the system is low or the efficiency
of the painting lines is high enough to ensure that at least
the same number of car bodies leaves the system as new
car bodies are coming in, the control job is easy. But if the
inflow of cars increases drastically or the efficiency is
breaking down the decisions to be taken are getting to
complex for a centralized system to handle.

Take an efficiency breakdown in FLPI as an example.
The amount of car bodies going through RPI is increasing
drastically while less car bodies can leave the system. But
all car bodies coming out of RPI are going into FLP3
without being sorted in SBI. That results in a higher load
for FLP3 and an almost certain decrease in FLP3 efficiency
(partially unsorted stream). A lower efficiency means
higher load for RPi and so on. A good control system
would have to throttle back the input into FLPI because the
real source for the trouble in FLP3 and RPI lies there. So it
is very complicated to find the right balance and to keep it.
In a distributed control system this balance could be the
emerging feature of the agents behavior.

First Iteration

In a first step of each iteration, the goals that have to be
reached at the end of that iteration must be defined. In case
of the manufacturing control system of the Sindelfingen
plant the goals of the first iteration are:

1. Eventually, every car body must have been
processed.

2. The performance of the new control system should
be at least as good as the performance of the existing
one. The performance measures used are:
throughput, yield, idle resources, congestion levels
and operability.

3. The new control system must be able to cope with
drastic disturbances like complete breakdowns of
processing capabilities.

4. The new control system must try to balance the
system even during quality breakdowns.

So the aim of the first iteration is the development of an
agent-based manufacturing control system, that is able to
safely control the manufacturing process. Other
requirements such as reaching optimal results in terms of
the production output are maintained for future iterations.
This is sensible because the manufacturing process itself is
already complex enough. The control system should be
simple in the beginning and get more complex after the
basics have been understood.

Agent Types and Interactions
(First Level of Abstraction)

The PROSA manufacturing control reference architecture
(Van Brussel et al. 1998, Bongaerts et al. 1996) is used
the basis for the design of the agent-based manufacturing
control system. PROSA, standing for Product-Resource-
Order-Staff Architecture, originates from a research project
on Holonic Manufacturing Systems (Valckenaers et al.
1998). It defines the entities that make up a manufacturing
control system, their responsibilities, and their
relationships.

The PROSA concept has been developed with a
background in Holonic Manufacturing Systems but for the
purpose of this paper the difference between holons and

42 AIMW-98

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

agents is irrelevant as (Bussmann 1998) suggests.
PROSA defines three types of essential (basic) agents:

Product-Agents, Resource-Agents, and Order-Agents.
Product-Agents take care of product and process related
technological aspects such as which operations need to be
performed to achieve the product. Resource-Agents take
care of resource aspects such as driving a machine at
optimal speed and maximizing its capacity. And finally, the
Order-Agents take care of logistical concerns about
customer demands and due dates. A fourth type of agent is
the Staff-Agent which is optional. The Staff-Agents may
assist the basic agents in performing their task more
optimally.

The following sections show. on the basis of the
Sindelfingen example, how the agent types of a
manufacturing control system can be derived from the
PROSA concept. Because the application design in the
Sindelfingen domain is still in the first iteration, the agents
are still very simple in terms of knowledge and
interactions. Further iterations will surely introduce some
Staff-Agents and make the basic agents more complex.

The Order- and Product-Agents

Starting from the PROSA concept, the agent types for the
Sindelfingen application are derived. The most obvious
agent is the Car-Agent. A Car-Agent is a specialization of
the Order-Agent concept. This agent is responsible for an
order to be fulfilled. An order represents the task to process
a car body in a certain way with a set of parameters
specifying all necessary processing steps in full detail.

One special feature is added to the Car-Agent: the Car-
Agent is not only responsible for an order, but also for the
car body that corresponds to that order. If this car body gets
so badly damaged during processing that the order cannot
be fulfilled the Car-Agent is responsible for extracting the
car body safely from the production system instead of
trying to find another car body to fulfill the order. After the
release of the car body, the Car-Agent can be killed as well.
As a consequence, there will never be a Car-Agent without
a car body and vice versa.

The Sindelfingen application is rather static in terms of
product- and process changes. Therefore the functionality
of the Product-Agent to provide the Order-Agent with
processing information is integrated into the Car-Agent
itself. No non-abstract agent type was derived from the
Product-Agent during the first design loop.

The Resource- and Product-Agents

For the Sindelfingen application, the abstract concept of
a Location-Agent is derived. The Location-Agent is a
specialization of the Resource-Agent. It represents a clearly
defined area of some transport units and possibly one or
more processing units. Hence a Location-Agent’s area has
some entries and some exits where car bodies can enter or
leave respectively. In this area, the agent has complete
control over the transport or processing of the car body. It
is able to change the direction of a car body based on

knowledge about possible transportation goals in the
overall layout and the (partial) mapping onto exits of its
own area. Therefore, the location of a car body is not a
mere parameter of the Car-Agent but it represents the fact
that the car body is under the physical control of the
Location-Agent.

From the Location-Agent, three different agents are
derived: the Switch-, the Machine- and the Buffer-Agent.

Switch-Agents are Location-Agents with only transport
units in their area. Therefore they represent a pure transport
resource taking car bodies in through its entries and sending
them out through their exits. Inside its area of influence the
Switch-Agent can direct the car bodies according to its
policy.

A Machine-Agent has at least one processing unit within
its area and therefore it provides some (aggregated)
processing to the incoming car bodies. It could also switch
car bodies along its processing units but its main focus is
the processing. The functionality of the Product-Agent to
provide the Machine-Agent with data on how to process an
order correctly has been integrated into the Machine-Agent
itself. With its aggregated processing abilities, the
Machine-Agent already knows all the actions necessary to
fulfill a proposed processing step without asking any other
agent.

A Buffer-Agent is very similar to a Switch-Agent. It also
contains no processing units within its area. But because of
its internal layout and its special transport strategy a
Buffer-Agent is able to store car bodies within its area. The
Buffer-Agents area can be made up of simple transport
units used to store car bodies or it could contain a special
buffering device. In the second case the Buffer-Agent just
wraps it.

The following picture shows the derivation of the used
agent types from the PROSA concept.

[PROSAconc,pt [

", q Location-Agent1

Picture 3 - Agents Derived from PROSA

Types of Interaction

The abstract types of interaction can be derived from the
PROSA concept as well. An Order-Agent interacts with a

Brfickner 43

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Resource-Agent about the usage of the resource for the
order. And the Product-Agent is providing the other two
agent types with information on the further production
steps of the order. So there are interactions on resource-
usage (Order-Machine), order-processing (Product-
Machine) and order-completion (Product-Order).

Applying these abstract classes of interaction to the
intended application and the derived agent types is the next
step in the design process. Starting with the responsibilities
of the non-abstract agent types, the types of interaction can
be specified in more detail.

In the Sindelfingen case only one of the three abstract
interaction types are still visible in external agent behavior,
because there is no non-abstract agent type derived from
the Product-Agent. The order-processing interaction is
hidden in the internal knowledge of the Machine-Agent on
how to actually fulfill a processing step. And the order-
completion interaction takes place internally when the Car-
Agent determines the next processing step based on the car
body’s current processing state.

The resource-usage interaction type is split up according
to the different resources the Resource-Agents are
responsible for. In general there are two different resources
handled by agents. Transport resources are handled by all
Location-Agents and therefore each agent is able to
participate in interactions about transport. Only Machine-
Agents are responsible for processing resources. So the
interactions about processing only happen between the
Machine-Agents and Car-Agents. The agent specification,
second level or’ abstraction, will specify all the interactions
of these two types.

I Product]
order- ,~ ~order-

proces~,~/-
- ~pletion

J Resource [,,, resource-usage .,J Order J

/;gI
! ,

I
n

I about /]
I Lo 0tion t .._transoo.;’/

I II II Car I
- "about processing

Picture 4 - Interaction Types

Agent Specification

(Second Level of Abstraction)

During this design step , the knowledge, abilities and
behavior specific to each agent type is going to be
specified. Furthermore the interactions between the agents
are fleshed out. The result of this step is going to be the

first specification of the implementation of the agent types.
Questions arising about specific agents in the application
are tackled when the general agent type is in :in applicable
form. This specification is concerned with the distributed
algorithm in general.

Specification of a Multi-Agent System
In object-oriented design the Unified Modeling Language
(UML) has emerged as a quasi standard for the
specification. It does not only cover the structure or" the
object model, but it also contains constructs to describe the
use of the system in typical situations (use-cases) and the
message passing process between objects (sequence
diagrams).

Agents derived from the PROSA concept seem to be
quite simple compared to more complex agents used in
domains like information gathering or human-machine
interfacing. They are still close to the object-oriented world
and it seems worthwhile to look at object-oriented methods
like UML for their specification.

Another reason making the UML approach interesting as
a specification format is the interactivity of the agents.
Besides specifying what the single agent is responsible for
and what it knows, the interactions between the agents in
certain situations are very important. These interactions
provide triggers for many actions of the agents and if they
are not specified correctly the implementation of the agent
system would not be possible.

So, which UML constructs can be used for the agent
specification’? Use-cases for the specification of important
situations and the global behavior of the agent system;
sequence diagrams for the concrete definition of the agents
interactions and an object model to describe the knowledge
of an agent.

For the first version of the MASCADA multi-agent
system for the painting center in Sindelfingen important
situations in the agent interactions were specified using a
use-cases-like format. These situations are (i) the
determination of the fulfillment of the next processing step
beginning with the completion of the previous one and (ii)
the routing of a car body through the transport system.

As an example, the representation of the request of the
next processing step sent by a Buffer-Agent to a Car-Agent.
The representation of this situation looks as follows:

~
Request of next /~
processing step

Car-Agent Buffer-Agent

Picture 5 - Use-Cases for Situations
After the identification of the situations where the agents

have to interact, the interactions themselves have to be
defined. The appropriate tool for specifying the interactions
are sequence diagrams. In a sequence diagram the
exchanged messages, the internal actions and even the
usage of different threads for the processing of events can
be defined.

44 AIMW-98

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

The simple interaction on the next processing step can be
represented in this short sequence diagram:

[Car’Agent I
"question [Buffer-Agent [
processing

~

step" ~ send question

instantiatedSend next ~_~ ~ store information
processing step "answer along with car

processing~ body registration
step"

Picture 6 - Sequence Diagrams for Interactions
The names of the used messages are written above the

arrows depicting the exchange of messages between agents.
Internal actions are named next to the "lifeline" of each
agent and the threads are the boxes on top of the "lifelines".

The next step of the interaction specification is the
formal definition of each message in the interaction. Each
message is defined by its message name (or ID), the
sending and receiving agent type and the data sent by the
messages parameters. A message specification could look
like this:
(<Buffer-Agent> <Car-Agent> <Protocol-
Number> question_processing_step)

With the specification of the sent messages the external
behavior of an agent is defined. To complete the
specification of the agents, the internal actions and the
knowledge of each agent has to be added. Both are
emerging from the previous steps. The internal actions have
already been named in the sequence diagrams and some
knowledge of an agent has shown up in the declaration of
the messages. But the agent designer should always check
if there are some internal interactions with the underlying
systems which could lead to more internal actions than the
interactions between the agents suggest.

The specification of the internal actions will not use any
UML derived features. The actions could be specified in
graphical form like a program graph. But a verbal
description should be sufficient. The structure of the agents
knowledge could be represented in an object diagram. But
often it is not so structured and a listing if the data items is
more appropriate.

Identifying Agents for the Application

However, the agent types have been completely specified,
the design process still hasn’t produced a working control
system for the manufacturing process yet. The specified
multi-agent system is still based on abstract agent types
without any application to the actual layout and special
features of the actual application. So the next step will
ground the multi-agent system into reality.

To reach that goal, the agent designer has to identify all
agents in the application. That means the identification of

all instantiations of each agent type. This is done by
looking at the domain analysis. First of all Machine-Agents
and some Buffer-Agents can be found in the process model
of the painting center. Then the agent designer has to look
at the actual layout of the transport system to find all the
Switch-Agents and probably some more Buffer-Agents.

A rule of thumb during this design phase is that there
should be no areas in the production system without an
agent which include more than linear transport. How fine
grained the multi-agent system will be in the end and in
whose agent’s area the single transport units will end up is
a design decision which can be revised in later iterations of
the design process when the need arises.

Further Iterations

After having implemented and tested the agent-based
control system in a simulation system, the results have to
be analyzed. To measure the quality of the new control
system, a simulation of the current control system using the
same test scenarios has to be compared with the results
from the new control system. In the Sindelfingen
application it will be possible to emulate the behavior of the
current control system with the agent-based control system.
That decreases the resources needed for the implementation
of the simulation.

The evaluation of the agent-based control system is done
in simulation. To simulate the underlying processes
correctly, data from the in-depth analysis are needed. The
digital mock-up includes the production equipment, the
actual layout of the resources and their correct behavior. It
is important for a correct evaluation to get the simulation as
close to reality as possible.

To create the right test scenarios for the simulation,
domain knowledge from the analysis of the application is
needed. The evaluation should take place in real-world
scenarios. This is important for the later acceptance of the
new control system because it would be much to expensive
to set up real-world experiments in the plant.

The analysis of the tests of the agent-based control
system should focus on the following issues:

¯ Is the implementation correct?
¯ Is the algorithm working correctly?

¯ / no car body that has been processed wrongly
¯ / no car body lost by its agent

¯ How good is the algorithm qualitatively?
¢" deadlocks, fairness, stability

¯ How good is the algorithm quantitatively?
¢’ numbers of processed car bodies
’/ load of the processing units

¯ Is the chosen algorithmic approach feasible?
In answering all these questions the evaluation will lead

to a set of goals the next iterations of the design process
will have to reach. Eventually the evaluation of the reached
design will show that all objectives of the project are
fulfilled and the design of the multi-agent system is
completed. The next step will then hopefully be an
implementation of the multi-agent control system in a real

Brtickner 45

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

product. This could uncover new problems with the real-
world which could lead to further design loops.

For the Sindelfingen application the following iterations
in the design process will focus on more advanced issues
like optimal operational results, maintenance, human
control in assigning strategies, emerging strategies and
adaptation. Furthermore a feedback from the control
systems design into the actual layout of the plant is going to
be addressed. One outcome of the MASCADA project
should be suggestions on how to change the layout to get
even better results with an agent-based control system.

In general this evaluation step bridges the gap between
the design of a multi-agent system for a certain global
behavior and the specification of the single agents. An
example is the agent-based control system for Sindelfingen.
The specification of the agents never mentions scheduling
explicitly but the multi-agent system shows an emergent
scheduling behavior during runtime. Therefore the design
problem is to reach a certain global behavior of a complex
system only through the specification of the single entities
it is made of. And the design process itself can be seen as
an evolutionary approach.

Conclusion
This paper reported on a process to design a multi-agent
system for the control of manufacturing systems. This
methodology was chosen in the MASCADA project to
realize an application in the painting center of the Daimler-
Benz AG car plant in Sindelfingen, Germany.

The design process starts with an analysis of the
application domain and then iterating the specification of
agent and interaction types, and agent identification. It can
be interpreted as an evolutionary design approach to
achieve an emergent global system behavior through the
Clocal) design of the systems components.

The first iteration of the design loop is aimed at a control
system delivering the basic functionality to safely run the
production system. Further iterations add more
functionality in terms of the performance measures and
usability of the system.

During the design process tools adapted from the object-
oriented design methodology UML were used to
standardize the representation of the specification for all
projects. It is hoped that this will help to create a
universally applicable format for agent specification to ease
the transfer of agent research results to software
developers.

At the moment the design process itself is undergoing
evaluation and refinements not only in the Sindelfingen
application, but also in other test cases like electronic
assembly or steel casting.

22728). All MASCADA partners - Katholieke Universiteit
Leuven, A.I.Systems, Brussels, Daimler-Benz AG
Research & Technology 3, Berlin, University of Cambridge
and VTT Automation - contributed to this work and
assume the scientific responsibility.
www.mech.kuleuven.ac.be/project/mascada/welcome.html

References

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L.,
and Peeters, P. 1998. Reference Architecture for Holonic
Manufacturing Systems: PROSA. Computers in lndustD,,
special issue on intelligent manufacturing systems.

Bongaerts, L., Wyns, J., Detand, J., Van Brussel, H., and
Valekenaers, P. 1996. Identification of Manufacturing
Holons. In Proceedings of the European Workshop for
Agent-Oriented Systems in Manufacturing. Berlin.
Germany, 26-27/9/96, Eds. S.Albayrak and S.Bussmann.

Valckenaers, P., Van Brussel, H., Bongaerts, L., Wyns, J.,
and Peeters, P. 1998. Holonic Manufacturing Control at
K.U.Leuven. INCOM98, IFAC Symposium on Information
Control Problems in Manufacturing, June 24-26, 1998,
Nancy, France.

Bussmann, S. 1998. An Agent-Oriented Architecture for
Holonic Manufacturing Control./n Proceedings of the First
International Workshop on Intelligent Manufacturing
Systems, 1-12.

Burmeister, B. 1996. Models and Methodology for Agent-
Oriented Analysis and Design. In Proceedings of the
Workshop on Agent-Oriented Programming and
Distributed Systems (K!’96).

Van Parunak, H., Sauter, J., Clark, S. 1997. Toward the
Specification and Design of Industrial Synthetic
Ecosystems. In Proceedings of the Fourth hzternational
Workshop on Agent Theories, Architectures , and
Languages (A TAL ’97).

Acknowledgements

This paper presents research results obtained through work
sponsored by the European Community (ESPRIT LTR

46 AIMW-98

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

