
Automatic Synthesis of Control Sequences: A Nonlinear Planning
Approach*

Luis Castillo and Juan Fdez-Olivares and Antonio Gonz61ez
Departamento de Ciencias de la Computaci6n e Inteligencia Artificial

E.T.S. Ingenierfa InformAtica. Universidad de Granada
18071 Granada, SPAIN.

{ L.CastiUo,Faro,A.Gonzalez} ~decsai.ugr.es

Abstract

This paper presents an approach to the application of
artificial intelligence planning techniques to the gener-
ation of control sequences for manufacturing systems.
These systems have some special features that must be
considered in the planning process, but usual models
of action present difficulties to deal with them. There-
fore, a model of action derived from the classic model
of STRIPS is defined and a nonlinear planning algo-
rithm is derived from POP, both able to deal with
these features.
Keywords: Nonlinear planning, model of action, man-
ufacturing systems, control sequences.

Introduction
The application of artificial intelligence planning tech-
niques to the automatic synthesis of control sequences
for manufacturing systems is becoming an area of in-
creasing interest (Gil, 1991; Klein et al., 1993; Nau
et al., 1995; Park et al., 1993; Soutter, 1996). The rea-
son is that they allow for an error-free, fast and low
cost building process of such control sequences.

However, the results obtained are not as realistic as
one could expect because either plans obtained have
not the necessary level of detail, that is, there are ac-
tions which should have also been included and they
are missing, or the plan is only focused in a small part
of the overall manufacturing system. The goal of this
paper is twofold, on the one hand, the design of a plan-
ning system which obtains plans at a sufficiently level
of detail such as to be considered as a control pro-
gram, what will be called a control sequence, and, on
the other hand, to extend these plans to the whole of
the manufacturing system in order to obtain more re-
alistic plans, closer to what an engineer would call a
control program.

This goal may be approached by increasing the ex-
pressiveness of the classical planning systems in order

"This work has been supported by the CICYT under
project TIC-0453.

Copyright O 1998. American Association for Artificial Intelligence.
All rishts re~er~d.

Tank1

Figure 1: A sample manufacturing system

to cope with the actions that take place in a manufac-
turing system. It is clear that classical planning sys-
tems lacks of the necessary expressivity to solve real
world problems and that this subject has been widely
studied (Pednault, 1989; Penberthy and Weld, 1992;
Sandewall and Ronnquist, 1986; Allen, 1984). How-
ever, there are some features of manufacturing systems
which are difficult to deal with usual models of action.
Therefore, a specialized model of action, and in con-
sequence a specialized planning scheme, will be pre-
sented which take these features into account in order
to obtain more realistic restilts.

In the next section, these features and their moti-
vation are presented. The next sections are devoted
to explaining how both the basic model of action of
STRIPS (Fikes and Nilsson, 1971) and the general non-
linear planning scheme described in (Weld, 1994) may
be extended in order to deal with these features, con-
figuring a planning scheme called MACHINE. The last
sections show some experimental results and how some
other interesting features should be included in this
planning scheme.

Description of the Problem
A manufacturing system is the set of processes, ma-
chines and factories where raw products are trans-
formed into higher value manufactured products. A
very simple manufacturing system is shown in Figure
1.

These transformations are made by the machines of

Castillo 47

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



s

Figure 2: A small control sequence.

the manufacturing system, called actuators. The op-
eration of every actuator is defined by a finite state
automata where the states of the automata represent
all the conditions in which the actuator is intended to
be, and every arc from one state to another represents
an action of the actuator. Hence, every action of every
actuator implies both, a transformation in the manu-
facturing system and a change of state in the actuator.

There are many ways of writing a control program
for a manufacturing system (GRAFCET, Ladder), but
for our purposes, the necessary level of detail to de-
scribe a control program is a control sequence1, that
is, an ordered sequence of all of the actions of actu-
ators needed to transform raw products into manufac-
tured ones. For example, a possible control sequence to
heat and carry the water from Tankl to Tank2 could
be like the one shown in Figure 2.

Apparently, a sequence of actions like this could have
been generated by any -of the state of the art planners,
however it has some interesting features that makes it
difficult to obtain mainly due to some inherent features
of manufacturing domains which must be taken into
account. Let us see these features.

Actions as Intervals

Every action of every actuator executes as usual, but
it is somehow active, that is, it could maintain its ef-
fects, until the next change of state in the automata of
the actuator. For example, let us consider the action
Turn0n-Mixer. It is executed in the sequence and the
water will become in agitation, but it will be active un-
til the execution of Turn0ff-Mixer. Therefore, it seems
reasonable to consider actions as intervals instead of
as isolated points in the sequence, as in classical plan-
ners. This is the interval in which the action is consid-
ered to be active. We will call this interval its interval
of execution. For example, the interval of execution
for the action Turn0n-Mixer would be [Turn0n-Mixer,
TurnOff-Mixer].

There are many approaches in the literature which
consider actions as intervals like for example (Allen,
1984; Dean and McDermott, 1987; Rutten and
Hertzberz, 1993; Sandewall and Ronnquist, 1986). In
some of them, the end of this interval is defined by

fin (Castillo et al., 1998) we describe a method to trans-
late these control sequences into GRAFCET charts and
Petri nets, as true representations of a control program.

the achievement of all of its effects and in the others
the end of the interval has an implicit relation with
the action itself (like for example a known duration).
However, none of these conceptions adequately fit in
this problem. For example, let us consider the action
of opening Valve1. It achieves its effects at some point
before the starting of Pump and it continues active until
the shutting of Valvel, later in the sequence, that is
its interval of execution is [0pen-Valvel, Shut-Valvel].
This shows that the interval of 0pen-Valvel is neither
defined by the achievement of its effects (it is later) nor
has a fixed relation with it, but that it is active while
there is no change of state in the actuator, that is, until
the execution of another action that produces a change
of state. If such an action doesn’t exist, then the action
will continue active until the end of the program.

This is an important feature of the actuators in a
manufacturing system. One can plan about the exe-
cution of an action and the action will execute, but
it will continue active, and its effects maintained, if
no change of state is produced. The immediate conse-
quence is that if the end of the interval of execution of
an action comes from the execution of another action
then it must also be planned.

Requirements During the Actions

The second one, and very related to the former, is that,
if actions are to be considered as intervals instead of as
points, then the requirements which must hold in order
to guarantee a correct execution of an action, should
also take into account this interval. That is, in ad-
dition to classical preconditions, as conditions which
must hold before the action, it is necessary to define
some kind of simultaneous requirements as conditions
which must hold during the interval of execution of
the action. These requirements are a form of the dur-
ing relation in (Allen, 1984). For example, let us con-
sider the action of pumping the water. It requires the
valves to be open before the pumping starts, but it is
also necessary for them to remain open until the end
of pumping. This kind of requirements is also present
in the literature. They also appear in (Sandewall and
Ronnquist, 1986) and later in an application by (Klein
et al., 1993), but the difference here is that the inter-
val which defines the protection for these simultaneous
requirements doesn’t end with the achievement of the
effects of the action, but rather while the action is ac-

48 AIMW-98

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



Figure 3: An alternative control sequence

tive, that is until the next change of state produced by
the execution of another action. If actions are not con-
sidered like explained above, it is difficult to guarantee
that valves should be open during the interval of execu-
tion of the pump, that is, in the interval [Turn0n-Pump,
Turn0ff-Pump], or that the water should be in agitation
during the heating of the water or that Valvel should
be closed during the agitation of the water.

Safe States

And finally, if one thinks about the example from a
causal viewpoint, then a strictly correct plan would
have also been the one shown in Figure 3 because there
is nothing that tells the actuators to be off once the
water is hot and it is in Tank~.

However, the truth is that there are safe states in
the automata which describes the operation of actua-
tors and that these states must be reached by every
actuator before the end of the sequence, so the correct
program is actually the one shown in Figure 2. One
way to introduce this feature in the process for the
building of programs could just be by including these
safe states in the goal of the problem. Although this
achieves a safe state for every actuator it seems too
global, that is, it may be difficult to decide the point
in the program in which the actuator reaches a safe
state, or even if it would be necessary to use the same
actuator later in the program and return it to a safe
state. It seems that this decision is specific to each ac-
tion that doesn’t leave it in a safe state. Therefore, the
need to leave the actuator in a safe state can be mod-
elled as a later requirement of some actions, that is,
as a condition that must hold after the action. In the
example of the valve, the safe state is the one in which
the valve remains shut, so the need to shut it as soon
as possible could be modelled like a later requirement
of the action which opens the valve.

These are the basic features which must be taken
into account in order to enable a planning system to
reason about the actions that take place in a manufac-
turing system. Since they do not fit adequately either
into known models of action which consider actions as
a point in a sequence, or in others which consider ac-
tions as intervals, the following model for actions and
plans has been defined.

A Model for Actions and Plans

The model of action needed to deal with the previ-
ous features may be obtained by extending the basic
model of STRIPS (Fikes and Nilsson, 1971) in order
to give actuators a higher importance and to allow for
the inclusion of the new types of requirements. Every
actuator in a manufacturing system is represented as
an agent whose operation is described by a finite state
automata. Thus, every agent has a set of states £,
which describe all the possible conditions in which it is
intended to be, and a set of actions .,4, each of whom
describe a transformation as well as a change of state
in the agent. Additionally, an agent has a name A/’,
which must be unique, a set of variables P, which are
used to represent the objects related to the operation of
the agent (like for instance products, chemicals, inter-
connections points between agents or constants) and 
set of codesignation constraints C defined on the set of
variables, which define the set of valid values for every
variable.

Agent = (.A/’, £, ~, C, .A)

Every action of every agent is defined by a unique name
Af, a set of effects, which is represented by means of an
addition list .A~D, and a deletion list I)££ of literais
that represent the transformation made by the action,
and a set of requirements, divided into a list of previous
requirements .A./V’T, that must hold before the action,
a list of simultaneous requirements D&IT£ which must
hold during the interval of execution of the action and
a list of later requirements POST, that must hold after
the action.

Action = (.A/’, .ADD, D££, .A.AI’T, DUTY, 7)087-)

Example 1 This ezample roughly shows how Valve2
seen presiously could be described by this model (using
a Lisp-based notation).

(AGENT
(N Valve2)
(E OPEN SHUT)
(V ?SOURCE ?IN ?OUT ?CHEM)
(C (?SOURCE NIL) (?IN (PUMP))

(?OUT (TANK2)) (?CHEM NIL) 
(A

(ACTION
(ADD

(DUR
(POST

(ACTION
...))

)

(N 0pen-Valve2)
(STATE Valve2 OPEN)
(OPEN-FLOW ?CNEM ?SOURCE ?OUT))
(STATE Valve2 SHUT))
(STATE Valve2 SHUT)
(OPEN-FLOW ?CHEM ?SOURCE ?IN)
(CONTAINS ?CItEH ?SOURCE))
(OPEN-FLON ?CHEM ?SOURCE ?IN))
(STATE Valve2 SHUT)))
(N Shut-Valvo2)

CastiUo 49

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



As may be seen, the interval of execution of an action
of an agent is not included in its definition because it
doesn’t depend on itself but on the inclusion of another
action of the same agent that changes the state reached
by the action.

The description of the problems that appear in a
manufacturing system consists of a set of transforma-
tions which must be made on raw products in order to
obtain the manufactured ones. Although most of the
manufacturing processes are quite complex, in this pa-
per only simple transformations are considered; how-
ever, they are expressive enough to show the main dif-
ficulties during the building process of a control se-
quence. Thus, a problem ~ = (D,Z, ~) is defined 
the following components.

A domain 7) is a knowledge-based model of the man-
ufacturing system and it is divided into a set of agents,
which represents the set of actuators, their operation
and their interconnections described by this model of
action, and a set of axioms, which describe facts which
are always true.

The initial state Z is a conjunction of literals which
describe the initial state of both the manufacturing
system, and the raw products.

A goal ~ is a conjunction of literals which describe
the transformation needed to obtain manufactured
products from raw ones.

Plans

The solution to these problems consists in an ordered
sequence of actions of the agents of the domain which
achieves the goal starting from the specified initial
state. This can be called a control sequence or an op-
eration procedure (Soutter, 1996), but in this paper 
will also be called a plan.

Example 2 Let us consider the manufacturing system
shown in Figure. 4. Let us suppose that we already

Figure 4: A second manuf, system

have a knowledge-based model o/ this system, built by
means o.f the previous model o.f action, and that the
initial state shows the valves closed, and the pumps
off. Then, Figure 5 shows a plan to carry the water
to TANK3, where START and ENV are two dummy actions

50 AIMW-98

defined with the same meaning as in SNLP (McAllester
and Rosenblitt, I991) or UCPOP (Weld, 1994).

Figure 5: A plan for Example 2

This is only a structural description of what we con-
sider a plan, the following explains in detail the seman-
tics behind this conception of plan.

Actions have an interval of execution, but this inter-
val is defined between every two consecutive actions of
the same agent in the plan, thus it may change during
the building process of the plan as actions are in in-
cluded in the plan. Let us consider the plan shown in
Figure 6 as an intermediate step during the building
process of the plan in Figure 5.

Figure 6: An intermediate plan

One may see that the action ripen. Valve2 will exe-
cute before 0pen.v23, but it will continue active until
the end of the plan. Hence, its interval of execution
is [0pen.Valve2, END]. Now let us consider that the ac-
tion Shut.Valve2 is included in the plan obtaining the
following one.

Figure 7: A step forward from Figure 6

This action produces a change of state in Valve2 that
affect the state reached by 0pen.Valve2, so the interval
of execution for 0pen.Valve2 is revised and redefined
as [0pen.Valve2, Shut. Valve2]. At once, the interval of
execution of Shut. Valve2 appears as [Shut .Valve2, END].

Although actions have an interval of execution, this
interval is not previously defined by the own action
but that it depends on the building process of a plan.
This feature will be very important during the building
process of the plan.

Concurrent execution of several actions is something
natural in manufacturing systems and it is straightfor-
wardly modelled in the plan. Actions whose intervals

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



of execution overlap are concurrently executing. Let
us consider the intermediate plan in Figure 6. Actions
0pen.Valve2, 0pen.Valve23 and Tuz’n0n.Pump2 are con-

currently executing.

Figure 8: A partially ordered plan

Although the examples seen so far show a total or-
der of actions, plans can have a partial order struc-
ture. A partial order is used not only to represent a
class of total order plans, but also to represent possi-
ble concurrency. For example let consider again the
manufacturing system shown in Figure 4. A plan to
carry ACID from TANK1 to TANK4 and MATER from TANK2
to TANK3 could be the one shown in Figure 8. The fact
that both branches of the plan are unordered means
that there is no commitment between them; therefore
the intervals of execution of actions in both branches
could possibly overlap, that is, they could be possibly
executing concurrently.

An immediate consequence of the possible concur-
rent execution of actions is that if the intervals of two
actions can possibly overlap, then both actions should
not interfere, that is, they must not have any opposite
effect. This will be called an interference.

Causal links are also considered in the plan. They
define intervals of protection for the literals that ap-
pear in the requirements lists of an action. Since there
are three lists of requirements of different nature, the
interval which defines a causal link can differ depend-
ing on the type of requirement. The causal link asso-
ciated with a previous requirement is defined from the
producer of the literal until the consumer (in terms of
(Weld, 1994)). When the requirement is a simultane-
ous one, then the causal link must be defined during
all the interval of execution of the action, that is, from
the producer until the end of the interval of the con-
sumer. Since the end of an interval of execution may
change during the building process of a plan, causal
links related to these requirements may also change.
Later requirements have a different nature, they only
need to be satisfied and they do not need to be pro-
tected throughout the plan like previous or simultane-
ous ones. Therefore, causal links with respect to later
requirements are not considered.

An action threatens a causal link if the literal asso-
ciated to the causal link appears in the deletions list
of the action. Since causal links represent intervals of

MACHINE(DOmain, Agenda, Plan, Links)

1. When Agenda is EMPTY Return SUCCESS
2. Task ~ SelectT~ask(Aganda)

3. Choices ~- HowToDolt?(Task, Domain, Plan)
4. Iterate over Choices until it is empty

(a) How ~ ExtractFirst(Choices)
(b) DoIt(How, Domain, Agenda, Plan, Links 

(c) When MACHINE (Domain, Agenda, Plan, Link-,)

Return SUCCESS
5. Return FAIL

Figure 9: The algorithm of MACHINE

protection for these literais, the interval of execution of
an action which threatens a causal link and the interval
of the causal link must never overlap. Neither interfer-
ences nor threats are allowed in a valid plan and they
must be avoided by the usual methods of promotion
and demotion.

The only notion of time in a plan like the ones in
Figures 5 and 8 is the relative ordering between its
actions, and this is only a qualitative notion like in
(Allen, 1984) or (Sandewall and Ronnquist, 1986). 
inclusion of a metric notion of time would be, of course,
useful, however the main problem that appears in the
building process of such a plan is the search for a cor-
rect interleaving of the actions and a qualitative notion
of time is quite enough, although it is more conserva-
tive than a metric time, which would surely provide a
more precise interleaving. This must also be taken into
account to avoid considering this work like a scheduling
approach since, in this paper, a solution to a problem
is solely a correct interleaved plan.

Bearing in mind these conceptions of actions, prob-
lems and plans, the following section describes a non-
linear planning scheme, called MACHINE, designed by
adapting the general nonlinear algorithm POP pre-
sented in (Weld, 1994) to this model of actions and
plans, and is able to obtain the plans seen so far.

MACHINE: A Nonlinear Planner for
the Building of Control Sequences

MACHINE is a generative refinement planning scheme
(Weld, 1994) whose algorithm is described in Figure 

It uses four data structures to store the informa-
tion during the planning process: an Agenda, the Plan
and its Links, and the Domain in consideration. The
Domain is the knowledge-based model of the manufac-
turing system, that is, the set of agents, their actions
and the set of axioms. The Plan is a partially ordered
set of nodes, where .every node may be an instantiated
action from the Domain or a subgoal, together with its

Castillo 51

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



Links, that is, the set of the existing causal links, which
describes the causal structure of the plan, the plan ra-
tionale. And the Agenda which is a set of tasks each of
which describes a pending problem in the plan.

The start point is a null Plan with two dummy ac-
tions, START and END which encode the planning prob-
lem, and Agenda which initially contains only the pend-
ing subgoals specified in the goal of the planning prob-
lem and Links which is initially empty. Over this initial
plan, a refinement process is applied which, at every
step, solves a pending problem in the plan until there
are no more pending problems or the problem cannot
be solved. The different pending problems which may
be found in a plan are pending subgoals (motivated
by unsatisfied requirements) threats, interferences, and
order inconsistency (motivated by a loop in the order
structure, which must be a strict order). They all are
included in Agenda, which drives the refinement pro-
cess. The search process to solve the tasks in the Agenda
is a basic depth first engine over the set of choices to
solve every task.

Description of Modules

The three basic modules of MACHINE are shown in
boldface. They are similar to the ones of POP (Weld,
1994), except that they have been adapted to work on
the model of action and plans described in the previous
section, thus only the most important differences will
be described.

SelectTask. This module selects the first task in
Agenda in order to solve it. Tasks in Agenda are ordered
using the following scheme: first, order inconsistency,
then interferences, threats and subgoals. Order incon-
sistency is the first one because it has no solution and
it always leads to backtracking. Subgoals are the last
ones because they are delayed until all the interferences
and threats are solved. In addition to this, subgoals are
also ordered amongst them by their relative ordering
in such a way that subgoals closest to START are solved
before the furthest ones.

HowToDoIt?. This module analyses a selected
task from the Agenda and it builds a list with all the
possible choices to solve it. An inconsistent order has
no solution, so the list will be empty. The choices to
solve interferences and threats are the known methods
of promotion or demotion, nondeterministically. Sub-
goals may be solved by either the axioms, an existing
action in the plan or a new action from the domain.
Since this process is based on a most general unifying
algorithm, the codesignation constraints defined on the
variable.~ of the agents will play an important role by
rejecting undesirable unifications.

52 AIMW-98

DoIt. This module applies one of the existing
choices in the list built by HowToDoIt? to solve a
problem, that is, it tries to solve the problem. Pending
subgoals related to simultaneous and previous require-
ments are solved by producers which must be before
the consumer action, and later requirements are solved
by actions which must be after the consumer. The in-
clusion of a new action in Plan to solve a pending sub-
goal implies the following tasks. First, the inclusion of
all of its requirements as pending subgoais in Agenda
and the inclusion of the new causal link in Links (if an
existing action were reused, the causal link were also
included).

Second, when a new action is included in Plan, the
end of its interval of execution is unknown, so, by de-
fault, it is assumed that its end is the dummy action
END. However, the true end of all of the actions in the
plan is continuously searched as shown in the previous
sections. Since the end of the interval of an action im-
plies a change of state in the agent which carries out
the action, every time a requirement of change of state
is solved by an action then the end of the interval of
this action has been found, and it is updated in Plan.

And third, if new interferences or threats have ap-
peared, then include it in Agenda also as pending
tasks. Interferences and threats are found when there
is harmful overlapping between the intervals of execu-
tion of actions and the intervals defined by a causal
link as explained in the previous section. Promo-
tions and demotions to solve interferences and threats
are not applied between actions but between their in-
tervals of execution. When an action is promoted
over another action, it is promoted over all its in-
terval of execution, not only the action. For exam-
ple, let us consider the intermediate plan shown in
Figure 7. If the action Shut.Valve2 would interfere
the action TurnOn.Pump2, then its promotion will be
over the interval of execution of TurnOn. Pump2 defined
by [Turn0n.Pump2, Turn0ff.Pump2], that is, Shut.Valve2
will be ordered after Turn0ff.Pump2.

However MACHINE can delay the solution of some
threats and interferences for a later moment in the res-
olution process. The reason is that, as mentioned be-
fore, not all of the intervals of the actions in Plan are
known, some of them are known and some of them will
be known as pending subgoals are solved. Therefore,
if a threat or an interference is related to an undefined
interval then it should be delayed until the end o£ the
involved intervals are known. In order to do that, these
kinds of threats and interferences are ordered in Age~cta
after pending subgoals giving them less priority. Later,
if the solution of some of these subgoals finds the end
of some of these problematic intervals, Plan will be up-

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



i
I

"" i ; RT/~IK BELT" 1 []

J HEAT1 I TN~K2 V82 R

! =
Ol

VZ

~
I

81)

Figure 10: A real-size manufacturing system

dated and the threat of interference will be back at
the beginning of Agenda and, so, solved appropriately.
This is also a least commitment heuristic which could
more or less say the following: "I don’t try to solve a
problem i/I don’t know it e~actly".

Experimental Results
MACHINE has been implemented in COMMON LISP
and has been tested using the problems shown through-
out this paper. It found the correct plan, i.e. control
sequence, for all of them and its behavior is shown in
Table 1.

Table I: Some experimental results
Plan Generated Explored Time Size

Nodes Nodes
Figure 2 56 39 11 s 12
Figure 5 38 30 5 s 8
Figure 8 69 51 16 s 14
Figure 10 217 144 374 s 40

This table also includes the result of the real-size
problem shown in Figure I0. This problem consist in
adding an ingredient (initially contained in ADDITIW-I)
to the milk initially contained in MILK-TA~ and then
proceed to bottle the mixture. Since there are many
involved intermediate operations like carrying the milk
and the ingredient, heat the mixture, etc, the final plan
is too large as to be included here due to space limita-
tions.

The final result of MACHINE is a control sequence,
it is not exactly a control program but it has the nec-
essary level of detail to be considered as such. Fur-

thermore, in (CastiUo et al., 1998) we show in detail
how these control sequences may be translated into
GRAFCET charts (Gruver and Boudreaux, 1993) and
Petri nets (Peterson, 1981), as true representations for
a control program, and very useful tools in the design
and modelling of manufacturing systems.

Conclusions and Extensions
This work has presented MACHINE, a nonlinear plan-
ning scheme adapted from POP (Weld, 1994), moti-
vated by the need to apply artificial intelligence plan-
ning techniques to the design of control sequences for
manufacturing systems. The domain of manufactur-
ing system has some basic properties which must be
taken into account in order to ensure a correct rea-
soning about the actions which take place in such a
domain. MACHINE deals with these features and it
is able to obtain control sequences for manufacturing
systems. However, it can only be considered as a step
forward in the resolution of the problems which appear
in manufacturing systems. The reason is that this is
a very rich domain with many problems of different
natures which should be taken into account by an au-
tonomous problem solver, although the truth is that
the core of that problem solver is actually a planning
system and that all of these problems may be built like
folders or extensions over this planning core. Some of
these important problems, which will be dealt with in
the near future, axe the following ones.

Perhaps the most important problem is the inclu-
sion of a metric time in order to both, quantify the
intervals of actions, and allow for the representation
of gradual achievement of effects along this inter-
val. In real problems these intervals are not perfectly

Castillo 53

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



known and they are affected of some kind of vagueness.
Time map managers (Dean and McDermott, 1987;
Rutten and Hertzberz, 1993) seem to be very promis-
ing in this task.

A classic conjunctive goal is not expressive enough to
represent the transformations needed for real manufac-
tured products. It is necessary to define of goals which
express a behaviour instead of a state, something as an
ordered set of transformations on raw products, this is
known as a recipe. At present, MACHINE does work
with goals whose literals have a partial order structure.

In these domains, there are what could be called pro-
cedures: complex problems which can be decomposed
into an ordered sequence of smaller subproblems. The
planning system must know these procedures and it
must also know how to work with them. This problem
points directly to HTN techniques (Erol et al., 1994b;
Erol et al., 1994a).

The control programs seen in this paper are intended
to work in an open loop manner, that is, with no feed-
back from the environment. Real control programs
have feedback from sensors in the environment and the
planning system must be able to include the informa-
tion supplied by these sensors in the planning process.
This seems the most challenging problem because it
implies both: (a) the ability of the planning system 
adapt its behavior to the different ways in which sen-
sors may appear (case-based and analogical techniques
seem very promising in this task because they also seem
to be the techniques used by humans in the same role)
and (b) the ability to include some kind of conditional
behavior in the plan because the information given by
sensors is not always available at planning time.

References

Allen, J. F. (1984). Towards a general theory of action
and time. Artificial intelligence, 23:123-154.

Castillo, L., Fdez-Olivares, J., and Gonz~lez, A.
(1998). An application of artificial intelligence tech-
niques to the implementation and validation of con-
trol programs for manufacturing systems. Technical
Report DECSAI-980111, University of Granada.

Dean, T. and McDermott, D. (1987). Temporal
database management. Artificial intelligence, 32:1-
55.

Erol, K., Hendler, J., and Nan, D. (1994a). UMCP: 
sound and complete procedure for hierarchical task-
network planning. In AIPS-g4.

Erol, K., Hendler, J., and Nau, D. S. (1994b). HTN
planning: complexity and expresivity. In AAAI-94,
pages 1123-1128.

54 AIMW-98

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: 
new approach to the application of theorem proving
to problem solving. Artificial intelligence, 2:189-208.

Gil, Y. (1991). A specification of manufacturing pro-
cesses for planning. Technical Report CMU-CS-91-
179, Carnegie Mellon University.

Gruver, W. A. and Boudreaux, J. C. (1993). Intel-
ligent manufacturing: programming environments for
CIM. Springer-Verlag, London.

Klein, I., Lindskog, P., and Backstrom, C. (1993).
Automatic creation of sequential control schemes in
polynomial time. Technical Report LiTH-ISY-I-1430,
Linkoping University.

McAllester, D. and Rosenblitt, D. (1991). Systematic
nonlinear planning. In AAAI-91, pages 634-639.

Nan, D., Gupta, S. K., and Regii, W. C. (1995). 
planning versus manufacturing-operation planning:
A case study. In IJUAI-95, pages 1670-1676.

Park, S. C., Gervasio, M. T., Shaw, M. J., and De-
Jong, G. F. (1993). Explanation-based learning for
intelligent process planning. IEEE 3Yansactions on
systems, man and cybernetics, 23(6):1597-1616.

Pednault, E. (1989). ADL: Exploring the middle
ground between STRIPS and the situation calculus.
In Knowledge Representation 1989.

Penberthy, J. S. and Weld, D. S. (1992). UCPOP: 
sound, complete, partial order planner for ADL. In
3rd. Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning, pages 103-114.

Peterson, J. L. (1981). Petri nets theory and the mod-
elling of systems. Prentice-Hall.

Rutten, E. and Hertzberz, J. (1993). Temporal plan-
ner = nonlinear planner + time map manager. Arti-
ficial intelligence communications, 6:18-26.

Sandewall, E. and Ronnquist, R. (1986). A represen-
tation of action structures. In AAAI-86, pages 89-97.

Soutter, J. (1996). An integrated architecture for oper-
ating procedure synthesis. PhD thesis, Loughborough
University.

Weld, D. (1994). An introduction to least commit-
ment planning. AI Magazine, 15(4).

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 


