
Learning in Agent-Based Manufacturing Systems

Weiming Shen, Francisco Maturana and Douglas H. Norrie

Division of Manufacturing Engineering, The University of Calgary
2500 University Dr. NW, Calgary, Alberta, Canada T2M IN4

E-mail. [wshen I norrie]@enme.ucalgary.ca

Abstract
Agent-based technology has been taken as an important
approach for developing advanced manufacturing
systems. Learning is one of the key techniques for
implementing such systems. This paper proposes some
learning issues in agent-based manufacturing systems for
further discussion in the working group. As examples,
the paper describes two implemented learning
mechanisms and presents some experimental results in
an agent-baseat manufacturing system.

1 Introduction

Recently, agent-based technology has been taken as a
promising approach for developing advanced
manufacturing systems (Cutkosky et al 1996; Maturana
and Norrie 1996; Park, Tenenbaum, and Dove 1993;
Parunak, Baker, and Clark 1997; Shen, Xue, and Norrie
1998). Such an approach provides rapid responsive and
dynamic reconfigurable structures to facilitate flexible
and efficient use of manufacturing resources in a rapidly
changing environment.

For most application tasks, it is exU’emely difficult or
even impossible to correctly determine the behavioral
repertoire and concrete activities of a multi-agent system
a priori, that is, at the time of its design and prior to its
use. This would require, for instance, that it is known a
priori which environmental requirements will emerge in
the future, which agents will be available at the time of
emergence, and how the available agents will have to
interact in response to these requirements. Such problems
resulting from the complexity of multi-agent systems can
be avoided or at least reduced by endowing the agents
with the ability to learn, that is, with the ability to
improve the future performance of the total system, or a
part of the system.

Many researchers have worked on multi-agent learning
in different applications, such as prisoners dilemmas,
predator/prey, code warriors, virtual robots, self-playing
game-learners, traffic controls, with varying success, but
few applications can be found in manufacturing systems.
This paper proposes the learning issues in agent-based
manufacturing systems for further discussion in the
working group, describes our approach for enhancing the
performance of an agent-based manufacturing system
through ’learning from the history’ based on distributed

case-based learning and reasoning and ’learning from the
future’ through system forecasting simulation. The rest of
the paper is organized as follows: Section 2 discusses the
learning issues in agent-based manufacturing systems;
Section 3 describes the learning mechanisms developed
for the MetaMorph system; Section 4 presents some
experimental results; Section 5 gives some conclusions
and discussions.

2 Learning in Agent-Based Manufacturing
Systems

2.1 Why Learn

Manufacturing environments are real-time, dynamic
systems. There are always different problems like failures
of machines, tools or transport vehicles, and lacks of
required materials. On the other hand, new tools,
machines or transport vehicles may be added into the
working manufacturing environment. Thus, an agent-
based manufacturing system must be able to adapt
changing environments and handle emergent contexts.
Extensive search processes are required to identify the
multi-agent interactions for each problem case. These
interactions give rise to observable patterns of behavior
evolving concurrently within each level in the
organization for different types of requirements,
constraints, and agents.

According to Goldman and Rosenschein (1996),
learning in a multi-agent environment can help agents
improve their performance. Agents, in meeting with
others, can learn about the partner’s knowledge and
strategic behaviors. Agents that operate in dynamic
environments could react to unexpected events by
generalizing what they have learned during a training
stage. In cooperative problem solving systems,
cooperative behavior can be made more efficient when
agents adapt to information about the environment and
about their partners. Agents that learn from each other can
sometimes avoid repeatedly coordinating their actions
from scratch for similar problems. They will sometimes
be able to avoid communication at run-time by using
learned coordination concepts, which is especially useful
whenever they do not have enough time to negotiate.

Shen 177

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

2.2 When to Learn
In agent-based manufacturing systems, agents should
learn in the following situations:

- When the system configuration changes. For
example, new manufacturing resources (machines,
tools, transport vehicles, workers, etc) are added to
the working manufacturing system; some resources
in service breakdown or are removed from the
system; some other hardware or software are
changes or updated. In any case mentioned above,
each agent should learn about the changes of the
working system and update its knowledge about its
environment and other agents.

- When some failures occur in the system. Failures
can occur either during the design process or by
testing/simulating/manufacturing the designed
artifact. Both situations represent learning
opportunities.

- When there exist differences on a same design or
manufacturing object. Differences, especially
between different points of view, are an important
source of conflicts. Learning triggered by noticing
differences helps anticipate and alleviate conflicts.

- When a project or a task is terminated with
success. In manufacturing systems, a successful
process planning (an efficient combination of the
manufacturing resources for a special
manufacturing task) is a good learning case.

- When there is a need to improve abilities. The need
to improve designs, design processes or
manufacturing process plans can be translated into
a requirement to improve agent abilities. This
means that an agent uses the learning about design
situations, manufacturing resource availability or
other design/resource agents for more informed
decisions in the future. Observing patterns,
dependencies or other relations can be useful even
though it is not motivated by events falling in any
of the previous four categories (situations).

2.3 Where to Learn

In agent-based manufacturing systems, the way that
agents make information available to the other agents
determines where the learning opportunities arise.
Varying the representation and the context in which the
knowledge is communicated favors some of the learning
types in comparison to the others.

Direct communication implies transfer of knowledge
between agents through direct channels. The knowledge is
encapsulated in a message with a special format and sent
to other agents. The transferred knowledge is not altered
in this process. When an agent receives this type of
message, it extracts the useful information from the
message and updates its related knowledge bases. This
type of communication can be found in the DIDE project
(Shen and Barth~s 1997).

Indirect communication assumes the presence of an

178 AIMW-98

intermediary agent, conveying information from one
agent to another. Knowledge may be pruned or abstracted
in this process and may also be submitted to ontological
transformations. Examples of this type of intermediary
agent are the facilitator in PACT (Cutkosky et al 1993),
the mediator in Meta.Morph (Maturana and Norrie 1996)
and the design board in SiFAs (Grecu and Brown 1996).

Some multi-agent learning systems are implemented
with training agents (tutor agents). In this case, the
training agents or tutor agents are the main knowledge
source of learning for the system.

2.4 What is to be Learned
What kinds of knowledge can, and should be learned in
agent-based manufacturing systems? The most important
include the successes and failures of the past, the
usefulness of different pieces of knowledge with respect
to different tasks and situations, the capabilities and
accountability of other agents in the system, and the
relationship between the multi-agent system and its
environment.

While the range of the learnable is fairly wide, there are
areas where learning might have a serious impact for
manufacturing, and for agent interactions. Some of the
following types of learning target the level of
manufacturing resource allocation, while others target the
meta-level of agent interaction:

- Combinations of manufacturing resources for
specific tasks: These combinations of resources at
the group level or the system level can be learned
as cases for manufacturing process planning, which
may be used in the following process planning and
scheduling so as to reduce the communications and
negotiations among resource agents.

- Manufacturing system’s behavior: By learning the
system’s behavior and propagating it to the near
future through some simulation fi~recasting
mechanisms, the system is allowed to learn from
future emergent behaviors so as to prevent the
unforeseen perturbations and changes in production
priorities on the shop floor.

- Support in favor of or against a decision: Rationale
can primarily help in weighing proposals from
different agents and in deciding which agent should
revise its decision.

- Rules: As agents have different functionality and
points of view, sharing of rules is desirable among
agents having the same target or at least the same
domain,

- Preferences: If agent preferences are known, they
help set up better initial proposals made by one
agent to another.

- Preconditions and postconditions ~Tr rules, actions
and tasks: This type of learning is important for a
better adaptation of decisions to specific contexts.
Agents decide by themselves when to act, and
therefore should be able to recognize favorable
situations to get involved in the design.

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

- Prediction of decisions of other agents: This
amounts to building a behavioral model of other
agents, by relating factors which influence an agent
with the agent’s decisions.

- Types of conflicts: Conflicts can be seen, indexed
and classified differently by the different types of
agents. Enabling agents to classify and recognize
conflicts enhances the power of the conflict
anticipation and resolution mechanisms.

- Heuristics to solve conflicts and to negotiate:
These heuristics, being less dependent on the
specific functionality of an agent, can be learned or
transferred from one agent to another and refined
according to local necessities.

2.5 Some Related Projects
Learning in multi-agent systems is becoming increasingly
recognized as a very important topic. Some researchers
have applied Machine Learning techniques for the multi-
agent learning systems, while others have proposed new
approaches especially for multi-agent learning (Tan 1993;
Sandholm and Crites 1996~ Byrne and Edwards 1996;
Nagendra Prasad, Lesser, and Lander 1997; Ohko, Hiraki,
and Anzai 1996). However, only a few examples can be
found for agent-based manufacturing systems. Here we
review only two interesting projects related to the learning
in agent-based manufacturing systems.

Much of the literature of multi-agent learning relies on
reinforcement learning. Gu and Maddox (1996)
developed a learning model called DRLM (Distributed
Reinforcement Learning Model) that allows distributed
agents to learn multiple interrelated tasks in a real-time
environment. DRLM was implemented in a Flexible
Manufacturing System (FMS) where sensors (modeled
agents) have to learn to communicate with humans about
the material handling activities using graphical actions
such as displays and animation.

Shaw and Whinston (1989) proposed a classifier system
based multi-agent learning. Each agent contains a set of
condition-action rules and a message list. The rules that
can be triggered in the present cycle in an agent can bid,
based on their strengths. The rule with the highest bid is
chosen and executed to output a message as an action,
perhaps to other agents. Its strength is reduced by the
amount it bid and is redistributed to the rules that were
responsible for the messages that triggered it. These rules
could be distributed among many agents. An agent
choosing to perform an action on the environment
receives an external reinforcement. This classifier system
was tested on a Flexible Manufacturing domain. It
functioned in a contract-net framework where inter-agent
bidding is used as a feedback mechanism that drives inter-
agent learning. An agent announces a task with a series of
operations to be performed on it. Other agents in the
system bid for performing this task based on their past
usefulness in performing similar jobs, the capability for
the announced job and their readiness for the job. The
winning agent increases its strength by an amount

proportional to the bid and the agent announcing the task
decreases its strength by the same amount. This represents
a kind of market mechanism where the announcing agent
pays the winning agents for its services by the amount
bid. In addition, the agents themselves can use genetic
operators to improve and reorganize their own capabilities
for performing various jobs. This type of learning is
purely local and does not involve any cooperative control
component. In the Flexible Manufacturing domain, the
genetic learning capability can be mapped on to the need
for reconfiguration to avoid unbalanced utilization of
high-performance cells.

3 Learning in MetaMorph

3.1 MetaMorph Project

MetaMorph is an agent-based architecture for intelligent
manufacturing developed at The University of Calgary
using the mediator-centric federation architecture
(Wiederhold 1992). The architecture has been named
MetaMorphic, since a primary characteristic is its
changing form. structure, and activity as it dynamically
adapts to emerging tasks and changing environment. In
MetaMorph (Maturana and Norrie 1996; Maturana 1997),
Mediator is a distributed decision-making support system
for coordinating the activities of a multi-agent system.
This coordination involves three main phases: (1)
subtasking; (2) creation of virtual communities of agents
(coordination clusters); and (3) execution of the processes
imposed by the tasks. These phases are developed within
the coordination clusters by distributed mediators together
with other agents representing the physical devices. The
coordination clusters are initialized through mediators,
which can dynamically find and incorporate those other
agents that can contribute to the task. The MetaMorph
architecture has been used for implementing a distributed
concurrent design and manufacturing system in simulated
form. This system is composed of the following modules:
an Enterprise Mediator, a Design System, two Shop Floor
modules, and a module for execution control and
forecasting. The design system module is developed for
retrieving design information and requesting
manufacturability evaluations through the enterprise
mediator. A detailed description of the MetaMorph
project can be found in (Maturana and Norrie 1996).

For a mediator to learn about its environment, other
mediators and agents, a simple registration mechanism is
used to capture, manager and update its knowledge which
is then reused in its future interactions and coordinations
with other mediators and agents. This paper is focused on
two learning mechanisms implemented in MetaMorph
multi-agent manufacturing system to enhance the system’s
performance and responsiveness. First, a mechanism that
allows mediators to learn from history is placed "on top"
of every multi-agent resource to capture significant multi-
agent interactions and behaviors. Second, a mechanism

Shen 179

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

for propagating the system’s behaviors into the future is
implemented to help mediators "learn from the future."
The combined action of these two learning mechanisms
provides a promising approach for multi-agent
manufacturing learning.

3.2 Learning from the History

The context of manufacturing requests is established
under static and dynamic variations. Static variations
relate to the physical configuration of products. Dynamic
variations depend on time, system loads, system metrics,
costs, customer desires, etc. These two main sources of
information relate to a wide spectrum of emergent
behaviors, which can be separated into specific behavioral
patterns. A ’learning from the history’ mechanism based
on distributed case-based learning approach was
developed during the MetaMorph project for capturing
such behavioral patterns at the resource mediator level
and storing in its knowledge base. Such knowledge is then
reused for afterwards manufacturing requests by an
extended case-based reasoning mechanism.

A manufacturability or manufacturing request sent to a
resource community is first filtered by the respective
resource mediator to decide whether the request can be
recognized as associated with a previously considered
product or is unknown. If it is recognized, the resource
mediator retrieves the learned patterns to send to a
selected group of agents identified in the patterns. For an
unknown request, the resource community’s mediator
uses its standard matchmaking actions to specify’ the
primary set of resource agents to be contacted regarding
their capability to satisfy this request. The solution to this
unknown request then proceeds through the propagation
of coordination clusters and decision strategies previously
defined. During this process, the resource mediator
involved learns from partial emergent interactions at the
coordination cluster level. This learning is distributed
among several coordination clusters. The plan
aggregation process then enables the classification of
various feature-machine-tool patterns, which are encoded
and provided to the community’s mediator for storage and
future reuse.

The approach described above was implemented to
show proof-of-concept of distributed deliberative learning
for advanced manufacturing systems. However, the
mechanisms are centralized through the dynamic
mediators and will become increasingly slow for larger
amounts of information, i.e. with increased product types
and larger factory floors. The mechanisms in this learning
system would, in such cases, need to be replaced by other
mechanisms which allow for storing, pattern matching,
and rapid information retrieval in a single action.

3.3 Learning from the Future through
Forecasting

In MetaMorph. the system’s behavior is extended into the
near future for learning from future emergent behaviors

180 AIMW-98

through the implementation of simulation forecasting
mechanisms.

In conventional systems, the effect of unknown future
perturbations can only be estimated through probabilistic
mechanisms that add in some perturbations to the
scheduling calculations. MetaMorph used a ’learning
from the future’ mechanism to uncover dynamic
interactions likely to perturb plans and schedules during
execution stages. This system maintains a virtual model
of the shop floor, which can be used as the base for
propagating the system’s behavior into the near future.
The system also maintains perlbrmance evaluation
parameters to accept or reject future interactions.

Shop floor mediators monitor system status by
conducting global performance evaluations. Various
forecast-triggering and adjusting parameters are used
based on system load, extension of the scheduling
horizon, and adjustment periodicity. The thresholds fi~r
triggering are arbitrarily set by the users according to
high-level policies.

A composite function called System Heuristic Function
is used to partially measure the system’s performance.
The function measures average flow time, maximum
completion time, average due time, number of late jobs
and total number of jobs, as shown in the following
equation.

H = wI *T,~,~/T,~u~. + w~ *T rl/T"~ + w, *Ji/J,
where :

w~ -average flow time weight

w~ -maximum completion time weight

w s - late jobs weight

T~,, - average Ilow time

T,~. - average due time

T.,,,,pl - maximum completion time

Ji - number of late jobs

J, -total number of jobs

The function value H is called the system heuristic. A
lower H value indicates that the system has a higher
performance with a lower cost. Its primary value is for
assessing deviation towards an undesirable situation of
increasing production time and lateness. Each component
in this function is weighted according to the system’s
management policies. Other components can be added to
this function so as to measure system’s performance more
completely. The heuristic ratio (R,,) is calculated
follows:

H’
Rh----

H
H’-forecast simulation performance

H - system performance before adjustment

Lower and upper thresholds (---if, + O) have been

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

used to define acceptance and rejection heuristic-ratio
regions. These thresholds define a square-shaped region
with an amplitude equal to 1 (dimensionless). For ratios
falling within the square region, the system’s current state
of commitments is accepted and remains unaltered. If the
ratio falls outside the square region, the forecast behavior
(scheduling and activities) is accepted to replace the
current scheduling state.

Forecasting the system’s behavior consists of capturing
the current state of the multi-agent system (plans) and
simulating it for a period of time into the future. The
forecasting process is then a simulation of the future
interactions of the intelligent agents’ commitments.

The forecasting simulation period is established by the
system’s manager according to high- level policies.
However, the determination of this parameter may be
customized to automatically adapt to the system’s
requirements. There are two approaches that can be used
for the forecasting period:

(1) The forecasting simulation may be run for a period
of time sufficiently large to permit the completion
of every committed job. But for large simulation
periods, this criterion incurs accumulative
deviations, since jobs may arrive in the system
during the forecast period that affect intermediate
allocation slots. Because these intermediate
allocation slots are not preempted during
simulation, this approach only produces rough
estimations.

(2) The second approach attempts to avoid the
accumulation of deviate behaviors, limiting the
forecasting simulations to short periods of time
only. This approach is more accurate, since the
duration of the simulation is much less than the
jobs’ arrival frequency. Here, the multi-agent
system can easily be adjusted while including the
intermediate requirements.

Whichever the approach, the forecast produces an
estimated heuristic value, which is used to decide whether
to introduce the forecast schedule tuning or to continue
with the existing system’s scheduled commitments.

A detailed description of above mentioned learning
mechanisms in MetaMorph can be found in (Maturana
1997).

4 Experimental Results

4.1 Learning from the Future

Several test cases have been used for verifying the
efficiency of the learning mechanisms implemented. Here
is a typical case with multiple shop floors and multiple
products. The simulated manufacturing system consists of
two shop floor resource communities. Each community
has three primary machine resources, namely, Vertical
Machining Centers, two secondary machining resources,
namely, Internal Grinders, and fifty tooling resources to

be used with those machines. Each resource is represented
as a resource agent with appropriate knowledge and
reasoningmechanisms. The primary resources constituted
highest level of production hierarchy, while the secondary
ones represented lowest level. Each community is
coordinated by two types of dynamic mediators, one for
machining resources and other for tooling resources. The
dynamic mediators can recursively create new
coordination clusters, clone agents and themselves to
provide the parallelism required by a planning task(s).
The dynamic mediators in turn are coordinated by one
static matchmaker mediator which assumed the role of
making multi-objective decisions.

A product mix comprising 100 of each of three part
types, namely, Bearing Cover, Electro-Magnetic
Insulation (EMI) Housing, and Guide, were to
manufactured in two shop-floor areas using an AGV
transportation system to handle raw materials and semi-
finished products.

Shop floor 1 included 3 vertical machining centers, 2
internal grinders, 1 surface grinder and 43 tools. Shop
floor 2 included 3 vertical machining centers and 35 tools.
A profit margin of 35% of normal production cost was
specified.

Once the production orders were placed in the design
system interface, the static mediator made repeated
broadcast requests to each shop floor involved. Since each
offered a different cost, the static mediator applied a final
integration of plans to determine the best one to
manufacture the products. The final scheduling
configuration established that 190 parts were produced at
shop floor 1 and 110 parts at shop floor 2. Shop floor 2
only manufactured EMI housing and Guide products. The
Bearing cover product was only produced at shop floor 1.

Table 1 shows combined heuristic metrics of Average
Flow Time (AFT), Maximum Completion Time (MCT),
and Transportation Cost (TC) for both shop floors. There
were 8 jobs in all that were tardy, showing that production
capacity for these parts had been more than fully loaded.

[AFr(min.)

MCT(min.)

]414.06 7164.81
TC ($) (Max.) (Min.)

I50.21 25.39

Table I: Experiment Results

During this production, the forecasting simulation
proved to be a robust system for projecting the behavior
and allowing adjustments to be made to schedules when
needed, so as to keep the system from deviating into
undesirable schedule mis-match regions. The forecasting
was triggered 8 times through the entire planning process,
as shown in Figure !.

Figure 1 shows the heuristic (performance) trends for
the promissory and forecasting models. A plan-refining
pattern can be observed from this figure. Both promissory
and forecasting heuristics (performances) had a natural
tendency to diverge from each other. However, the plan-
refining procedure (i.e., the adoption of the forecasting
schedule) tended to counteract such divergence. Since

Shen 181

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

plan refinement depends on the acceptance threshold.
plans were not always refined after each forecasting
simulation. Nevertheless, the promissory plan level was
progressively adjusted with the forecasting performance
in such a manner as to maintain the promissory planning
within realistic levels.

Heuristic

1 2 3 4 5 6 7 8
Simulation Triggering

Figure I : Triggering Thresholds

Figure 1 also shows that the forecasting heuristic is
always higher than the promissory heuristic (i.e., the
forecasting cost is higher than the promissory cost),
because the promissory heuristic reflects the ideal system
performance while the forecasting heuristic reflects the
near realistic system performance by taking into account
the shop floor interactions, actual production and
transportation time. Dynamic interactions among
transportation agents (AGVs) on the shop floor were the
main cause of forecasting changes (delays) on the
schedule. Three situations including shop floor traffic,
collision avoidance and batch size accumulation were the
primary sources of transportation delays.

4.2 Learning from the History
At the beginning of the experiments, the community’s
mediator does not have any organizational knowledge of
relationships among resources or between resources and
manufacturing requests. Agents work in a blind-search
space and used coordination cluster propagation
mechanisms to dynamically establish efficient
relationships. Each community mediator is progressively
learning emergent patterns among the shop-floor
resources (machine and tools in particular). These learned
patterns are then used to experiment on the behavior of
the system when the community’s mediators are modified
to act in learning mode (knowledge reuse mode).

Each product’s feature is progressively associated with
a set of emergent relationships. Within each set,
individual relationships offered a specific dynamic
production cost. Resource agents within each relationship
reevaluated individual manufacturing costs to build
subsequent manufacturability evaluations. Each
manufacturing cost was negotiated among agents within
coordination clusters.

Each such relationship is associated with a feature
related to a set of manufacturing parameters. For this

i 82 AIMW-98

experiment, direct encoding for each relationship is used,
but in future implementations of this learning model, new
types of learning systems (based on neural network, fuzzy
logic, or tables) could be used to learn and store emergent
relationships. Any such learning system must be
continuously training and adjusting its knowledge.

In the experiments, the learning ability of the
community’s mediator is always active to enable it to
capture emergent relationships. Learning mechanisms are
embedded in the qualitative and quantitative evaluations.
To set the system to reuse learned patterns, the reuse
learning-mode button (on the shop floor’s graphical
interface) should be activated by the user to switch the
system from the normal mode to the pattern reuse mode.

The multiple shop floor and multiple product
experiment case as described in the previous subsection
was used to test the performance of the system under the
knowledge reuse conditions. First, shop floor I was
swapped to the learning mode while shop floor 2 was
maintained at the normal reasoning mode. This setup did
not show any improvement in the task resolution speed of
the system, since each integration and evaluation of final
costs at the static mediator level was halted until shop
floor 2 was ready to answer its final plans and bids. Since
both shop floors take the same amount of time to solve
tasks, there was no apparent improvement in the overall
system performance.

A second setup was experimented with for both shop
floors operating in learning mode. In this experiment
there was an amazing improvement in the speed of
resolution of the system. In learning mode, the system
creates task solution 100 to 500 times faster than the
normal task-resolution mode.

5 Conclusion
Learning is one of the key techniques for implementing
efficient agent-based manufacturing systems. This paper
proposes some issues related to the learning in agent-
based manufacturing systems for further discussions in
the working group.

A learning mechanism for identifying agent-based
manufacturing system organizational knowledge and
selective interaction propagation from emergent system
behavior has been proposed. This mechanism enhances
coordination capabilities by minimizing communication
and processing overhead, facilitates distributed, parallel
depth-first search, and therefore enhances the
performance of the agent-based manufacturing system.
Though this learning model has been implemented in a
distributed mediator architecture that is part of a
concurrent design and manufacturing system, it is generic
and can be applied to other areas as well.

A mechanism for learning from the future through
forecasting has also been developed for dynamically
adjusting distributed schedules and planning in a multi-
agent manufacturing system. Experimental results show
the value of this approach for adjusting and enhancing the

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

performance of the agent-based manufacturing system.
Learning in agent-based manufacturing systems is an

important, but difficult problem because of the
complexity of dynamic manufacturing environments.
Both theoretical and experimental research works are to
be done in this area. The learning mechanisms proposed
and developed in this paper are simple but effective
approaches for enhancing the performance of agent-based
manufacturing systems.

References

Byrne, C. and Edwards, P. 1996. Refinement in Agent
Groups. In Weiss G. and Sen, S. (Eds.), Adaption and
Learning in Multi-Agent Systems, Lecture Notes in
Artificial Intelligence 1042, pp. 22-39, Springer-Verlag.
Cutkosky, M.R., Engelmore, R.S., Fikes, R.E.,
Genesereth, M.R., Gruber, T.R., Mark, W.S., Tenenbaum,
J.M. and Weber, J.C. 1993. PACT: An Experiment in
Integrating Concurrent Engineering Systems. IEEE
Computer, 26(1):28-37.

Cutkosky, M.R., Tenenbaum, J.M. and Glicksman J.
1996. Madefast: Collaborative Engineering over the
Internet. Communication of the ACM, 39(9):78-87.
Goldman, C.V. and Rosenscbein, J.S. 1996 Mutually
Supervised Learning in Multiagent Systems. In Weiss G.
and Sen, S. (Eds.), Adaption and Learning in Multi-Agent
Systen~v, Lecture Notes in Artificial Intelligence 1042, pp.
85-96, Springer-Verlag.

Grecu, D. and Brown, D. 1996. Learning by Single
Function Agents during Spring Design. In Gero, J.S. and
Sudweeks, F. (Eds), Artificial Intelligence in Design ’96,
Kluwer Academic Publishers, Netherlands.

Gu, P. and Maddox, B. 1996. A Framework for
Distributed Refinement Learning. In Weiss G. and Sen,
S. (Eds.), Adaption and Learning in Multi-Agent Systems,
Lecture Notes in Artificial Intelligence 1042, pp. 97-112,
Spdnger-Verlag.

Maturana, F. and Norrie, D. 1996. Multi-Agent Mediator
Architecture for Distributed manufacturing. Journal of
Intelligent Manufacturing, 7:257-270.

Maturana F.P., 1997. MetaMorph: An Adaptive Multi-
Agent Architecture for Advanced Manufacturing
Systems. Ph D thesis, The University of Calgary.

Nagendra Prasad, M.V., Lesser, V.R., and Lander, S.E.
1997. Learning Organizational Roles for Negotiated
Search in a Multi-agent System. Special issue on
Evolution and Learning in Multiagent Systems of the
International Journal of Human-Computer Studies
(IJHCS).

Ohko, T., Hiraki, K., and Anzai, Y. 1996. Learning to
Reduce Communication Cost on Task Negotiation. In
Weiss G. and Sen, S. (Eds.), Adaption and Learning in
Multi-Agent Systems, Lecture Notes in Artificial
Intelligence 1042, pp. 177-190, Springer-Verlag.

Park, H., Tenenbaum, J. and Dove, R. 1993. Agile
Infrastructure for Manufacturing Systems (AIMS):
Vision for Transforming the US Manufacturing Base.
Defense Manufacturing Conference.

Parunak, H.V.D., Baker, A.D. and Clark, S.J. 1997. The
AARIA Agent Architecture: An Example of
Requirements-Driven Agent-Based System Design. In
Proceedings of the First International Conference on
Autonomous Agents, Marina del Rey, CA.

Sandholm, T., and Crites, R. 1996. On Multi-Agent Q-
Learning in a Semi-Competitive Domain. In Weiss G.
and Sen, S. (Eds.), Adaption and Learning in Multi-Agent
Systems, Lecture Notes in Artificial Intelligence 1042, pp.
191-205, Springer-Verlag.
Shaw, M. J. and Whinston, A. B. 1989. Learning and
adaptation in DAI systems. In Gasser, L. and Huhns, M.,
(Eds.), Distributed Artificial Intelligence, volume 2, pages
413-429. Pittman Publishing/Morgan Kauffmann
Publishers.
Shen W. and Barth~:s J.P. 1997. An Experimental
Environment for Exchanging Engineering Design
Knowledge by Cognitive Agents. In Mantyla M., Finger
S. and Tomiyama, T., (Eds.), Knowledge Intensive CAD-
2, Chapman and Hall, pp. 19-38.

Sben, W., Xue, D., and Norrie, D.H. 1998. An Agent-
Based Manufacturing Enterprise Infrastructure for
Distributed Integrated Intelligent Manufacturing Systems.
In Proceedings of PAAM’98, London, UK.

Tan, M. 1993. Multi-Agent Reinforcement Learning:
Independent vs. Cooperative Agents. In Proceedings of
the Tenth International Conference on Machine Learning,
330-337.

Wiederhold, G. 1992. Mediators in the architecture of
future information systems. IEEE Computer, 25(3):38-49.

Shen 183

From: Proceedings of the Artificial Intelligence and Manufacturing Workshop. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

