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Abstract

An object-oriented and map-based prototype ex-
pert system has been developed for integrating
geophysical, geological data for base metal explo-
ration. The object-oriented knowledge representa-
tion structure and uncertainty propagation mech-
anisms used work well for this integrated resource
exploration problem. Evidential belief function
theory is utilized to manage the uncertainties in
the system. It appears a more natural and ad-
equate theoretical basis for representing spatial-
ly unbalanced geophysical and geological informa-
tion. The problem of dependent information can
be dealt with in a knowledge-based system of this
type by explicitly introducing important uncer-
tainties and by organizing the relation network
properly. The prototype system has been tested
using real exploration data sets.

Introduction
An integrated approach is one of the most distinguish-
ing characteristics of today’s non-renewable resource
exploration. With the introduction of new efficient da-
ta acquisition techniques and subsequent rapid accu-
mulation of exploration data, the number of data set-
s available are often large in many exploration areas.
The tasks of integrated interpretation are also becom-
ing more complicated with rapidly increasing volume
of data. Use of the conventional intuitive approach is
becoming less efficient and less effective. A number of
statistical and mathematical approaches have recently
been developed. The Bayesian, regression, and weights
of evidence models (Bonham-Carter et al, 1988, 1989)
derive prediction maps based on known mineral occur-
fences. These new approaches provide us with more
objectively generated prediction maps based on data.
New approaches are needed because most of the explo-
ration areas are underexplored and there are too few
known mineral occurrences. Evidential belief function
(Moon, 1990) and fuzzy set (An et al, 1991) approaches
can be used in these cases. The difficulty in represent-
ing exploration data into an evidential space or into a
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fuzzy space has impeded their widespread application.
An automated expert system can he a useful tool to
overcome this difficulty.

The current prototype system consists of a knowl-
edge base, an inference engine and an object base (Fig-
ure 1). A set of utilities has been developed to define
and provide the necessary programming environment
because a relatively low level programming language
C++ is used to build the system. It currently has 23
nodes (objects) and about 150 rules. The study is fo-
cused on the knowledge representation structure, its
corresponding inference mechanisms and object sim-
ulation of the data and related concepts, so that the
user interface is very simple.

Integrated Mineral Exploration
Non-renewable resource exploration activities can be
divided into two categories in the set-theoretic repre-
sentation of exploration data integration (An, 1992).
The first includes tasks of acquiring and improving
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signal/noice ratio of data sets. The task in this cate-
gory can be divided into many sub-tasks such as air-
borne EM data acquisition, surfacial geological map-
ping, seismic data processing and etc. There is often
no interaction between different subtasks. Classical set
theory is essentially the backbone of data management
in this category. The second category includes inter-
pretation of the data sets to find a certain exploration
target. Although the data sets can be interpreted in-
dividually, the final decision has to be based on all the
data sets. The tasks in this category are highly mul-
tidisciplinary and yet less properly defined than those
in the first.

The tasks in the second category can not be rep-
resented adequately in the framework of classical set
theory. Most of the exploration data are intrinsical-
ly imprecise although they are established in a frame-
work of the classical set theory. During the interpre-
tation of a data set or data sets, one can rarely simply
answer "yes" or "no" to a proposition or exploration
target before it has been observed derictly or drilled,
even though all the data sets are of a good quality.
At this moment, one can only say "to some degree
yes" or "to some degree no". Usually no clear cut so-
lution or answer is available. This situation reflects
the fact that the information we gather can not pro-
vide us with sharp or absolute evidences. Represen-
tation of imprecise information and inabsolute knowl-
edge, uncertainty processing and inference mechanisms
thus have fundamental importance for expert system
application. Clearly, the expert system applications in
this category are more difficult than those in the first.

The tasks in the second category are less adequately
defined and less well investigated. The whole integrat-
ed interpretation can be regarded as a specific mapping
from input to output. The input includes different da-
ta sets which are relevant to the exploration targets.
The output is a set of spatially distributed exploration
targets. Unfortunately, there is generally no physical
and/or mathematical models for such a mapping which
takes data sets from different survey as input and out-
puts expected exploration targets. In this case, conven-
tional computation which rely on mathematical models
can not work very effectively. Intelligent approach can
be efficient and effective. The consequent intelligen-
t answer can be very useful in isolating the potential
exploration targets.

Object-Orlented Knowledge

Representation
Many different geological disciplines are relatively in-
dependent of each other. In any exploration strategy,
data sets are collected independently and first inter-
preted for different parameters. One can often inter-
pret one data set without knowing how to interpret
other data sets. For example, one can interpret an air-
borne magnetic data set while he/she does not have
to know how to interpret a gravity data set. The rules

that govern processing and interpretation of one specif-
ic data set usually are not applicable for interpretation
of another data set. Further more, certain data sets
should be interpreted separately in order to keep the re-
sults of interpretation independent for the subsequent
processing. If a data set is interpreted in reference to
another data set, result of the interpretation will most
likely depend on the referred data set and its interpre-
tation. This may cause serious difficulty in subsequen-
t processing. Equally important are the propositions
(concepts) and intermediate results which are neces-
sary in a later integrated analysis. The propositions
receive evidences from data sets or other propositions.
These evidences are then processed and the results are
kept as new evidences for other propositions.

The interpretations can then be combined for a spe-
cific exploration target. The way in which the evi-
dences are combined is determined by the relationship
relevant to the exploration target among the data and
propositions. An object-oriented knowledge represen-
tation structure for integrated exploration can be de-
signed based on the characteristics described above.
Intelligent objects can be built to handle the data sets
and propositions, and a relation network can be estab-
lished to represent the relationships among the objects
and to control the combination of evidences from the
objects.

The Relation Network

The basic idea of representing relations between ob-
jects as a network is formulated from the recent theo-
ries on problem reduction (Slagle and Gini, 1987) and
frame theory (Maida, 1987). Even though the network
(Figure 2) appears very similar to an AND/OR tree, 
special case of the AND/OR graph, the ways of inter-
preting relations between the nodes are quite different
from that of an AND/OR graph (Pearl, 1987). But one
can still see considerable similarity of problem reduc-
tion reflected in the network. This network is specifi-
cally designed to satisfy requirements of the integrated
exploration problem and associated inferencing steps.

The arc between two nodes indicates an evidential
relationship and it connects lower level nodes to higher
level node. The lower level nodes provide evidence to
a higher level node. The higher level node represent
a possible source of lower level nodes if the lower lev-
el node does not represent a possible source of noise.
The AND and OR relationships are used for the cases
where more than one lower level nodes are connected to
a higher level node. The OR relationship represents a
case where either one of the lower level nodes can pro-
vide evidence for the higher level node. The AND rela-
tionship means that only all lower level nodes together
can provide evidence to a higher level node. There is
only one such case in the current system.
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The Intelligent Objects

An intelligent object referred in this research repre-
sents a relatively independent block of a computer pro-
gram which has all the fundamental capabilities of an
object (storage, processing, and communication). This
object can process a data set or propositions intelli-
gently. According to their relative locations in a net-
work, the objects can be refered as terminal objects
(nodes), middle objects, or the top object.

The terminal objects are those which have no child
node. A terminal node can accept a data set and ac-
quires necessary information about the data set from
users. Each data set must have a corresponding termi-
nal object so that it can be integrated by the system.
The primary function of a terminal node includes re-
ceiving of messages from its upper level node, searching
for a corresponding data set, acquiring pertinant infor-
mation about the data, interpretation of the data and
then, submission of a belief function about the propo-
sition represented by its upper node. The complete
procedure can either be very simple or fairly complex
as long as a reasonable belief function can be provid-
ed to its upper proposition. The middle nodes are
those which have both upper and lower level nodes.
The functional requirement for a middle node includes
receiving of a message from upper nodes, sending of
messages to all its lower nodes, combination of belief
functions from all lower level nodes, and then, calcu-
lation and submission of the belief function about the
proposition represented by its upper node. Clearly, the
middle nodes correspond to the propositions (concept-
s) or intermediate results. The top object is the one
which has no higher node. It corresponds to the ex-
ploration target in this study. There is only one target
"base metal deposit" in the present system.

Each terminal node or each middle node has a set
of rules which is incorporated into the corresponding
object. Rules built in the terminal node control the in-
terpretation and processing of the data, and the rules
of each middle node govern propagation of belief func-
tions through it. Incorporating the rules into the cor-
responding objects instead of using a global rule base
improves efficiency of computation. The interpreter of
an object only need to search the rules in its own rule
base. Another advantage includes easier development
and updating of the rule base.

Uncertainty Management

It is important to correctly interpret certainty factors
estimated by an expert system. The results are less
useful if they are difficult to interpret. If the output of
a map-based system is a map, it will show different de-
grees of spatial favorabilities towards a specific explo-
ration target. These maps show spatial distributions
of specific information for the prospecting area. Even
when certain pixel values appear to be meaningless,
the overall distribution usually provides a relative fa-
vorability distribution towards the chosen exploration

target.
In most cases of non-renewable resource exploration,

the spatial data coverages are incomplete, and data
efficiency and effectiveness are spatially unbalanced.
Some data sets only cover a very small part of the ex-
ploration area. In this situation, it is desireable to dis-
tinquish between lack of information and information
providing negative evidences. Dempster-Shafer eviden-
tial belief function appears to provide a more suitable
theoretic basis and it is used in this research to man-
age the uncertainties associated with the rules and the
data sets.

The rules in an object have a format
If premise
Then conclusion (Belt),
where Belr is a belief function. The propositions

of Belt are R1,.__R2, and R3. R1 presents "The rule
is true"; R2 = R1; and R3 = {R1,R2}. Their basic
probability numbers are re(R1) which is lower proba-
bility or degree to which the rule is true, m(R2) which
is the probability of the negation of R1 or degree to
which the rule is false, and rn(R3) which represents
the uncertainty or degree to which one does not know
whether the rule is true or false. Only two indepen-
dent numbers, however, are required because a belief
function must satisfy m(R1)+m(R2)+m(R3) = 1. An
example of a rule in an object is shown below.

If there exists mafic-intermidiate-volcanic rocks,
then there is a favorable geological condition for a

base metal deposit (0.5 0.1 0.4).

The Inference

The inference engine is divided into two parts corre-
sponding to the knowledge representation structure.
The first part is a relatively simple interpreter and
can be incorporated into the objects. When it receives
a message or is activated, it searches applicable rules
in its sub-rulebase and apply the rules to carry out
the tasks which may include processing, interpretation,
and evidence combination. During this process it com-
municates with other objects. Results of the tasks are
belief functions to be submitted to its upper node. The
second part involves systematically searching over the
relational network backward to find applicable objects
and activate them, and then, chaining forward to prop-
agate the belief functions to the top node.

The Search Algorithm

The search task in an AI system is to find a solution
path from an initial node to the goal node (Winston,
1990). The algorithm being developed here search-
es systematically through the relation network (Fig-
ure 2) and finds all existing evidences relevant to the
top proposition, activates pertinat objects, and propa-
gates the belief functions to the top proposition. The
systematic search method used in this system is depth-
first and it is given as follow:

3
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1 . Put the top node on a list, called OPEN, of un-
visited nodes. If the top node has no lower node,
exit with failure.

2 . If OPEN is empty, exit successfully.

3 . If the last node, n, of OPEN is a terminal node
or has no unvisited successor, do the following:

(1) activate 
(2) set n visited;

(3) move n from OPEN.

4 . If n has unvisited successor, get a successor of n
and place it to the last of OPEN.

5 . Go to step 2.

The Inference Mechanisms

The inference mechanisms are referred to as the ways in
which belief functions are propagated through the net-
work. In this research, Dempster’s rule of combination
(Dempster, 1967; Shafer, 1976) is used as the basis for
propagating belief functions through the relation net-
work. Three basic types of inference mechanisms which
correspond to the knowledge representation structure
are used in this research.

Suppose Ai (i = 1,2, 3) and Bj (j = 1,2,3)
are propositions of belief functions Bell and Bel2.
Al="The hypothesis is true from evidence El"; A2 =
AI; and A3 -- {A1, A2}. BI= "The hypothesis is true
from evidence E2"; B~ = B1; and B3 = {B1,B2}.
Bell has probability measures ml(Ai) (i = 1, 2, 3) 
Bel2 has probability measures m2(Bj) (j -- 1,2,3).
Probability measures m(Ht) of a new belief function
Bei can be obtained by

1
re(Hi) rnl (Ai)m2(Bj - 1 - k 2_,

where

k = Z ml(A,)m2(Bj) < 1.0.

AinBi=~

An OR operator is given by defining Hl="The hy-
E "pothesis is true from E1 or 2 , H2 = HI, and

H3 = {H1,H2}. An AND operator is obtained by
defining H1 ="The hypothesis is true from both E1 and
E "2 , H2 = Hi, and H3 = {H1, H2}. In the case that a
rule is involved and represented by Belt, an operator,
PASS-RULE can be obtained by defining HI--"The
conclusion of the rule is true from El", H2 = H1, and
H3 -- {HI, H2}. These three operators are utilized to
propagate belief function through a relation network
(An, 1992).

Problem with Dependent Evidence
Dependent evidence and concept management have
always been problematic in information integration
and uncertainty processing. In a frame work of the

Bayesian probability theory, assumptions such as con-
ditional independence (Chung and Moon, 1990) have
to be made when the theory is applied to real world
problems. In certain situations, assumptions such as
conditional independence or local independence can
lead to unacceptable conclusions (Konolige, 1979).

Since the belief function theory includes Bayesian
models as a special case (Shafer, 1976). pieces of evi-
dences which are independent in belief function frame-
work are not necessarily statistically independent in a
Bayesian probability model. Evidential independence
(Moon, 1990) is used in this research to differentiate
the concept of independence in a belief function sys-
tem from the concept of statistical independence in the
Bayesian probability models.

Belief function theory emphasizes the use of infor-
mation as evidence for a given hypothesis or proposi-
tion. The fact that pieces of evidences are evidentially
independent or not relies often on the hypothesis to
be proven. For example, let us consider a case where
two airborne magnetic surveys were carried out over
the same location at different times. If the two mea-
surements are used to prove a hypothesis that there
is a base metal deposit at a specific location, they are
evidentially dependent. If the same measurements are
used to prove a hypothesis that there is an airborne
magnetic anomaly at the same location, they can be
interpreted as evidentially independent. This means
that evidential independence is relative to a frame of
discernment. Using this property of the knowledge-
based approach, a knowledge representation structure
can be organized in a way in which the lower level n-
odes are evidentially independent relative to their high-
er level nodes. Actually, this method is related to the
fundamental concepts of reframing (Shafer, 1984) and
partitioning (Shafer and Logan, 1985).

Shafer (1984) remarked that independence is always
relative to the frames of discernment. By explicitly
introducing certain important common uncertainties
into the frame of discernment, remaining uncertain-
ties may be treated as independent with respect to
that frame of discernment. In another paper, Sharer
and Logan (1985) introduced an idea of partitioning
a frame of discernment. Such a partition can itself
be regarded as a frame of discernment. By partition-
ing the frame of discernment, complexity of Demp-
ster’s rule can be greatly reduced. These ideas are em-
ployed in the knowledge representation structure and
in construction of new belief functions. If a complete
target-oriented exploration process can be represented
as a frame of discernment, it includes all the evidences
(data sets), propositions, and rules. In this frame 
discernment, many propositions are brought explicitly
into the frame, such as "there is a high conductivi-
ty", "there is a high magnetic anomaly", and etc. The
rules in the frame connect evidences and propositions
together and functionally control the transform of be-
lief functions from evidence to a proposition and from a
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proposition to another proposition. If a frame only has
one proposition that represents a specific exploration
target, and if it has only OR relation, it becomes the
same as the case described in Moon (1990) and Moon
et al. (1991).

Test of the Prototype System
The prototype system is tested using data sets from
Farley Lake area, Manitoba, Canada. The geophysical
and geological data sets used in the test are the same
as those used for testing an application study using the
fuzzy set method (An et al., 1991). A total of 10 data
sets, most of which have only a partial coverage, are
used in this test.

The final outputs from the system are belief function
maps showing different degree of favorability towards
the chosen exploration target. Figure 3 shows a spa-
tial distribution of support (lower probability) for the
exploration target, "a base metal deposit". The higher
level of support is found in the middle west of the test
area. Figure 4 shows the spatial distribution of un-
certainty. The high level of uncertainties are found in
the areas where there is less data coverage and/or the
data collected using a specific survey method are less
efficient for the exploration target. Low uncertainties
are found in the west central area where there is better
data coverage and/or more efficient data sets.

Discussion and Conclusion
Use of evidential belief functions in knowledge rep-
resentation provides a theoretical basis for a spatial
reasoning system. It also allows uncertain informa-
tion and knowledge to be represented in a more natu-
ral manner. Object-oriented knowledge representation
partitions a complicated task of integrated resource ex-
ploration into sub-tasks which are more manageable
by using artificial intelligence techniques. The depen-
dent evidences can be in general better dealt with by
introducing important uncertainties explicitly and by
organizing the relation network properly. The test ex-
ample successfully outlines the favorable exploration
target areas. The knowledge representation structure
described above appears to be a promising form of
knowledge representation for integrated resource ex-
ploration. More comparative tests are needed.
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