From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

Automatic Block-Structured Grid Generation —
Progress and Challenges

John F. Dannenhoffer, I11
Computational & Design Methods Group
United Technologies Research Center
East Hartford, CT 06108
dannenho@percheron.res.utc.com

Abstract

One of the most labor-intensive aspects of per-
forming computational simulations of the flow
over aerospace configurations is the design and
generation of appropriate computational grids, es-
pecially of the block-structured variety. A ma-
jor difficulty with current systems is the design of
a suitable blocking plan (or flowfield decomposi-
tion) for an arbitrary configuration. This paper
presents an integrated approach to the blocking
design problem which is comprised of three key
technologies:

e aset of procedures which automatically convert
an abstract topological specification into a real
block-structured grid;

o a rule-based expert system which controls the
blocking process, based upon expertise garnered
from a variety of block-structuring experts; and

¢ a nonlinear, integer optimization technique
which is used to “fine-tune” the blocking plan
and the resulting computational grid.

It is shown that the combination of these
three technologies makes it possible to efficiently
generate near-optimal block-structured grids for
previously-studied classes of multi-body configu-
rations. The issue of extending the knowledge
base to arbitrary multi-body configurations is ex-
plored, with special emphasis placed on the chal-
lenges posed by three-dimensional geometries.

Introduction

The pacing item in the timely performance of a compu-
tational simulation of the flow over an aerospace con-
figuration is frequently the design and generation of
an appropriate computational grid. In fact, grid gen-
eration typically accounts for more than half of the
labor hours spent on a typical configuration. There
are currently two major approaches to circumvent-
ing this bottleneck, namely the use of unstructured-
tetrahedral grids (Fig. 1(a)) and the use of block-
structured grids (Fig. 1(b)). The former have the ad-
vantage of being simpler to generate; however, flow

28

(a) unstructured grid

(b) block-structured grid

Figure 1: Gas turbine combustor configuration.

solution schemes which use these grids do not cur-
rently produce solutions of comparable quality (and
with comparable computational efficiency) to the so-
lutions produced by block-structured flow solvers. On
the other hand, quite accurate flowfield solutions have
been produced with block-structured grids; the diffi-
culty with them is the amount of labor which is re-
quired to produce the grids, especially for complex con-
figurations. As a result, a long term goal of many CFD
researchers has been the creation of techniques which
automatically produce high quality block-structured
grids over arbitrary three-dimensional configurations.
The work presented here represents one of the build-
ing blocks which are necessary to reach that long term
goal.



From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

One of the first attempts to automatically design and
implement blocking plans, or flowfield decompositions,
was the pioneering efforts of A. Vogel (Vogel 1989), in
which she used an expert system to capture grid block-
ing expertise for a wide variety of two-dimensional
aerospace configurations. For the configurations which
she tested, the grids which were generated were of a
very high quality. However, one of the major limita-
tions of her first-generation system was the amount of
(and types of) information which the user had to sup-
ply in order to generate a grid; the information was of
the type that the system had difficulty generalizing its
blocking expertise to problems which were somewhat-
similar to those for which it had previously generated
grids.

In 1988, S. Alwright reported on an ingenious
method through which block-structured grids could be
specified (Alwright 1988). The essence of his idea was
to treat block-structuring abstractly, through the use
of “wire-frame schematics”; in this way the blocking
topology could be specified somewhat independently
of the actual geometry. An additional benefit of this
new technique was that the block-structuring could be
described with significantly fewer pieces of information
than was traditionally required.

These two advances, along with some recent work
in design optimization (Tong & Gregory 1990), formed
the impetus for the current work. The objective of
the research described herein was to develop a second-
generation system for the automatic design and gener-
ation of block-structured grids about arbitrary config-
urations.

Progress

A system for the automatic blocking of complex two-
dimensional aerodynamic configurations has been de-
veloped and fielded at a variety of sites. The system
is built upon an interactive blocking system which is
described fully in (Dannenhoffer 1991a); the automatic
system is described fully in (Dannenhoffer 1991b).

Interactive system

The basis of the interactive blocking system is the
specification of the multi-block topology on a topology
plane, which is actually an abstraction of the physical
plane, on which one can specify the exact topology (not
shape) of the grid lines in the final multi-block grid. It
can be thought of as either the “sketch” which a user
usually creates when designing a blocking scheme or
as a “squared-up” representation of the given config-
uration and of the computational grid which is to be
produced. The topology plane and a blocking specifi-
cation on it are composed of a number of components
which are described in the following paragraphs. Fig-
ure 2 gives an example of the topology plane for a
CH-grid around an isolated airfoil.

29

ercube

25
{

wake
]

outer boundarly
L1 i1

Figure 2: Example of the topology plane for a CH-grid
around an isolated airfoil.

Background Grid — The entire topology plane
is covered by an integer Cartesian grid called the
background grid, which can be viewed as a piece of
graph paper on which the other components are drawn.
Specifically, the placement of the other components are
constrained such that their corners and edges lie along
background grid lines. This requirement makes it pos-
sible to quickly and definitively determine the relative
locations of the various components. Another signifi-
cant feature of the background grid is that it serves to
describe the default grid line directions; that is, unless
otherwise directed, grid lines (or more correctly, their
abstractions) run horizontally and vertically through-
out the domain.

Bounds — Bounds, which are drawn as dashed rect-
angles in the current implementation, correspond to
“squared-up” representations of each of the fixed geo-
metric entities of the given configuration in the physi-
cal plane. Examples of these include the outer bound-
ary and the airfoil (or other body over which a grid
is required); also, a grid line can be constrained to
lie along a prescribed path (for example, along a wake
line) by representing the wake as a bound. Asshown in
Figure 2, appropriate placement of bounds on the back-
ground grid can convey the fact that the airfoil and its
wake both fall completely within the outer boundary
and that the wake connects the downstream edge of the
airfoil with the downstream edge of the outer bound-
ary.

Hypercubes — Hypercubes are the topology plane
components which allow one to “wrap” grid lines
around other components, that is, they are the topol-
ogy plane component which alters grid line directions
from the default horizontal and vertical directions. Hy-



From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

percubes are represented on the topology plane as two
nested rectangles, with diagonal lines connecting the
inner and outer rectangles (where needed). The di-
agonal corners of the hypercube serve to “bend” one
family of grid lines around the center of the hypercube,
and “deflects” the other family. In Figure 2, the only
hypercube contained in the figure represents a C-grid
which wraps grid lines around both the airfoil and its
wake.

Sizes — In order to specify the number of grid lines
in each region, sizes are added to the topology plane
(as shown by the numbers in Figure 2). These sizes
specify, for example, that the wrapping C-grid contains
nine circumferential lines and that there are 25 lines
normal to both the upper and lower sides of the wake.

Rulers — Sometimes it is impossible to establish the
number of grid lines in a region simply by sizing bounds
and hypercubes; in these cases another topology plane
component, called a ruler, is needed. A ruler is sim-
ply a device which specifies the number of grid lines
between its two endpoints. Rulers are shown in the
current implementation as a set of double lines. Fig-
ure 2 contains three rulers which specify that there
are 17 “horizontal” lines passing above and below the
wrapping C-grid and that 25 “vertical” lines pass in
front of the wrapping C-grid.

Paths — Finally, to connect the abstraction in the
topology plane to the real geometry, paths are used.
Each path which is drawn in the topology plane corre-
sponds to exactly one body (or wake or outer bound-
ary) of the given configuration. For clarity, paths are
not shown in Figure 2.

Once the grid topology is specified on the topology
plane, a set of procedures, which are fully described
in (Dannenhoffer 1991a), are used to generate a suit-
able assembly of grid blocks. The key steps include
the transformation of hypercubes to grid blocks, fill-
ing the remaining regions, establishment of one-to-one
face matches, determination of the sizes for each block,
elimination of degenerate blocks, and conglomeration
of grid blocks (based upon some user-specified crite-
rion). Once the grid blocks and their interconnections
have been automatically created, multi-block trans-
finite interpolation and elliptic grid generation schemes
are used to generate a smooth computational grid.

The main advantage of using this system for block-
ing, or domain decomposition, is that the number of
inputs which are required to generate a multi-block
grid is relatively small, at least as compared with other
multi-block systems (Thompson et al. 1988, Steinbren-
ner, Chawner & Fouts 1989, and Sorenson 1989), This
is an important consideration because the complexity

30

of any reasoning process scales with at least the num-
ber of independent variables. Hence, an automatic rea-
soning system which uses the current grid generation
system can be built more easily since it requires fewer
pieces of expertise, that is, fewer “rules-of-thumb.”

Automatic system

In the above discussion, phrases such as “which al-
low one to specify” are used to describe the interactive
system. In the automated system, a forward-chaining
expert system is actually used to analyze the config-
uration, “draw” the appropriate topological represen-
tation of the configuration, and specify a suitable grid
topology.

The first step in generating the domain decom-
position knowledge base was to determine the basic
problem-solving paradigm which grid experts use in de-
signing block-structured grids. After discussions with
many block-structuring experts, it was determined
that blocking design is most often done first from the
bodies (airfoils) out, then from the outer boundary in,
and finally by connecting the two; any discrepancies
which arise are handled in a clean-up step at the end.
This led to the overall design of the knowledge base
used here.

The automatic design system begins by determin-
ing the type of grid topology which is required (de-
sired) in the vicinity of each body. In order to do this,
the bodies are first classified based upon local geomet-
ric metrics. The classified bodies are then matched
against templates of previously-solved cases, yielding
near-body designs which are scheduled to be placed on
the topology plane. The far-field grid topology is then
determined in a similar manner through matches with
a set of far-field templates.

The most difficult step was next, namely that of
placing the near-body templates onto the topology
plane such that reasonable grid line connections are
made. The basic strategy used here is to place the
near-body templates in approximately the same rela-
tive position as the positions of the bodies in physi-
cal space. For example, if one body is centered above
the trailing edge of another body in physical space, its
near-body template is placed in the topology plane so
as to be centered above the trailing edge of the other
body’s near-body template. This results in about 16
different placement arrangements (for two simple bod-
ies in two dimensions) which have to be considered in
the knowledge base.

The final step involved the selection of the number of
computational points in (or sizes of) each topological
region. This process is carried out in two stages. In the
first, a nominal number of grid points are assigned to
each region based upon experience gained with gener-
ating grids for a variety of configurations. Attached to
each of these sizes is a range of permissible values and
a confidence factor which expresses the relative con-
fidence that the nominal value should be used in the



From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

final grid. In the second stage, all those sizes with con-
fidence levels which are less than some specified thresh-
old value are taken as the independent variables in a
nonlinear optimization, whose objective function is to
maximize the grid quality while constraining the total
number of surface and field points. By systematically
adjusting the confidence threshold level, the number of
independent variables which the optimizer has to vary
can be controlled, yielding a near-optimal grid with a
minimum of cost.

The nonlinear integer optimization technique used
herein is an adaptation of the flexible polyhe-
dron/tolerance method (Paviani & Himmelblau 1969).
The technique is based upon the flexible polyhe-
dron technique (Nelder & Mead 1965), which marches
a polyhedron (for example, a triangle for two in-
dependent variables) downhill toward the minimum
of the objective function. Successive iterations are
taken by repeated application of reflection, expan-
sion, and contraction operators. The major advan-
tage of this method, as compared with more traditional
conjugate-gradient approaches, is that the flexible tol-
erance method does not require explicit computations
of gradients—which are difficult to determine is cases
where the independent variables can only take on in-
teger values (for example, the number of grid points in
various grid blocks).

System Demonstration

As a proof-of-concept demonstration, consider a bi-
plane of NACA0012 airfoils which are staggered such
that the leading edge of the upper airfoil is one-half
chord above and behind the leading edge of the lower
airfoil. Both airfoils are well classified as blunt-sharp,
meaning that their leading edges are blunt and their
trailing edges are sharp. According to one grid ex-
pert (Sorenson 1990), the “best” computational grids
for bodies of this type are generally C-type; this ex-
pertise is built into the knowledge base (for subsequent
automatic execution). In addition, a bullet-shaped
outer boundary was selected as being typical of the
type used to solve such problems.

Based upon the above considerations, the computer-
aided blocking system generated the topological spec-
ification shown in Figure 3, which is a four block so-
lution to this problem. The resulting computational
grid is shown in a closeup view in Figure 4. Notice
that the arbitrary decision to make the wakes of equal
length (and thus connect the airfoil trailing edges with
a grid line) results in significant skew. The nonlinear
optimizer is then used to adjust the number of grid
points which are associated with each wake, and as a
result the number of grid lines which lie in the overlap
region between the two airfoils, yielding the “optimal”
grid shown in two views in Figure 5. The total time re-
quired to produce this result was less than two minutes
on an engineering workstation.

A wide variety of configuration changes were

31

ll”]llll][ltr]lllLllllLlll1lJ]lﬂllJll£
H125 25
=
=
-
B
u u
=
: g 7
R 2 a
- ]
=
= —
= 3 5! .
B ¥ A
»
= 9 9
] —
s
=
5 25
O A

Figure 3: Topology plane for grid around a staggered
biplane.

Figure 4: Close-up of nominal (non-optimized) grid
around a staggered biplane.

made in (Dannenhoffer 1991b) to demonstrate the
configuration-sensitivity of the current scheme. These
changes included both changes in body shapes, outer
boundary shapes, and body placement; in all cases,
satisfactory grid resulted. Other unpublished demon-
strations have been made for other configurations
types, including forced-mixer geometries and various
nozzle geometries, with similar good grids resulting,.

Challenges

The extension of the present technique to a wider
variety of geometric configurations requires that the
“blocking expertise” in the knowledge base be aug-
mented by rules which are appropriate to the new con-
figuration type. This is a particularly difficult task,
especially in three dimensions. The major challenges



From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

(a) closeup view

H AR
IASREAUNANRRRESEORAA;

(b) complete grid

Figure 5: Optimized computational grid around a stag-
gered biplane.

which one encounters include:

o Recall from above discussion that the basic design
approach is a “divide-and-conquer” method which
requires that the system be able to automatically
decompose a configuration into its components. For
example, the system must be able to divide a com-
plete aircraft (which is defined in terms of a collec-
tion of surface patches) into a fuselage, wing, tail,
engine inlet, etc. This task is made particularly dif-
ficult by the fact that appropriate break points are
generally not well defined by geometric (or slope)
discontinuities; often they can only be found by si-
multaneously considering the configuration from a
variety of length scales. In other words, the system
needs to understand the intent of the configuration
in order to generate a good decomposition.

o Another challenge is posed by the difficulty of de-
scribing the “shape” of each component. For exam-
ple, a reasonable description for a simple wing is that

32

it has a rounded leading edge, a sharp trailing edge,
that the wing tip is flat, and that it intersect the
fuselage at its root. It is clear that for more complex
wings (or any other component for that matter), a
suitable description language needs to be developed
to adequately describe all of a configurations geo-
metric features. Also, the description language has
to capable of treating components which intersect in
any way, as well as components which self-intersect
and contain degeneracies.

e Also, as is the case for most automatic reasoning sys-

tems, the grid system needs to degrade gracefully,
that is it needs to do reasonable things (or alert a
user) when it encounters situations which outside
its domain of expertise. Since it is expected that
a completely automatic system for completely ar-
bitrary configurations is not achievable in the next
five years, the grid system will need to work cooper-
atively with a user, providing as must assistance as
possible.

References

Alwright, S. E. 1988, Techniques in Multiblock Do-
main Decomposition and Surface Grid Generation, in
Numerical Grid Generation in Computational Fluid
Mechanics ’88, Pineridge Press Limited.
Dannenhoffer, J. F. 1991a, A Block-Structuring Tech-
nique for General Geometries, ATAA-91-0145.
Dannenhoffer, J. F. 1991b, Computer-Aided Block-
Structuring Through the Use of Optimization and
Expert-System Techniques, AIAA-91-1585.

Nelder, J. A. and Mead, R. 1964, A Simplex Method
for Function Minimization, Computer Journal, Vol 7,
pp 308.

Paviani, D. A., and Himmelblau, D. M., 1969, Con-
strained Nonlinear Optimization by Heuristic Pro-
gramming, Operations Research, Vol 17, No 5, pp
872-882.

Sorenson, R. L. 1989, The 3DGRAPE Book: Theory,
Users’ Manual, Examples, NASA-TM-102224.
Sorenson, R. L. 1990, personal communication.
Steinbrenner, J. P., Chawner, J. R., and Fouts C. L.
1989, A Structured Approach to Interactive Multi-
ple Block Grid Generation, AGARD FDP Specialist
Meeting in Loen, Norway.

Thompson, J. F., Lijewski, L. E., and Gatlin, B. 1988,
Program EAGLE User’s Manual, AFATL-TR-88-117
(Volumes I, II, and IIT).

Tong, S. S. and Gregory, B. A. 1990, Turbine Prelim-
inary Design Using Artificial Intelligence and Numer-
ical Optimization Techniques, ASME 90-GT-148.

Vogel, A. A. 1989, A Knowledge-Based Approach
to Automatic Flow-Field Zoning for Computational
Fluid Dynamics, NASA TM-101072.





