
Code Synthesis for Mathematical Modeling

Elaine Kant
Schlumberger Laboratory for Computer Science

P.O. Box 200015

Austin, Texas 78720-0015 USA
kant@slcs.slb.com

INTRODUCTION

Scientific computing involves both creativity on the
part of the human scientist and a great deal of mechan-
ical drudgery that can and should he automated. In
the domain of mathematical modeling, problems can
be specified naturally and concisely in terms of the
mathematics and physics of the application. Our goal
is to minimize the time required for scientists and engi-
neers to implement these mathematical models. Much
of the necessary implementation knowledge is available
in books and journal articles and can be encoded in a
knowledge-based program synthesis system. SINAI’S]~
is one such system that illustrates how to have the sci-
entist or engineer provide the major design decisions
for problem solving and have an automated assistant
carry out the details of coding the algorithms into the
desired target language. The basic implementation
paradigm is program transformation based on object-
oriented representations of the underlying mathemati-
cal and programming concepts. Mathematica [Wolfram
88] is the implementation platform.

The SINAPSE system focuses on the generation of
finite difference programs (in Fortran, Connection Ma-
chine Fortran, and C) from mathematical models de-
scribed by partial differential equations. Because our
primary goal is to provide scientists and engineers the
freedom from learning details of many new target hard-
ware and languages, the bulk of the SINAPSE system
concerns the automatic generation of an efficient im-
plementation from modeling equations. Although we
do not focus on model formulation, the system can help
users formulate problems if they use standard classes
of governing equations. Alternatively, a model speci-
fication could come from an automated model formu-
lation system. Because we use a symbolic manipula-
tion language as an implementation platform, the sci-
entist can perform some analytic problem solving to
(re)formulate the specification equations if they do not
fit one of our standard classes. The use of a symbolic-
manipulation implementation language also makes it
particularly easy to specify the problem, refinements,
and optimizations for the mathematical modeling pro-
grams. Once the model is formulated, SINAPS~. can
guide the user through the design decisions for the al-
gorithms that the system can generate. There is also a
history mechanism for recording the design decisions,

which enables the modeler to quickly experiment with
alternative models and algorithms (by modifying the
specifications and letting the system reimplement).

The SINAPSE system has successfully synthesized on
the order of a dozen finite difference programs that
have proved useful to Schlumberger scientists and en-
gineers. From these codes, the modelers have learned
new facts about their application domain. For exam-
ple, the system has been used to generate Connection
Machine (CM) Fortran code for sonic modeling (to
plore dipping beds and other complex formations), to
generate CM Fortran code for exploring models of tube
waves on axisymmetric geometries (for cross-well seis-
mics), to generate Fortran?? code to measure the prop-
agation transit time of sonic waves in a moving fluid
(for a novel ultrasonic flow meter), and to generate For-
tran?7 code for a poroelastic hydraulic fracture model.
In each case study, SINAPSE generated dozens of varia-
tions which were tested by the end users for suitability.
The modelers did not always know in advance, for ex-
ample, whether a particular boundary technique that
was adequate for a 2D problem would have sufficiently
low reflectivity in 3D.

The specifications for the programs SINAPSE has
generated average about 50 lines. From these spec-
ifications, between 200 and 5000 lines of target lan-
guage code are generated in up to ten minutes on a Sun
SPARCstation 2 (the average time is about three min-
utes). Most of the synthesized programs have been in
Fortran because of user preferences. However, SINAPSE
has also produced a few C and C++ programs. The
CM Fortran code is not highly optimized, but by hand-
tuning less than 10% of the generated code we were
able to achieve code that takes only 4 seconds per
time step to simulate propagation of a wave through a
64x64x128 grid.

PROBLEM-SOLVING FRAMEWORK

The SINAPSE system is based on the problem-solving
framework for mathematical modeling summarized in
Figure 1. For a more detailed description of an earlier
version of this framework, see [Kant et al. 91]. For re-
lated work, see the discussion in that article and other
papers in this proceedings.

Corresponding to this problem-solving framework, a
SINAPSE specification has three main sections: the ba-

54

From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

sic requirements description (independent of the imple-
mentation concerns), those implementation decisions
that the modeler does not want to leave to the auto-
matic system, and decisions that affect runtime han-
dling (if desired). The user can supply the specification
as a text file or can answer questions interactively using
menus and forms.

The specification is subdivided into levels moving
from abstract problem description through concrete
design details. The basic requirements consists of a
goal description, a symbolic model (optional), a math-
ematical model, and target environment properties.
A mathematical model consists of equations, a physi-
cal interpretation, a geometric model, and a classified
model. The implementation stage consists of the algo-
rithm and program levels. At the program level, the
specification has been translated into an intermediate
array-level language with parallel constructs. By writ-
ing directly in this language, a user can bypass the
domain-specific requirements specification and spec-
ify arbitrary programs. The remainder of the sys-
tem translates this representation into a conventional
target language program that the modeler can carry
away. However, SINAPSlg can also mediate the execu-
tion phase, which involves compiling and running the
program (including parameter initialization) to pro-
duce the desired results. The geometric modeling in-
terface may also be involved in such mediated execu-
tion. Although the current version of SINAPS~. ad-
dresses each level of problem-solving to some degree,
the focus is on supporting the transformations from
mathematics to code; not all of the capabilities de-
scribed in the goal, classified model, target properties,
and geometric model levels have been implemented.

A Goal of a program synthesis session is something
like "compute pressure over an entire field with second
order accuracy." A goal has an action (such as stor-
ing or plotting) on an expression involving the quanti-
ties being solved for; the action is computed over some
range of the given quantities. There can also be perfor-
mance constraints. A more complex goal would be to
do a parametric study of such computations while vary-
ing the geometry in a certain way, minimizing overall
turn-around time while maximizing accuracy.

In applications (such as wave propagation or heat
flow) for which the system has sufficient domain knowl-
edge, the modeler can specify a Symbolic Model by
using keywords such as "elastic wave propagation in
3 dimensional Cartesian coordinates with absorbing
boundaries." (This is done with menu choices, not
natural language text.)

If the user selects a standard formulation, SINAPSE
applies domain knowledge and symbolic manipulation
to derive the equations in the Mathematical Model.
Alternatively, the user can build up the set of inte-
rior and boundary equations in an augmentation of
Mathematica’s equation notation. Named domains of
equation applicability can be included in the specifi-
cation. The Physical Interpretation optionally records
the physical meaning, units, and characteristic sizes of
variables used in the equations.

i i i lieu i inlll I i w iiiiiii~omm iolo mmmem mow ¯ me we eemweoeemeoeeeeeeoeeooe ¯ ewe ew~
= REQUIREMENTS Goal

SymbolI Model

Mathematical Model

Geometric Equations Physical
Model Interpretation

"-., 1 /
Classified Model

Figure I: A problem-solving framework for mathemat-
ical modeling.

The Geometric Model describes the details of the
domains over which the differential equations will be
simulated. A geometric specification can include defi-
nitions of the domains of various equations and bound-
ary conditions and the material property values suit-
able for simulation. The continuous geometry will be
discretized into finite difference grids. In our examples,
the geometry and material property values on which
the model is to be run are described in files that are
read by the code at execution time. Other researchers
at Schlumberger have a prototype of an interactive ge-
ometry specification and meshing environment that we
will eventually integrate with SINAPSE.

The Classified Model is a standarized represention
indended to simplify analysis and code generation. For
example, for a boundary value form, all time deriva-
tives are moved to the left hand sides of equations and
coefficients of the unknowns are categorized. The re-
quired information variable attributes such as depen-
dencies, type, and whether the variable is to be solved
for, is given, or is unknown. If the problem cannot be
put into a standard form, the user should be warned
that the system will probably not generate good code.
Once the problem is in standard form, rough estimates
should be made of the problem size required to achieve

55

From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

the desired accuracy and of the computational time
required (in terms of operation counts such as matrix
multiplies).

Target Environment Properties describe such at-
tributes as the target machine architecture, program-
ming language, compiler, the details of the desired in-
puts and outputs, and coemcient definitions. The mod-
eler should define any parametric variables (such as ex-
ternal forcing function or other boundary and initial-
ization functions) either by a formula, by reference to
an external subroutine, by reference to a precomputed
table in a file, or by request to the geometric modeler
(at generation time or at run time). Constants can also
be determined by asking the user at run time. Useful
facts or approximations about the problem, such as
that a certain quantity is non-oscillatory or is always
positive (perhaps used to avoid conditionals in upwind
differencing), may also be included at this level.

Algorithm specification level constructs determine
an abstract algorithm for solving the problem. At this
level the modeler must choose an algorithm class such
as finite difference; specifics of the algorithm, such as
explicit method; and other parameters such the time
step of the explicit method, or the weight in an implicit
method. The algorithm method is targeted to the spec-
ified architectural class (such as serial, shared-memory
parallel, or massively parallel). Based on these de-
cisions, SINAPSE selects schema representations that
become the algorithm outlines. Comments about the
program structure, which propagate into the target
code, are inserted here. Other algorithm choices de-
termine how the components of the schemas are filled
in. These choices typically involve numerical approx-
imations that produce discretized representations for
all dependent variables represented as continuous func-
tions. For example, the specifications can include the
type of difference operator for each pattern of deriva-
tives (the default is central differencing; there are
number of standard techniques, or the modeler can
define their own) and the order of expansion of the
difference operators (default 2). We are adding a par-
tial ordering representation among schema components
so that it is easy to specify all the information re-
lated to boundary handling, material averaging, and
so on in one schema. The ordering information gives
SINAPSE freedom to move around schema components
based on true data flow constraints, efficiency consid-
erations such as grouping read statements, and format
conventions such as grouping initializations.

SXNAPS~. next refines the algorithm and applies
control-structure optimizations, resulting in a generic
Program description. We attempt to make the in-
termediate details of transforming from algorithm to
program transparent to the user by having enough re-
finement rules to generate efficient programs for a rea-
sonable variety of architectures and software environ-
ments without asking the user many questions. The
refinement rules expand concepts such as "enumerate
regions" or "discretize equations" that are steps of the
algorithm schema representations. Eventually, the al-
gorithms are expressed in terms of mathematical con-

cepts such as difference expressions and regions of a
grid. Additional constructs specify data handling and
various kinds of parallel executions. One set of impor-
tant decisions concern representations such as exactly
how to represent arrays (do not store the time dimen-
sion because only the most recent value is needed, com-
press diagonal arrays); other details may involve gen-
erating calls to external numerical analysis routines.
Using symbolic transformations, SINAPSE can gener-
ate very different implementations for different archi-
tectures. For example, taper boundaries are specified
symbolically as products of dependent variables and a
conceptual array that is a product of conditionals in
each dimension. The conditional values are based on
exponentially decaying functions at the edges, and l’s
in the middle. For a large-memory, massively parallel
architecture such as the CM2, the "store" implemen-
tation is chosen for the conceptual array. One large
array is initialized and then used in many places for
fast matrix multiplication. For a small-memory, serial
architecture, "recompute" is chosen, eventually result-
ing in a set of loops over the boundary regions doing
smaller multiplications. Symbolic manipulation is used
to turn conditionals into bounded loop enumerations
and to simplify away the multiplications by 1.

For a final translation to code, translation from ab-
stract program into a specific executable language such
as Connection Machine Fortran or C, SINAPSE ap-
plies simple syntax-table based parsing rules and code-
generation action rules.

Visualization of results is important to understand-
ing the solution and evaluating the code, but it is
not our research focus. Currently, we provide several
graphical output routines but do not attempt to auto-
matically generate display programs. We plan to inte-
grate some standard display packages into the system
and automatically generate calls to those packages.

AN EXAMPLE SYNTHESIS

Setting up a problem. Most design decisions made
by modelers concern model formulation and algorithm
selection. These choices can be made interactively,
with SINAPSE offering increasingly specific choices, or
read from a file, as shown in Figure 2.

In the interactive version, a menu of choices is of-
fered. In some cases, such as in selecting from a stan-
dard set of model equation formulations, more formula-
tions are known to the system than are presented in the
initial menu. This is because some choices are filtered
by heuristics that say, for example, that some formula-
tions are not typically used in the application domain
just specified. The modeler who insists on other choices
can inspect and select them with a special menu item.
In general, the modeler may select an alternative and
proceed, ask for status information, or change system
settings. The design decisions made so far can be dis-
played for reference.

To make some decisions, such as the dimensions, the
user can type in arbitrary values for variable names.
As another example, the number of neighboring points
chosen for the approximation depends on the accuracy

56

From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

(* model formulation *)
ApplicationDomains "is" WavePropagation;
ModelType "is" StressStrain;
Medium "is" Acoustic;
Boundaries "is" AbsorbingBoundary;

(* algorithm description *)
TargetLanguage "is" Fortran77;
Algorith~election "is" FiniteViffsrsnce;
FDNethod "is" ExplicitMethod;
BoundaryImplementation "is" TaperBoundary;
IndependentVars "is" {x,y};
DefaultOrder "is" 2;
Stagger "is- True;

Figure 2: Specification in design history form.

desired and on the order of the function derivative.
The modeler can specify any integer. When SINAPSE
requests numeric values or expressions for properties
in this free-form style, help strings and defaults are
offered; inputs are type checked.

In order for the user to understand what needs
to be specified and how the system works, a de-
scription command is provided. For example, typing
Describe [FDMsthod] yields a description that says it
is a decision with a specific set of alternatives. It occurs
first in a sequence of synthesis tasks and is followed by
an algorithm analysis step.

Deriving the mathematical model. The pro-
gram generation process itself is controlled in SINAPSE
by task ordering constructs. For example, if we is-
sue the command Describe[SetCentralgquations]
we can see how the system sets up a wave equation by
collecting decision results (from the specification file
or querying the user) and then running a generator.
If the application domain is not specified, the user is
required to provide the equations and classify the vari-
ables. The original version of the system had only se-
quences of tasks, but the new (still incomplete) version
has partial orderings on tasks. Some of the explicit rep-
resentation of the tasks could perhaps be avoided by
using backward chaining or means-ends analysis such
as that described in [Kant 91].

SetCentralgquations is a synthesis sequence.
In class WavePropagation

HelpText: Sets up the equations for the
main region.

HasSequence: {IndependentVars, Elasticity,
Medium, Generat eEqns}

InSynthesisSequence: EquationSetUp
Precedes : SetBoundaryEquations

In class GenericApplication
HasSequence : {AskEqns, IndependentVars,

DependentVars, ParamVars}

In our example, the system sets up a model consisting
of three first-order, coupled partial differential equa-
tions relating the time and space derivatives of the
stresses S and particle velocities U. The user had
already specified that the independent variables were

x,y,t. Spatially-dependent parameter variables pro-
duced by the equation generator are p, the density of
the medium, and A, a stiffness index.

,,OUy[x,y,q OUx[z,y,t]
OSZZ[Z,O.~ y’ t] -- A[X, yJ(~y ÷) (1)

PL , y] = o. (2)

cgSzz[x, y, t]ou Y’q P[x’Y] - By
(3)

The system normalizes these equations, determining
dependencies in the computation order and putting the
unknowns onto the left-hand sides of the equations.

Outlining the algorithm. The user-specified de-
cisions about the algorithm determine the outline or
program schemas for SINAPSE to set up. Additional
decisions (grid staggering, grid size, time-step size, re-
gion of tapering, quantities changed by source, quan-
tities read at receivers) are needed to elaborate a com-
plete program, but in most cases those can be inferred
from problem class using inheritance. Because of the
inference capability, SINAPSE specifications tend to be
fairly concise.

The choices of algorithm methods determine the
overall structure of the program, again using the in-
heritance structure to assemble algorithm fragments.
For example, to implement the finite difference tech-
nique, SINAPSE builds a program structure with decla-
rations, time-stepping loop, boundary conditions, and
input and output statements (for example, to save en-
tire wavefield snapshots or to save signal traces at the
receivers). The initial construction is an algorithm
skeleton that looks something like the following.

Initialization
Init ializeBoundary

TimeSt epLoop
Enumerat eRegions

Updat eQuant it ies
PostStep

Updat eBoundaries
ReadReceivers

After processing decisions to use taper boundaries and
expand regions in sequential rather than parallel style,
the following algorithm is produced (Mathematica uses
square brackets for function calls, curly braces for lists,
and a right arrow for replacements).

Initialization
InitializeTapers

TimeStepLoop
ForEachQuantity Q in {Sxx, Ux, Uy}

ForEachPoint Pt in Grid[{x, y}]
Approximate [Equat ion [Q], Pt, order->2]

PostStep
Updat eTapers
ReadReceivers

Refining the program. The detailed refinements
of solution methods are encoded as Maihematica rules.
For example, to implement the time-stepping loop,
SINAPSE has rules that use Maihematica’s pattern

57

From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

matching capabilities to scan the differential equations
and replace continuous functions by their discretized
approximations. Additional rules produce finite dif-
ference assignment statements and convert representa-
tions in functional notation into array operations with
the necessary declarations. The enumeration of the
grid can be quite complex if all boundaries are treated
differently. However, in the simple case on a sequen-
tial machine it is a nested loop. The result of program
refinement is a pseudocode program.

sequence [
comment ["Set up absorbing taper"],
<code>,
coeuaent ["Time loop"],
elliot, 1, Size[t]}, sequence,

<code for other quantities>,
comment ["Update Ux discrete form"],
all[{x, 1, -1 + Nx}, parallel,

all[{y, 1, ly}, parallel,
assign [Ux [x, y],

Ux [x, y]-(Sxx Ix, y]-Sxx [l+x, y]
/ rho[x,y]]]],

<code for other quantities>]
comment ["Update Taper Boundaries"],
<code>,
conunent["Interpolate receiver signals"],
<code>]]

Producing the target code. From the pseu-
decode plus declaration information, SINAPSE gener-
ates target language code using syntactic rules. On our
example, the entire process from problem formulation
to target code, takes about one CPU minute on and
yields about 350 lines of code. Larger (thousand line),
more complex problems can take up to 10 minutes.
Complete programs are generated, including declara-
tions, input and output statements, subroutines, and
comments about the original equations and each up-
date statement for each variable on each dimension.

Visualization. A good way to understand the out-
put of a mathematical modeling program is to gener-
ate graphical representations of the data. We provide
several kinds of displays. One of the outputs of the
program is a set of values representing seismic echoes
at a set of vertically aligned receivers. The synthesized
programs can also output snapshots of wave fields at a
sequence of points in time. We have a manually written
program for a Silicon Graphics machine that displays
such outputs as animation sequences.

Making changes. The alternatives and parameter
values resulting from the interaction sequence (com-
bined with any pre-specified statements) form the de-
sign history of a program, which is useful for documen-
tation, design revision, or alternatives comparisons.
The interaction history can be saved out in a speci-
fication file for further editing.

A simple example modification is to change the
dimension specification from IndependentVars is
{x,y} to IndependentVars is {x,y,z}, yielding a
3D wave propagation version (manual implementation
of 3D programs are quite tedious, especially when there
are complex cases around the boundaries). Other vari-

ations are using implicit rather than explicit methods,
changing the finite difference operator’s order, chang-
ing the boundary conditions, and averaging material
values around critical transition regions.

IMPLEMENTATION PLATFORM

Automated scientific problem solving uses symbolic
and algebraic reasoning as well as numerical computa-
tion. Program generation requires a powerful symbolic
language allowing implementation techniques such as
rules, pattern matching, and object representation. A
practical synthesis system should be portable to en-
able wide availability without excessive recoding. We
have found that Malhematica, while not the only pos-
sible solution for these requirements, has been a sat-
isfactory environment for both the rapid prototyping
and continued development of SINAPSE. Representa-
tive symbolic manipulation systems are Macsyma, Re-
duce, Maple, and Scratchpad. We selected Matheraat-
ica for its availability on virtually all platforms used
by engineers, its suitability for both symbolic manip-
ulation and programming, and the familiarity of the
notation to modelers.

Using the one system for both symbolic manipula-
tion and program synthesis enables us to use one nota-
tion for the mathematics of problem specification and
the procedural knowledge operating on those math-
ematics with no unnecessary representation conver-
sions. The scientific modeler’s preliminary activities,
such as derivation of mathematical models, are sim-
plified by the availability of a symbolic manipulation
facility. In addition, during synthesis, SINAPSE ap-
plies some simple analysis techniques to determine, for
example, whether a set of parameters satisfies a con-
vergence criteria. Many transformation steps are con-
veniently represented as algebraic transforms (such as
series approximations to derivatives and substitution
of variables to effect a change of coordinates).

SINAPSE adds many capabilities to Mathematica’s
basic primitives (such as differentiation). Examples
are application-specific refinement knowledge, code-
generation knowledge that is efficient for very large
data structures or parallel architectures, and a record
of design history. We have also added a substrate for
representing objects, tasks, and transformations. Al-
though methods such as finite difference approxima-
tions can be coded in Mathernatica, interpretation of
such programs for our applications is useful only for
prototyping. Even on moderate sized arrays, such code
is much too slow and the accuracy and stability of
built-in algorithms is not always appropriate.

SHARING

The amount of knowledge required for automating
code generation is very large, even for quite restricted
classes of problems. Possible ways to facilitate shar-
ing among code generation systems (vs. within a sin-
gle system) include reuse of system components (some
domain-independent), reuse of reasoning algorithms,
and reuse of interface languages (e.g., high-level spec-
ification languages, array-level languages).

58

From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

Reuse of system components might be possible if
we could divide systems into components with well-
defined interfaces. This means we first need to agree
on the meaning or content of any specification lan-
guages or intermediate representations. We also need
to formalize the form of the interfaces. Ironically, the
methodology for figuring out how to implement a spec-
ified need in terms of existing components, or how to
adapt components to a function, will probably itself
exploit automated software design techniques. Some
components may be large, some may be clusters of
knowledge about well-defined concepts.

In SINAPSE we are attempting to identify some ma-
jor phases in the design of scientific computing soft-
ware and to provide different languages for some of
the levels. The languages may vary to exploit math-
ematical formulations, array-manipulation, and con-
ventional applicative languages so that specifications
can be entered in the most convenient style. Next, we
need to determine whether these stages make sense for
other applications. Within these levels, there might
be formalizations of abstractions such as coordinate
transforms, pointers, I/O, and parallelization. Ideally,
SINAPSE would then be able to interface to other sys-
tems, for example to generate a different target lan-
guage, or call subroutines rather than generate code for
specific tasks. Similarly, a model formulation system
might generate high-level specifications from which
SINAPSE can generate code.

The reasoning-technique approach is another cut at
providing tools. For example, SINAPSE could use some-
one else’s inequality prover, assumption-maintenance
tool, data flow analyzer, or an expression optimizer
to minimize operator costs according to a declarative
cost model or to order for optimal numerical stabil-
ity. It would be useful to have language-independent
compiler optimization tools.

If we could find a useful set of common tools or com-
ponents, major barriers (besides the not-invented-here
syndrome) might be standardizing the interfaces and
achieving portability of tools. Even though it is now
possible to interface many different languages, in a sys-
tem with multiple implementation languages, the over-
head in both execution and modifiability can be quite
high. Neverless, even if it requires reimplementation, a
clearly specified set of tools and algorithms for accom-
plishing the goals of the tools should facilitate reuse.

DISCUSSION
SINAPSE contains approximately 20,000 lines of Math-
ematica source code. System interaction and control
account for 15% of the code; model formulation and
algorithm selection, 15%; algorithm refinement, 35%;
code generation, 30%, and example program specifi-
cations, 5%. We estimate that slightly over half the
existing system could be reused for synthesis of other
types of scientific programs. As we continue to work to-
wards the goal of practical application, we need to work
on code generation for multiple architectures, tools for
adapting SINAPSE to new applications, and data man-
agement. Other important areas such as visualization

and input geometries are being addressed by other re-
search groups and are not the focus of our efforts.

Our first priorities for code generation are improv-
ing performance of Connection Machine code and in-
creasing the number of language-independent opti-
mization transformations not typically found in com-
pilers. Later, other architectures will be of interest;
we want to incorporate performance prediction to help
guide the transformation process.

We are also working on improved code generation
for the sizable portion of modeling programs devoted
to data management (reading and writing data sets
stored on files that contain such elements as model pa-
rameters and geometry descriptions). Subroutines to
read and write data sets are complicated by require-
ments to parse input files, validate inputs, convert for-
mats, and traverse data structures. If data sets are
large, I/O performance may be important and may in-
volve sequential tape processing.

The current SINAPSE system demonstrates that the
approach is suitable for scientific programming, al-
though much work remains in extending the system to
more of the application domain and in generating bet-
ter code for parallel architectures. Specifications are
much easier to understand than the generated code,
and are usually less than 20% the size of the generated
code. New chunks of program generation knowledge,
such as for different boundary or difference operators,
can be added in the order of days and then reused
in other applications. We estimate that at least half
the system would be reusable in different scientific pro-
gramming applications. The system has already gen-
erated more working application code than the 20,000
lines that it contains.

Acknowledgements
Many thanks to Ira Baxter, Francois Daube, William
MacGregor, and Joe Wald who have implemented
much of SINAPSE. Hung-Wen Chang and Ping Lee
have offered the modeler’s perspective on the system.
We could not have built a knowledge-based program
synthesis system without domain experts; we are grate-
ful to Michael Oristaglio, Curt Randall, Charles Wat-
son, and Barbara Zielinska for their time and patience.

References

E. Kant. "Data Relationships and Software De-
sign." Chapter 7 in Automating Software Develop-
ment, M. Lowry and R. McCartney, (editors), AAAI
Press/MIT Press, Menlo Park, CA, 1991, pp. 141-168.

E. Kant, F. Daube, W. MacGregor, J. Wald. "Scien-
tific Programming by Automated Synthesis." Chap-
ter 8 in Automating Software Development, M. Lowry
and R. McCartney, (editors), AAAI Press/MIT Press,
Menlo Park, CA, 1991, pp. 169-205

S. Wolfram. A System for Doing Mathematics by
Computer. Addison-Wesley Publishing Company, Inc.
Redwood City, California, 1988.

59

From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

