From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

Functional Knowledge Representation in
AI Applications for Scientific Computing

Michael Lucks
Space Telescope Science Institute”
3700 San Martin Drive
Baltimore, MD 21218

Abstract

We describe a knowledge representation scheme
in which expertise is encoded via expert-supplied
mappings, or knowledge functions. This
functional representation technique was originally
developed for the Selection Advisor for Initial
Value Software (SAIVS), a prototype system for
recommending ordinary differential equation
software from numerical subroutine libraries.
We discuss the deficiencies in previous
knowledge representation schemes that motivated
the development of functional scheme, and then
present the method. We propose other classes of
mathematical software to which the existing
SAIVS shell may be applied. Recently, the
representation has been adapted for use in the
Parallel Object Matching System (POMS), an
operational system for scheduling parallel
scientific observations on the Hubble Space
Telescope. Our experience with the scheme in
these two very different areas suggests that it is a
generally useful method with potentially
widespread scientific applications. We discuss the
technique's advantages and limitations, as
observed in SAIVS and POMS.

Representational problems

Users of numerical subroutine libraries are
frequently confused by the large number of
software options available for solving a particular
class of problems. Use of an inappropriate code
may increase the time required for a solution by
many orders of magnitude. Selection of "best"
software requires a rare combination of expertise:
an understanding of both the mathematics of
problem domain as well as the relative behavior
of the alternative software modules (possibly
from different sources). In 1988, the authors
began research toward an automated intelligent
system for mathematical software selection.
Ordinary differential equation initial value
problem (IVP) software was adopted as a test
domain. IVP software is characterized by the
property that most codes may be applied to most

80

Ian Gladwell
Department of Mathematics
Southem Methodist University

Dallas, TX 75275

problem instances, but with significant
differences in efficiency. At the time, the most
robust comparable system [Addison et al., 1991]
employed a decision tree model that was quite
difficult to modify and was also subject to
occasional gross errors. It was assumed by us and
others [Schulze and Cryer, 1988; Kamel and
Enright, 1992] that selection expertise could be
encoded using some conventional symbolic
knowledge representation, €.g. production rules.
Although a rule-based scheme was clearly a more
flexible vehicle than the decision tree approach, it
soon became clear that both approaches (and, in
fact, any purely symbolic representation) suffer
from the same propensity for serious errors when
selecting initial value problem software, because
they lack the ability to evaluate competitive
tradeoffs among the selection criteria. The
discretization of quantitative criteria (e.g. system-
size, stiffness, sparsity, expense of evaluation,
etc.) by symbolic representations results in a
significant loss of information that greatly
complicates the assessment of such criteria. (For
instance, a non-stiff code is generally not
recommended for stiff problems. However, it
may be be preferable to a stiff code for a very
stiff system of ODEs, if the system is also very
large. The choice depends on precisely "how
stiff” and "how large" -- and the recommendation
is critical because these are very expensive
problems to solve.)

Faced with the inadequacy of symbolic
representations, we examined [Lucks, 1990]
various quantitative alternatives. Probability
theory and its popular Al variants (e.g. inference
networks, belief networks, Dempster-Shafer
theory, influence diagrams, etc.) impose a
statistical framework that is poorly matched to
the software selection problem. (We are typically
interested in the strength with which a particular
selection criterion is evidenced in a user's
problem -- not the probability that the criterion
is present.) Numerical extensions to rule-based
systems (e.g. certainty factors) are incapable of
expressing nonlinear relationships between the



strength of a criterion and the suitability of a
code. (Using the EMYCIN certainty factor
model, for instance, it is impossible to express
the O(n3) effect of increasing system size n, on
the performance of certain codes.) Techniques that
require some form of machine learning (e.g.
neural networks) are impractical due to the
expense of generating and executing a sufficiently
diverse yet practical set of training problems. A
deficiency shared by all of the above approaches
(as well as fuzzy logic strategies) is that they are
designed primarily for quantifying and
aggregating uncertainty. They offer no particular
advantage in the selection of IVP software, where
it is assumed that the problem description is
unambiguous and that the expert's knowledge is

precise.
SAIVS knowledge representation

The functional knowledge representation is
briefly sketched below. See [Lucks and Gladwell,
1992] for a more detailed description.

Given:
a problem domain P (e.g., IVPs);

a user's problem p € P (e.g., a particular
system of IVP equations);

a set of properties, or features, F = {f] fp, ...,
fn} that characterize problems in P (e.g.,
stiffness, sparsity, accuracy, system size, etc.);

a set of software modules (codes) S = {sq, s,
..., Sk} for solving problems in P;

we seek a set of performance functions H = {Hj,
Hj, ..., Hk}, where H;j : Px S — [0,1], such
that Hi(p, s;) quantifies the estimated efficiency
of applying code s; to solve p. Let fi(p), j = 1,2,
..., 0, be an evaluation of feature fj (e.g if f is
system-size, fj(p) is equal to the number of
equations in p). We represent any p by a feature
vector F(p) = <f1(p), fa(p), ..., fu(p)>. Then we
may redefine the domain of Hj as H;j : F(G) x S
— [0, 1]. The functions in H rank the candidate
codes -- the higher the score, the more suitable
the code. Values near 1 indicate that the code is
highly compatible with the problem features.
Scores near 0 imply poor suitability, while
scores near 0.5 denote "moderate” compatibility.

The SAIVS knowledge base constructs an H;j for
each s; using a uniform set of mappings -- or

81

From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

knowledge functions -- provided by the domain

expert. There are four types of knowledge
functions, each fulfilling a specific
representational task:

(1) measurement functions Mj:p— R, j =
1,2, ..., n, that quantify presence of feature fj
in a problem. These are simply feature
evaluations, e.g. system-size as described
above.

(2) intensity functions I; : R —- [0,1], j = 1,2,
... 1, that normalize measurement values onto
a uniform scale;

(3) compatibility functions C;; : [0,1] =
01),i=12, ..., k, j =12, ..n, that express
the compatibility of code sj with the intensity
of feature fj present in the user's problem; the
output of Cj;j is a number (compatibility
value) cij € [0,1];

(4) an aggregation function A; : [0,1]® — [0,1]
that aggregates the n individual compatibilities
of the various features into an estimate of the
code's overall efficiency.

The definition of H; via composition of the
knowledge functions may be visualized as a
network shown in Figure 1. The measurement
functions are first applied to the input problem,
yielding n measurement values. The
measurement values are then input to the
corresponding intensity functions. The resulting
intensity values are input to the appropriate
compatibility functions, yielding n compatibility
values, which are then fed to the aggregation
function Aj. Finally, the output of Ai is returned
as the computed value of H; yielding the
estimated suitability of s; for problem p.

Measurement functions are represented
procedurally, i.e. as code invoked by the system
to analyze the input problem and return a feature
value. In SAIVS, these procedures are simply
queries to the user, i.e. the user is expected to
describe the input problem in terms of its feature
values. This is a serious limitation on the
practical use of SAIVS. An automated facility to
perform the problem analysis (a substantial
project) is planned for the future. The POMS
system (described below) invokes computational
procedures to obtain the feature values.



Hi(p)

... intensity values ...

... intensity functions ...

... measurement values ..

...neasurement functions..
M n

Input problem p

Figure 1: Performance function Hj

Intensity and compatibility functions are
represented as sets of ordered pairs that generate
cither piecewise linear functions (for continuous
features) or discrete point functions (for
qualitative features).

Aggregation functions are constructed as nested
compositions of three primitive functional
forms: MIN : [0,1]2 — [0,1], MAX : [0,1}2 —
[0,1] and a special function o : [0,112-— [0,1].
Each A; may be visualized as a parse tree in
which the leaves are input compatibility values
and the nodes are aggregation primitives. Figure
2, for example, depicts an aggregation function
for code sq, expressing the combined effects of
features f1, f7, f3 and f4 on the code.

From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

(]

1,3 Ci4

Figure 2: Aggregation function MAX (C1,1,
MIN (€1,2), a(C1,3, €1,4))

Each primitive expresses how the combined
effect of two features impacts the performance of
s1. MIN and MAX represent the situations
where the combined effect two features is
dominated by either one or the other, i.e. where
there are no tradeoffs. MIN denotes domination
by the least compatible feature, while MAX
denotes domination by the most compatible
feature. For qualitative features, MIN and MAX
specialize to the logical operations AND and OR,
respectively. a denotes that the combined effect
of two features involves tradeoffs. In SAIVS, a
is defined as

. xy
aCY) = 3y + (%) (1-y)

If both features are compatible with the behavior
of code, then their combined effect using a is
“extra-compatible”. Similarly, the combined
effect of two incompatible features is less
compatible than either one. If one feature is
compatible with the code and the other is not,
then their combined effect is intermediate

Performance of SAIVS representation

The SAIVS shell, consisting of a control module
and an interactive user interface, was originally
implemented in Franz Lisp. (Since then, the
system has been ported to Allegro Common
Lisp.) Using the functional representation, a



knowledge base was constructed to evaluate the
performance of six IVP codes with respect to
eight features (stiffness, accuracy, stability angle,
expense of evaluation, system size, number of
discontinuities, sparsity and bandwidth ratio).
The knowledge base, which reflects the opinions
of the domain expert (the second author)
regarding the performance of the codes, consists
of 8 measurement functions (one per feature), 8
intensity functions (one per feature), 48
compatibility functions (one for each code-feature
pair) and 6 aggregation functions (one per code).

SAIVS has demonstrated that the functional
scheme is an adequate representation scheme for
the IVP problem domain. After an initial round
of testing and refinements to the knowledge base,
the recommendations of the expert agreed with
SAIVS' selections in about 95% of 131
randomly generated problem instances. This is
significantly superior to the performance of the
decision tree program [Addison et al., 1991].
Among the disagreements, SAIVS' advice was
almost always reasonable and there were no
instances in which the system recommended a
highly inappropriate code. In approximately
11% of the test cases the expert initially
disagreed with SAIVS, only to change his mind
after a closer inspection of the problem. These
problems usually displayed extreme (and
unfamiliar) values in multiple features. Hence,
the system appears to exceed the ability of its
own knowledge source to assess quickly the
combined effects of multiple criteria.

The SAIVS knowledge base has proven to be
relatively easy to extend and modify. The
uniformity of the representation makes
knowledge acquisition a relatively mechanical
activity, requiring the definition of a known set
of functions, instead of the usual unstructured
dialogs between the domain expert and the
knowledge engineer. Both codes or features may
be added or deleted from the system by simply
adding or deleting the associated knowledge
functions. Small changes to an existing
knowledge base are usually made via minor
adjustments to compatibility functions. Since the
representation is modular and continuous, such
local tunings may be made without significantly
disturbing the global behavior of the system.

The deficiencies of the functional approach in
SAIVS include:

(a) The use of straight line segments for
approximation of curves, some of which are
really of exponential nature;

83

From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

(b) The lack of a way of representing
"infinities". This is serious only in trade-offs
between two or more measurements
simultaneously at extreme values;

(c) The "flat" nature of the knowledge base.
The "correct” knowledge base (that is the direct
representation of the algorithms) would be
hierarchical in nature. The use of a one level
approximation to a multilevel system may
not be as serious as the deficiencies listed
above.

Possible remedies, in order, include:

(a’) Fitting the data supplied by the expert with
a smooth curve, possibly with special
properties such as monotonicity and convexity
preservation where appropriate;

(b") Approximating the "tails" of the function
by exponentials when the functions were
originally defined on an infinite range. These
exponentials should be connected smoothly to
the smooth functions discussed above.

(c") Restructuring the knowledge base in a
hierarchical way. This would require a major
redesign of the system. Also, it may tend to
make the system too problem specific. Only
if the system, improved as in the previous
paragraphs, proves inadequate in the sense of
making incorrect or poor recommendations
should this be considered further.

Other mathematical software domains

The SAIVS shell may be used as is to construct
software selection advisors for other classes of
mathematical problems. The system is most
appropriate for problems in which:

(1) The performance of the software depends on
an identifiable set of problem features that can
be quantified and measured;

(2) Multiple codes exist that solve the entire
problem class;

(3) Severe tradeoffs exist among multiple
competing performance criteria.

In numeric software, these conditions are satisfied
by many problem classes, such as quadrature,
linear equation solving and optimization. The
performance of software in each of these domains
depends on the size and structure of the problem



and on various measurable mathematical
properties of the input problem. Other potential
numeric applications of SAIVS include the
choice of approximation algorithms and the
selection of discretization strategies for partial
differential equations.

A SAIVS-like facility might also be a useful
tool to support within a symbolic manipulation
system. For example, most computer algebra
systems provide several sophisticated algorithms
for the computation of multivariate polynomial
GCDs. The performance of these algorithms
varies greatly with several measurable properties
of the inputs (e.g. number of variables, sparsity,
degree, and estimated length of primitive
remainder sequence). GCD calculation is a
fundamental operation that is invoked frequently
during intermediate computations required by
other procedures (e.g. rational function
manipulation or polynomial factorization). Since
it is impossible to predict intermediate results in
advance, the procedures blindly invoke a fixed
default algorithm to perform the GCD, regardless
of the input, with potentially disastrous results
(e.g. memory exhaustion). With a selection tool
available, an "intelligent" generic polynomial
GCD algorithm could be written that first runs

the selection mechanism, and then invokes the -

highest ranked algorithm. Since the tool would
be internal to the manipulation system, it could
access the symbolic software to perform the
problem analysis, thereby avoiding the
computational limitations of the current SAIVS.

The POMS system

The Hubble Space Telescope (HST) is an
orbiting observatory launched in 1990. The
presence of six scientific instruments on the
telescope provides opportunities for parallel
science, i.e. the simultaneous use of different
instruments to observe different targets, thereby
increasing scientific throughput. Parallel science
is implemented by partitioning the observation
requests into two pools: (1) primary observations
(primaries), which are scheduled first at times
where they best fit; (2) parallel observations
(parallels), which are of lower priority and are
scheduled simultaneously with primaries,
provided they do not conflict with the constraints
of a primary or impede its execution. For each
parallel observation, a search is conducted for
compatible primaries. The problem requires
finding suitable placements -- i.e. the best
matches with primaries -- for as many parallels
as possible.

84

From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

Compatibility depends on a variety of criteria,
both qualitative (e.g. both observations may not
require the same instrument) and quantitative
(e.g. the goodness-of-fit of the observations'
timing requirements, and the amount of
maneuvering required by the spacecraft in order to
bring both targets into view at the same time).
Evaluating the compatibility between thousands
of primary and parallel observations over a year-
long schedule is a complex and time-consuming
task, hence an intelligent, automated system was
desired to assist HST schedulers. This, in tumn,
required the selection of a knowledge
representation medium to encode schedulers’
preferences and spacecraft knowledge.

Although the HST matching problem is
dissimilar to IVP software selection, both
problems require the comparative assessment and
aggregation of multiple quantitative criteria,
hence the functional knowledge representation
seemed applicable. Other factors that argued for
use of the scheme were:

(1) Whatever method was chosen, it had to be
implemented from scratch within the existing
Spike scheduling system [Johnston, 1990] in
order to access the data required for match
assessment. A SAIVS-like shell was deemed to
be simpler to build than other alternatives, e.g.
an embedded rule-based system;

(2) The problem was new and there was no
authoritative expertise about what should go
into the knowledge base. We anticipated that
the contents of the knowledge base would be
highly dynamic until the problem was better
understood. Hence, the flexibility of the
functional representation seemed very desirable.

The Parallel Observation Matching System
(POMS) [Lucks, 1992], using the functional
representation, was implemented in Allegro
Common Lisp and has been an operational part
of the HST scheduling system since March,
1992. The system scores the compatibility of
each primary-parallel pair based on fifteen
problem features, in a manner similar to that
depicted in Figure 1. The POMS knowledge
base differs from SAIVS in that there is only one
aggregation function, as opposed to one per code
in SAIVS. This is because in POMS the effects
of the problem features are identical for all
candidate pairs, whereas in SAIVS the feature
effects depend on the particular code under
consideration. Also unlike SAIVS, the
measurement functions in POMS are actually



implemented as computational procedures, as
opposed to user queries in SAIVS.

Like SAIVS, POMS has an explanation facility
that displays its rankings in an understandable,
tabular format.

Performance of representation in POMS

Currently, POMS' decisions are reviewed and
either confirmed or disconfirmed by human
schedulers. POMS' recommendations have
generally been considered acceptable by the
schedulers. When a recommended match has been
rejected, the reason for the error has usually been
revealed promptly using the POMS explanation
facility.

As expected, the POMS knowledge base
underwent significant modification during its
implementation and testing phases, and has still
not stabilized completely. The ease and locality
with which changes have been effected is a major
advantage of the system.

The POMS shell was implemented quickly
(about one week) within a large, complex
existing software system.

Since certain measurement functions for certain
features involve expensive calculations, the
exhaustive assessment of all candidate primary-
parallel pairs creates an efficiency problem for
POMS. The following measures are taken to
minimize this problem:

(1) The intensity and compatibility functions
for each feature are evaluated immediately after
the features measurement function (instead of
evaluating all measurement functions first). If
any single feature is found to be incompatible
for a candidate pair, evaluation of the
remaining features for the pair is aborted. This
avoids unnecessary measurement function
evaluations.

(2) The features are evaluated in order of their
computational expense, so that a more
expensive feature is never evaluated if a less
expensive one 1is determined to be
incompatible;

(3) Preprocessing is performed to weed out
infeasible matches prior to submission to
POMS.

85

From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

References

Addison C. A., Enright, W. H., P. W. Gaffney,
Gladwell, I. and Hanson, P. M. 1991. A
Decision Tree for the Numerical Solution of
Initial Value Ordinary Differential Equations,
ACM Transactions on Mathematical Software,
17:1-25.

Gladwell, 1. and Lucks, M, 1992. An Interactive
Session with a Knowledge Based System for
Numerical Software Selection, to appear in the
Transactions of the IMACS 13th World
Congress, Al, Expert Systems and Symbolic
Computing for Scientific Computation, (E. N.
Houstis and J. R. Rice, eds.), North-Holland.

Johnston, M., 1990. SPIKE: AI Scheduling for
NASA's Hubble Space Telescope. In Proceedings
of the Sixth IEEE Conference on Artificial
Intelligence Applications, Los Alamitos,
California, IEEE Computer Society Press, 184-
190.

Kamel, M. and Enright, W. H., 1992,
ODEXPERT: A Knowledge Based System for
Automatic Selection of Initial Value ODE
System Solvers, in Expert Systems for Scientific
Computing, (EN. Houstis and J. R. Rice, eds.),
Elsevier.

Lucks, M., 1990. A Knowledge-Based
Framework for the Selection of Mathematical
Software, Ph. D. dissertation, Dept. of Computer
Science, Southern Methodist University.

Lucks, M, 1992. Detecting Opportunities for
Parallel Observations on the Hubble Space
Telescope, in Proceedings of the 1992 Goddard
Conference on Space Applications of Artificial
Intelligence, NASA Goddard Space Flight
Center, Greenbelt, MD, 29-44.

Lucks, M. and Gladwell, 1., 1992. Automated
Selection of Mathematical Software, ACM
Transactions on Mathematical Software, 18:11-
34.

Schulze, K. and Cryer, C. W., 1988.
NAXPERT: A Prototype Expert System for
Numerical Software, SIAM Journal of Scientific
and Statistical Computing, 9(3):503-515.





