From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

Draco — A Data Reduction Expert Assistant

Felix Yen
Advance Planning Systems Branch
Space Telescope Science Institute
3700 San Martin Drive
Baltimore, MD 21218

yen@stsci.edu

Abstract

Draco is an attempt at partially automate data
reduction and analysis. These notes describe our
experiences with the project. We discuss the ob-
stacles we have had to face and show how they
influenced Draco’s design.

Draco is a framework for existing software tools.
It uses a minimalist representation system that
focuses on the syntax of initializing and invoking
programs. There is a working prototype which
translates user-defined procedures and primitives
into executable scripts appropriate for the user’s
data. A great deal of emphasis is placed on mak-
ing sure the user understands what is happening
at all times.

Introduction
Motivation

The Space Telescope Science Institute! is primarily
concerned with operating the Hubble Space Telescope
(HST). Like data obtained by other telescopes or other
measuring devices, raw HST data contains instrument
signatures. A signature is an instrument-specific arti-
fact that can sometimes be measured, e.g. by turn-
ing on an instrument without opening its shutter, and
subsequently removed from the raw data in a process
known as calibration.

Calibrated data may require additional processing
before it can be analyzed. For example, one might need
to remove cosmic ray noise from the calibrated data be-
fore analyzing it. The process which renders raw data
useful for analysis is known as reduction. This pro-
cess encompasses calibration, but the dividing line be-
tween reduction and analysis is not well-defined partly
because there is no best reduction technique for any
given data set. Two scientists could conceivably share

!Operated by the Association of Universities for Re-
search in Astronomy, Inc. for the National Aeronautics
and Space Administration (NASA). This work has been
supported by NASA under grant number NAS5-31338.

139

the same set of raw data yet reduce it differently be-
cause they are interested in different phenomena, e.g.
bright stars versus faint galaxies.

In any case, data reduction is a task often con-
signed to postdoctoral employees, graduate students,
and such. It is time-consuming and it often requires
a substantial amount of knowledge about mundane
things like tape drives, data analysis software pack-
ages, and data formats. Relieving researchers of this
drudgery is one of Draco’s primary goals.

The sheer volume of data being collected today in-
troduces a second, related goal of equal importance.
Some projects may not be able to afford to pay people
to manually reduce its data in a timely fashion.?

Note that the data reduction process is not endemic
to the HST or to astronomy. Furthermore, the tech-
nology we are about to describe is applicable not only
to those domains in which raw data is reduced and
analyzed, but to any domain rife with repetitive, me-
nial computations. Please keep in mind that many of
the references to reduction and analysis in these notes
could just as well be references to arbitrary computa-
tions.

Developmental History

Design and development of Draco began in October,
1991. The first prototype, about 3700 lines of Common
Lisp, C, and Bourne shell code, was completed and
released in August, 1992. Development will continue
through most of 1993.

Problems

No Consensus

Our main problem is the astronomy experts’ tendency
to disagree. There are at least five algorithms for re-
moving cosmic ray noise and some suspect that the
proper choice of algorithm hinges on the type of anal-
ysis that will ultimately be performed. There are also
at least five image restoration techniques that attempt

2Observations taken with the HST become public after
a one-year grace period so scientists have some incentive to
analyze their data quickly.



From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

to compensate for the HST primary mirror’s spherical
aberration. Scientists often wish to experiment with
different algorithms in order to discover which ones
are best suited for their data.

Neither the older paradigm of procedurally encod-
ing domain knowledge or the newer expert systems
paradigm are well suited to supporting this sort of
experimentation. Furthermore, both paradigms suffer
from other problems. For example, procedurally en-
coded systems can be extremely difficult to maintain
because a single fact about the domain may be en-
coded in several places. On the other hand, rule-based
expert systems can also be difficult to maintain because
one finds that the individual facts, when placed in a
domain-independent framework, often interact in un-
expected ways. There is also the well-publicized knowl-
edge acquisition bottleneck, i.e. determining what the
facts are and when one has accumulated enough facts.

The problem could be summed up as follows: the
ground-breaking scientist is often unsure about what
the facts really are. The conventional approaches, in-
cluding the expert systems approach, do not work well
in such a domain. We feel that AI technology can still
provide a solution.

Inertia

A scientist has good reason to be skeptical of new soft-
ware claiming to replicate the functionality provided
by his current analysis software package, especially
since his package has probably earned not only his re-
spect but that of his peers. Astronomers are particu-
larly concerned with understanding how their data is
being manipulated. This inertia, along with our lim-
ited project resources, convinced us that we needed to
design a system that can use existing reduction soft-
ware, and the astronomer’s concern for his data con-
vinced us that our system must be able to assure the
user that the proper reduction steps have been carried
out.

Heterogeneity & Antiquity

There are many software tools including several widely-
used analysis packages and several data file formats.
Integrating all these tools in a single framework will
not be easy, especially since few of these tools were
designed with this sort of integration in mind. These
tools must eventually be replaced by a single, coher-
ent, extensible analysis package, but integrating exist-
ing packages seems to be the most appropriate solution
today.

Solutions

Overview

We make two observations. First, our goal is to op-
timize a man-machine system of scientists, software
developers, and software. The system’s purpose is to
collect, reduce, and subsequently analyze data. The

140

traditional software engineer attempts to optimize the
software part of the system, i.e. make the software as
powerful as possible. This does not necessarily opti-
mize the system as a whole (but it is a good way to
stay employed). Given the flexibility required by our
domain, we feel that our efforts would be better spent
developing software which is not knowledgeable in the
sense that it does not anticipate user demands. What
it does do is allow the user to easily adapt his software
to the situation at hand. In short, Draco is not an
expert system, but an environment that facilitates the
integration of existing software tools.

Our second observation: purely syntactic manipula-
tions are often quite useful. Draco can be likened to
an algebra or a programming language. One defines
a set of primitives and is allowed to combine them to
form procedures. Draco does not know anything about
the semantics of the primitives, but it does know which
combinations of primitives are syntactically valid, and
therefore potentially useful. The user is responsible for
insuring that the procedures are truly useful.

Procedures and primitives are abstract entities. The
user provides additional information about concrete
entities such as primitive smplementations and the data
formats corresponding to these implementations and
Draco uses this information to translate a procedure
into an executable script tailored to the user’s data.

Keeping the User Informed

In order to keep the user at ease, we have made every
effort to generate an audit trail as the reduction pro-
ceeds. The trail begins with an inventory of the user’s
data files. This file inventory is generated by a collec-
tion of file type recognizers and reporters. In practice,
these recognizers are very thorough; they often read
the file in order to determine its type. A sample file
inventory is given in Figure 1.

An executable script should produce a log file record-
ing the data reduction or analysis steps performed.
Once again, Draco does not know how to produce such
a log file; it merely provides a little syntax enabling the
user to define his entities so that appropriate entries
will be entered in the log.

Integrating Existing Packages

Depending on the packages, i.e. if they all have fairly
reasonable command-line interfaces, this can be a sur-
prisingly easy task. Draco makes do simply by storing
a character string template for each of the user’s tools.
For example, a user might define a primitive RCRN
(Remove Cosmic Ray Noise) as in Figure 2.

RCRN is defined in terms of its input data type
image-set, its output data type image, and the imple-
mentations list following the :concrete keyword. The
rreconcile keyword determines how multiple inputs are
to be handled. The default value nil specifies that mul-
tiple inputs should signal an error condition, a value of



From: AAAI Technical Report FS-92-01. Copyright © 1992, AAAI (www.aaai.org). All rights reserved.

Figure 1: Sample file inventory

Inventory for /marian/data2/mds
Generated on 02-Aug-1992, 16:32:16
Draco version: 1

GEIS-CALIB-IMAGE files -

w0ul1d03t.cOh =
FILETYPE: ’SCI ’
IMAGETYP: ’"EXTERNAL ’
INSTRUME: 'WFPC !
FILTNAM1: ’F555W ’
FILTNAM2: ° ’

wQOulla04t.cOh =
FILETYPE: ’SCI ’
IMAGETYP: ’EXTERNAL ’
INSTRUME: "WFPC ’
FILTNAM1: 'F785LP ’
FILTNAM2: ° ’

DIRECTORY files —

uparm: directory

UNIX files —

Draco.inv: Draco document

mbox: mail folder

conjunctive specifies that the corresponding implemen-
tation should process all inputs at once, whereas the
value in the example, :distributive, specifies that the
implementation should be invoked once for each input.

One popular way of removing cosmic ray noise is
to take several exposures and then average their pixel
values ignoring those which are unusually bright. The
STSDAS? program wfpc.combine? can be used to per-
form this reduction step.

The implementation STSDAS-RCRN (Figure 3) is
defined in terms of its analysis package IRAF®, its
input file type IRAF-image-list, its output file type
GEIS-calib-image®, its initialization command tem-
plates, and a template specifying its invocation syntax.
In these templates, “—in” represents the implementa-
tion’s input, “—out” represents its output, and “-log”
represents the log file to be generated.

3STSDAS = Space Telescope Science Data Analysis
System

*WFPC = Wide Field/Planetary Camera

®STSDAS is layered on the Image Reduction and Anal-
ysis Facility.

8The STSDAS data file format is known as the Generic
Edited Information Set.

141

Figure 2: Sample primitive specification

(define-primitive
‘name RCRN
:documentation “remove cosmic ray noise”
:input image-set
:reconcile :distributive
:output image
:concrete (STSDAS-RCRN)

Figure 3: Sample implementation specification

(define-implementation
‘name STSDAS-RCRN
:documentation “a CR removal program”
:draco-package IRAF
:input IRAF-image-list

:output GEIS-calib-image
‘initialize-once  (“stsdas”
“wfpc’)
“combine.logfile=\ “—log\””)
:initialize (“combine.usedqf=yes”
“combine.outtype=r”
“combine.option=\ “crreject\””)
syntax “combine @-in —out”

An implementation need not be part of a software
package. Stand-alone Unix™ programs and Common
Lisp functions may also be used to implement primi-
tives.

Conclusions

At this point, it should be clear that our initialization
and invocation templates have trivialized the problem
of automatically generating calls to existing reduction
programs. The moral of our story appears to be that
one need not accumulate vast amounts of declarative
knowledge in order to create a useful “expert system,”
even (especially?) if one’s domain experts frequently
disagree with each other.

The first Draco prototype demonstrates that one
only needs a minimalist representation system to har-
ness existing data reduction tools. Instead of under-
taking the costly enterprise of declaratively encoding
algorithms and other techniques, e.g. iterative im-
age deconvolution methods, we have made use of the
vast amount of procedurally-encoded domain knowl-
edge that already exists.



From: AAAI TechnﬁllReport FS-92-01. Gopyright © 1992, AAAI (www.aaai.org). All rights reserved.
ture Directions

Our code generation problem would be much more dif-
ficult if our procedures had more structure. Data re-
duction procedures tend to be pipelines of programs
that do little more than read data and write trans-
formed data. More complex procedures might invoke
predicates to control branching or looping. Draco
would have to undergo substantial changes if it is to
support additional procedural complexity, but these
changes seem to be fairly straightforward, i.e. not chal-
lenging from a representational point of view.

One bit of complexity that might be implemented
shortly is the ability to automatically invoke data for-
mat conversion programs in order to integrate software
packages that do not share a common data format.
Once again, this modification does not appear to be
challenging from an Al point of view.

What would be challenging is giving the user the
ability to specify a set of analysis goals and then se-
lecting the procedure most suited to these goals. Such
ambition would require a much richer representation
language, and more time than we can spare.

Acknowledgements

I would like to thank Glenn Miller for his excellent
review of earlier drafts of these notes and for his help
in designing Draco. Mark Johnston also plays a critical
role in this project.

142





