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Abstract

We discuss progress in the design of an apprentice
program $3 whose goal is to recapitulate certain
aspects of the conceptual development in an im-
portant branch of physics, hydrodynamics. The
program is initially endowed with a bag of "math-
ematical tricks" and hydrodynamics knowledge as
known in the scientific community around 1830.
The program not only solves water wave prob-
lems but also acquires new concepts and theories
in light of its problem solving experiences. We
show how the problem solver might discover the
concept of group velocity by examining the solu-
tion trace of a typical wave problem. The discov-
ery process is based on a combination of careful
observations and justifiable mathematical specu-
lations. Little search is required.

Introduction
Can computer make significant, qualitative new find-
ings in science? Although recent years have seen an
increase in our understanding of concept formation in
elementary number theory [Lenat, 1978] and empiri-
cal generalization in chemistry ([Lindsay et al., 1980],
[Langley el al., 1987]), a predictive theory of scien-
tific discovery has not yet been established. Very few
computer programs have advanced far enough to pro-
duce new scientific results publishable in professional
journals. 1 Our continuing inability to understand
and simulate the intellectual mechanisms responsible
for progress in science seriously limits the advance-
ment in the design of a new generation of intelligent
programs that can deal with the challenging tasks of
theory and concept formation, and directing controlled
experiments for new observations and theory confirma-
tion.

Anyone who is introduced to the subject of com-
puter discovery for the first time quickly encounters the
supposition that the discovery process can be cast as
searches guided by a large collection of heuristics. In-

1See however [Tsai et al., 1990; Yip, 1991].

telligence, according to this view, amounts to the pos-
session and efficient access to this collection of heuris-
tics which constrains searches in an a priori immense
rule space or concept space. Until recently, much ef-
fort has been focussed on finding heuristics that can be
applied to a larger and larger class of scientific prob-
lems. However there is no guarantee that such effort
will lead to a predictive theory of discovery, and the
goals of this effort remain large unrealized.

There are indications that the discovery-as-heuristic-
search theory might not be necessary and might even
be wrong-headed in fields like physics, and that the
formulation of an adequate discovery theory will re-
quire a deeper understanding of the physics and math-
ematics of the subject matter. Even in mathematics,
practitioners do not in general systematically combine
mathematical concepts and operations and then filter
out those that are less interesting. Rather they at-
tempt to prove theorems and criticize the failed at-
tempts. New concepts and theorems develop through
attempts to fill in the gaps in "proof sketches" and in
successive refinements of refuted conjectures [Lakatos,
1976]. Substantial amount of mathematical knowledge
is needed to do such proof analysis.

Our view is that scientific discovery, as least dur-
ing normal science, is largely a combination of care-
ful empirical observations and justifiable mathematical
speculations. There is little search. Our approach re-
quires every result obtained by the problem solver has
a justification which describes the set of all simplifying
assumptions and all applicability conditions of math-
ematical operations used for its derivation. Solutions
to a good mathematical problem not only lead to new
concepts but also suggest new problems to solve. This
approach of concept learning is closely related to the
goal-directed learning of new vocabulary terms pro-
posed by Mitchell [Mitchell, 1983] and the dependency
mechanism of "problem solving by debugging almost-
right plans" by Sussman [Sussman, 1977]. Our contri-
bution is to show how such ideas when combined with
deep knowledge of physics and mathematics can be the
basis of problem solving programs powerful enough not
only to solve problems in a difficult branch of science
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but to increase its problem solving expertise as new
concepts and theories are discovered.

Our goal is to build an apprentice system that builds
up its knowledge in light of its own experience in solv-
ing increasingly difficult problems. Our programs are
not just smart number crunchers nor symbolic calcu-
lators although they possess such capabilities. Kather
we view them as models of what some scientists do
when they are investigating physical phenomena. We
want our computer programs to simulate how scien-
tists analyze these phenomena; they should be able to
make observations, propose working hypotheses, per-
form qualitative and heuristic analyses, make predic-
tions, and direct controlled experiments to verify its
theories.

Our objective is to develop a suite of computer pro-
grams - collectively known as $3 2 _ that recapitu-
late certain aspects of the conceptual development in
a particular branch of physics, hydrodynamics. Given
the hydrodynamical equations as known in the sci-
entific community around 1830 and a bag of applied
mathematics "tricks", these programs will be able to
(i) observe and measure important quantities in wave
tank experiments, (ii) simplify governing equations
by asymptotic techniques, (iii) derive qualitative and
quantitative predictions, (iv) compare predictions with
controlled experiments, (v) create useful concepts that
summarize observed features, and (vi) successively re-
fine the equations to improve the fit between theories
and experiments.

Our work is rooted in the tradition of focusing on the
problem-solving behavior of articulate professionals in
well-structured domains and formalizing their methods
so that a computer can exhibit similar behavior on sim-
ilar problems. But why do we want to do this? Why
do we want to make machines do something that some
good scientists already know how to do? Shouldn’t we
just focus on the difficult problems arising from nu-
merical simulation of fluid flows? There are several
reasons for this research effort. First, as workers in
the field of Artificial Intelligence, we are interested in
the epistemology of problem solving in many domains.
We want to understand what sort of computer repre-
sentations and reasoning mechanisms are necessary for
capturing the knowledge that expert scientists have so
that we can eventually build increasingly sophisticated
programs that rival the effectiveness and versatility of
human experts.

In addition, this kind of research is likely to have im-
portant consequences for the development of scientific
and engineering curricula. Scientific and engineering
curricula today make almost no effort to formally teach
students reasoning and problem solving patterns that
we observe in accomplished professionals. We believe
it is important to teach students not only the funda-

2The acronym stands for three important farniHes of
wave: Simple progressive wave, Stokes wave, and Solitary
wave.

mental ideas of a subject but also how to think like
scientists or engineers. (See [Sussman and Stallman,
1975] for a similar view.)

Finally, we also see the potential of computer pro-
grams as intelligent problem solving partners for in-
creasing the effectiveness of human scientists. By rais-
ing the conceptual level of interaction and hiding the
details of "routine" problem solving, such systems will
allow the human expert to focus on the more challeng-
ing tasks of problem formulation and theory forma-
tion. Consequently, the human scientist will be able to
tackle new classes of problem, and not just solve some
old problems faster.

Role of Mathematics and Physics in
Discovery

Witness the obvious fact that great discoveries in sci-
ence are in general not made by people previously ig-
norant of the field. It is only the master of his sub-
ject guided by a combination of empirical observations
and mathematical speculations who contributes most
to the growth of physical understanding.

It is well known that empirical sciences have greatly
influenced the development of mathematics. Physics
sets problems for which mathematical solutions are re-
quired - the invention of calculus for studying body
motion, vector analysis for electromagnetics, and Rie-
mannian geometry for relativity, just to name a few.
These examples illustrate the role of physics in the in-
vention and development of mathematical instruments.
We are interested, however, in the reverse process:
whether the solution of a mathematical problem leads
to discovery of new physical concepts and theories.

For a physicist, mathematics is more than a calcu-
lational tool for the mere purpose of deriving conse-
quences from the physical theory; it is a main source
of concepts and principles by means of which theories
can be created [Dyson, 1964]. There are two important
ways mathematics can further the discovery of physical
theories.

First, mathematical formulation gives precise mean-
ings to physical terms, removing ambiguities and vague
images associated with them. Second, by insisting on
giving physical interpretations to mathematical quan-
tities and operations used in the scientific theory, a sci-
entist can sometimes predict new physics (e.g., Dirac’s
discovery of positron by insisting on the reality of the
negative energy solutions to a relativistic equation).

There is however a down side to the role of math-
ematics in physics. Mathematical prejudices can set
back scientific development for decades or even cen-
turies. It took Kelper years to shake off the strong grip
of perfect circles and sphere and finally postulate ellip-
tical motion. This is where physicM observations and
experiments come into help. Mathematics may give
meanings to physical theory but its truth cannot be
determined until its predictions are consistently con-
firmed by experiments and accurate measurements.
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Design of $3
Fig. 1 displays the structure of the $3 problem solver.
Given a water wave problem, it simulates the wave
motion in a numerical wave tank, summarizes the sim-
ulation output, and tries to give a quantitative descrip-
tion of the motion based on its knowledge of mathe-
matical techniques and hydrodynamical equations. By
examining the resulting solution trace, it creates new
concepts and new simplified equations. The design of
$3 is based on six modules: (1) knowledge base, (2)
experiment, (3) interpretation, (4) modeling, and 
analysis, and (6) learner.

Figure h The Structure of the $3 Problem Solver.

The knowledge base consists of mathematical and
physical knowledge. Its mathematical knowledge com-
prises a subset of modern applied mathematical tech-
niques. Its hydrodynamical knowledge is what was
known in the science community around 1830. The
knowledge base has three components: (a) a bag 
tricks consisting of general applied mathematical tech-
niques (such as the Fourier method, standard asymp-
totic approximation techniques, and standard methods
to solve differential and integral equations), (b) the full
hydrodynamical equations (Fig. 2), and (c) the concept
of a simple progressive wave (Fig. 3).

The experiment module is a numerical wave tank
(see next section). A problem is given by specifying
the initial disturbance and boundary conditions on the
tank and the wave maker. Its output is the numerical

The flow is assumed to be incompressible, inviscid, and irrota-
tionai so the Laplace’s equations must hold:

V2~= 0
where ~b is the velocity potential.
There are three types of boundary conditions:
(1) A fluid particle at the free surface (z = ~7(z, y, t)) 
remains at the surface:

where the subscripts denote partial derivatives.
(2) The pressure within the fluid motion must conform 
Bernoulli’s equation:

1

where we have omitted the effect of surface tension.
(3) On any fixed boundaries, there must be no normal velocity
component:

n-V~=0

Figure 2: The full hydrodynamical equations are
Laplace’s equation with nonlinear free surface bound-
ary conditions.

Figure 3: Two snapshots of a simple progressive wave.
The wave is traveling to the right and extends to infin-
ity on either side. The dotted profile is what the wave
looks like at a slightly later time. The wave is usually
written in exponential form aei(kz-wl). Terminology:
A is the wavelength and the wave number le is defined
to be ~. The amplitude is denoted by a and frequency
byw.

values of the resulting wave profile as a function of
space and time.

The interpretation module describes the out-
standing features of the wave profile and compared
them with predicted values, if there are any. The de-
scription uses either general geometric language (e.g.,
smooth curve, cusp, sine curve, etc.) or comparison
with the shape of known concepts (e.g., the simple
progressive wave). If the match between predicted and
measured values is good, then the control is passed to
the learner module. If the match is poor, it will compile
the list of discrepancies and call the modeling module.

The modeling module checks its knowledge base
for the simplest equations that have not been tried to
describe the current situation. If the equation has been
solved before, then the remembered solutions will be
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used to give a quantitative description of the wave pro-
file. If the equation has not been solved before, then it
checks if it can be solved by some standard techniques.
When the equation cannot be solved exactly, it will
first be simplified. These simplification techniques in-
clude linearization, asymptotic analysis based on small
parameters, and assumed form of solution. The sim-
plified equation constitutes the current working model
and is sent to the next module. As the problem solv-
ing progresses, a lattice of mathematical models will
be developed until a good match is obtained between
the predictions from the current working model and
the observation data.

The prediction module checks its bag of tricks
for techniques to solve the equation. Even in the rare
event that an explicit formula can be found for solu-
tion of the equation, it might be necessary to further
simplify the solution in order to arrive at a useful inter-
pretation of the result. Then it translates the approxi-
mate analytical solution into measurement procedures
involving physical quantities such as wave amplitude,
phase period, phase velocity, phase zero points, ampli-
tude envelope zero points, etc. The predicted output is
remembered and passed onto the interpretation mod-
ule.

The learner module analyzes the solution trace
produced by the problem solver. It collects constraints
and conditions on the applicability of solution meth-
ods, and notices singular behaviors of the solution. It
spots any novel combination of constraints and uses it
to create a new concept.

An Example of Concept Discovery

Real ocean waves and its effects on beaches and ships
are complicated problems. So let us begin the research
into the nature of water waves by experimenting with
wave tanks in laboratories. Actually we don’t even
use a physical wave tank; we numerically simulate the
waves in a "numerical wave tank." The advantage of
numerical simulation is obvious: we can measure any
quantities and set up arbitrary initial conditions eas-
ily. The drawback is that only few physical effects and
rather simplified boundary conditions can be reliably
simulated. In fact, the subject of numerical simulation
of water waves is a major research area in its own right.
Nevertheless, there are still many interesting problems
to be studied even for two-dimensional wave motion
with fairly simple geometry.

Suppose you fill the wave tank with several inches
of water and assume the tank is long enough so that
wave reflection does not have to be considered. Now
drop a box (a weight or something) at one end of the
tank. What will you see? That depends on the dimen-
sions of the box and the depth of water in the tank. If
the box is not too large and the water is not too shal-
low, the initial hump of water displaced by the box will
travel down the length of the tank in the form of oscil-
latory waves. If we record the wave height at various

locations along the tank, we will see a surface profile
similar to the one shown in Fig. 4. Near the box the
profile is quite irregular. For larger time and farther
away groups of waves appear. More interestingly, as
the wave crest near the front fades out, a new wave
crest begins to grow in the rear. The new wave crest
will continue to grow until it reaches the front and then
it fades to nothing. This whole process goes on contin-
ually. The individual wave crests inside a group seem
to travel faster than the group itself.

I
~ ~j AT 6" $2 ~" S*

....._j ..............................
...... r.z .......

Elm

Figure 4: Top: The wave tank. Bottom: Wave profile
at various locations along She lengSh of She tank. The
vertical axis is space; the horizontal, time

This curious behavior of water waves may be new to
you. It does not happen in sound waves, nor with
waves traveling down a string. If you measure the
speed of the group, you will find that it is very close
to half the speed of the individual wave crests inside
a group. Physicists give this group speed a name, the
group velocity. Group velocity is an important con-
cept in many branches of physics involving wave prop-
agation; a whole book has been written about it [Bril-
louin, 1960]. The task for our computer program is
to discover the concept of group velocity and explain
the shape of the wave profile. We should emphasize
that the pattern for discovery of the concept of group
velocity is by no means special. Many hydrodynami-
cal concepts, such as solitary wave, Stokes wave, and
Benjamin-Feir instability, can be discovered in a simi-
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lar vein.
We recognize that the encoding of the qualitative

features of the output of the wave tank simulator is
not obvious; part of the research is to determine the
appropriate language for such descriptions. The pro-
gram first checks its knowledge base for a concept that
might fit the descriptions. An expert physicist will of
course have such a concept. But our apprentice pro-
gram starts with only the full hydrodynamical equa-
tions and a few simple concepts about waves. It has
the notion of a simple progressive wave, infinite in ex-
tent and constant in amplitude. This concept does not
match what it sees. "Match" is a rather complicated
idea - features must be extracted from experimental
profiles and compared with those of the simple pro-
gressive wave.

Now the program must go back to the hydrodynam-
ical equations (see Fig. 2). The full equation is too
complicated to solve analytically. Approximations and
simplifications must be made. In this case, a good
heuristics is to linearize the equations, i.e., assuming
the wave amplitude is small and product terms like
¢=T/: and Cyr/y are small. The linearized hydrodynam-
ical equations are easy’to solve. A simple program im-
plementing the separation of variable technique is built
on top of a conventional computer algebra system like
Mathematica to solve such equations. A special solu-
tion, the simple progressive wave, is found to satisfy
the equations provided that its frequency w and wave
number k are related by the following relation:

-- = tanh kh
k

This relation is known as the dispersion formula,
and the quantity ~ is the phase velocity, i.e, the
speed at which individual wave crests of the simple
progressive wave travel. For the case of deep water,
i.e., when kh is large, the relation simplifies to:

since tanh kh ~ 1.
The problem solver’s bag of applied mathematics

tricks consists of the Fourier Method which tells it to
compose a general solution by superposing the special
solutions with different amplitudes. The form of the
solution can be expressed as:

//rl(z, t) = A(k)ei(k=-°~’)dk
oo

where ~}(z, t) is the wave height at location z and time
t, and A(k) is determined by the initial wave profile at
time zero.

Now that we have exhibited an explicit formula for
the solution, we might think the work is over. But no
such luck. No physical insights can be directly grasped
from the formula. It shouldn’t be surprising. After

all, the wave evolution from the initial profile is fairly
complicated as witnessed in the experimental observa-
tions. To discover the essentials of the solutions, we
must delegate details into the background and look for
revealing behaviors. Asymptotic approximation does
just this: it concentrates on the singularities of the
function. In this case, the singularity of the formula
is in the limit t ~ co. That it would be informative
to find an approximation to the solution for large time
is already suggested by the observations. The behav-
ior in small time is dominated by the effect of initial
conditions, whereas in long time the intrinsic nature of
water waves will prevail.

The problem solver again checks its bag of tricks for
an approximation method whose pattern of applica-
bility matches the integral. For this integral, there is
a good approximation method available, the method
of stationary phase [Bender and Orszag, 1978], which
applies to integral of the form:

/~° f(k)ei~h(k)dk
oo

for large values of the parameter t. The basic idea
behind the approximation is this: as t becomes large,
the exponential term oscillates rapidly and therefore
its contributions to the integral will be cancelled by
the alternate positive and negative oscillations. How-
ever, cancellation does not occur at (i) points where
the function h(k) varies slowly, and (ii) at the end-
points (when finite). Since the integration is over 
infinite interval, only points of type (i) can have signif-
icant contributions. These points are called stationary
points because they are the zeroes of the derivative of
h. Assuming the function h has one stationary point
at k, we apply the method of stationary phase to get
following result:

f/ ~ 27r ,f(k)eith(k)+,,,n(h,,(k))oo f(k)ei’h(k)dk N "t I h"(k)

Applying the result to water wave and using the deep
water dispersion formula, we get for large values of t:

4Q f-d-. gt2 L gt 2 7rt) ) cos(- 

where Q and L are the dimensions of the box. This
formula compares favorably with the observations.

Now comes the crucial step. Having achieved a good
match between pre(]iction and experiment, the prob-
lem solver steps back and look at the record of its sym-
bolic reasoning. In particular it looks for conditions
under which the solution is valid and places where the
method breaks down.

First, the problem solver notices that the method is
valid only when k is a stationary point satisfying:

~k d x
h( k ) = -~( k-[ ~d) --" O

dw z
dk t
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It therefore suggests the term d~’, which has the dimen-
sion of velocity, as an important concept to remember.
This is how the concept of group velocity is discovered.

Second, looking at the approximation formula, the
problem solver notices the significance of the second
derivative of h at k. If it is zero, then the formula
blows up and the whole asymptotic analysis fails. For
water waves, it means that the result only applies to

the class of waves for which ~ ~ 0. The condition
becomes the definition of dispersive waves.

After a concept is discovered, the problem solver
tries to find out how it relates to existing concepts.
For example, in the case of deep water, it finds that
the group velocity is given by:

dk 2

is half the phase velocity ofThat is, the group velocity
the individual wave crests. Since the formula matches
observation well, the fact is incorporated into the con-
cept of group velocity.

Work in Progress
Pieces of the $3 problem solver have been built. These
include the numerical wave tank, procedures imple-
menting standard applied mathematical tricks, and
part of the mechanism for keeping track of justifica-
tion records. The major unfinished business is the rep-
resentation and manipulation of concepts.

How does the apprentice program "grasp" a physical
concept? Once a concept is created, it must be related
to physical quantities, to existing concepts, and to ex-
planatory procedures who might employ the concept
to describe new events and phenomena. For instance,
to grasp the concept of energy, the apprentice must
be able to (1) measure it, (2) calculate with it (using
conservation principle, for example), and (3) recognize
particular problem situations to which it can apply.

We will characterize a concept by three aspects: (1)
operational definitions, (2) symbolic relations, and (3)
applicability. Operational definitions consist of pro-
cedures for measurement. Symbolic relations refer to
the mathematical definitions, laws or equations relat-
ing the concept to other concepts, and rules of calcu-
lation (e.g., arithmetic, matrix operations, differenti-
ation or composition of function, etc.). Applicability
are recognition procedures that determine the scope of
application within which the concept has relevance.

Understanding of a concept is a evolving process. As
new problems are solved, new concepts, new facts, or
even new laws might be found. Old concepts are then
revised, modified, or even discarded in light of new
experiences.

Conclusion
Discovery systems are often likened to an explorer wan-
dering in a vast search space punctuated by occasional

sign posts pointing to promising directions or places
to avoid. In this paper, by showing how an important
scientific concept - group velocity - might be discov-
ered by a combination of careful empirical observations
and justifiable mathematical speculations based on so-
lution traces, we recast the discovery process so that it
completely avoids the search problem. The effective-
ness of the proposed discovery method depends on an
arduous process of mutual adjustment and feedback
between the problem solver and the learner. As the
problem solver learns new concepts and theories from
its experiences, it becomes a better problem solver.
As the problem solver increases its expertise, its opens
up more new problems to solve and thus helping the
learner to learn better. We often hear human pro-
fessional researchers remarking that finding the right
problem to solve is half the success. Our claim is that
the remark applies equally well to a computer discov-
ery system.
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