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Abstract

In this paper, we examine an approach to feature se-
lection designed to handle domains that involve both
irrelevant and interacting features. We review the rea-
sons this situation poses challenges to both nearest
neighbor and decision-tree methods, then describe a
new algorithm — OBLIVION — that carries out greedy
pruning of oblivious decision trees. We summarize the
results of experiments with artificial domains, which
show that OBLIVION’s sample complexity grows slowly
with the number of irrelevant features, and with natu-
ral domains, which suggest that few existing data sets
contain many irrelevant features. In closing, we con-
sider other work on feature selection and outline direc-
tions for future research.

1. Nature of the Problem

One of the central problems in machine induction in-
volves discriminating between features that are rele-
vant to the target concept and ones that are irrele-
vant. Presumably, many real-world learning tasks con-
tain large numbers of irrelevant terms, and for such
tasks, one would prefer to use algorithms that scale
well along this dimension. More specifically, one would
like the number of training instances needed to reach a
given level of accuracy (the sample complexity) to grow
slowly with increasing numbers of irrelevant features.

We define relevance in the context of such an induc-
tion task. Given a set of classified training instances
for some target concept, the goal is to improve classi-
fication accuracy on a set of novel test instances. One
way to improve accuracy involves identifying the fea-
tures relevant to the target concept. Following John,
Kohavi, and Pfleger (1994), we say that a feature is
relevant if it belongs to some subset of the known fea-
tures that is minimally sufficient to correctly classify
instances. John et al. break their definition down fur-
ther into notions of strong and weak relevance, but in
this paper we will not find it necessary to distinguish
the two senses.

Some previous experimental studies have examined
the effect of irrelevant features on learning. For ex-
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ample, Aha (1990) reports experiments with a simple
Boolean target concept which suggest that the sample
complexity for the simple nearest neighbor method is
erponential in the number of irrelevant features. Tech-
niques for inducing decision trees, such as Quinlan’s
(1993) C4.5, do much better on conjunctive and similar
target concepts because they attempt to select relevant
features and eliminate irrelevant ones. However, such
methods typically carry out a greedy search through
the space of decision trees. This approach works well
in domains where there is little interaction among the
relevant attributes, as in conjunctive concepts, but the
presence of attribute interactions, such as occurs in
parity concepts, can cause significant problems for this
scheme. Experimental studies by Almuallim and Di-
etterich (1991) and by Kira and Rendell (1992) show
that, for some target concepts, methods for decision-
tree induction also deal poorly with irrelevant features.

In response to this problem, Almuallim and Diet-
terich (1990) developed Focus, an algorithm which di-
rectly searches for minimal combinations of attributes
that perfectly discriminate among the classes. This
method begins by looking at each feature in isolation,
then turns to pairs of features, triples, and so forth,
halting as soon as it finds a combination that gener-
ates pure partitions of the training set (i.e., in which
no instances have different classes). Their scheme then
passes on the reduced set of features to ID3, which
constructs a decision tree from the simplified train-
ing data. Comparative studies with ID3 and with
Pagallo and Haussler’s (1990) FRINGE showed that,
for a given number of training cases on randomly se-
lected Boolean target concepts, Focus was almost un-
affected by the introduction of irrelevant attributes,
whereas the accuracy of ID3 and FRINGE degraded
significantly. Schlimmer (1993) has described a sim-
ilar method that also starts with individual attributes
and searches the space of attribute combinations, con-
tinuing until it finds a partition of the training set that
has pure classes.

Both of these algorithms address the problem of at-
tribute interaction in the presence of irrelevants by di-
rectly examining combinations of features. At least
for noise-free data, this approach has the advantage



of guaranteeing identification of minimal relevant fea-
ture sets, in contrast to the greedy approach used by
C4.5 and its relatives. However, the price is greatly
increased computational cost. Almuallim and Diet-
terich showed that Focus’ time complexity is quasi-
polynomial in the number of attributes, which they ac-
knowledged is impractical for target concepts that in-
volve many features. Schlimmer introduced techniques
for pruning the search tree without losing complete-
ness, but even with this savings, he had to limit the
length of feature combinations considered (and thus
the complexity of learnable target concepts) to keep
search within bounds. Thus, there remains a need
for more practical algorithms that can handle domains
with both complex feature interactions and irrelevant
attributes.

2. Pruning of Oblivious Decision Trees

Our research goal was to develop an algorithm that
handled both irrelevant features and attribute inter-
actions without resorting to expensive, enumerative
search. Our response draws upon the realization that
both Almuallim and Dietterich’s and Schlimmer’s ap-
proaches construct oblivious decision trees, in which all
nodes at the same level test the same attribute. For ex-
ample, a three-level oblivious tree might test attribute
X at the top node, attribute Y in all nodes at the sec-
ond level, and attribute Z in all nodes at the lowest
level. This framework does not limit one’s representa-
tional coverage; for every possible decision tree there
exists an equivalent oblivious tree, though the former
may have fewer nodes than the latter.

Although the above algorithms use forward selection
(i.e., top-down search) to construct oblivious decision
trees, this is not the only possible approach. Almual-
lim and Dietterich’s Focus and Schlimmer’s method
require combinatorial search to handle attribute inter-
actions precisely because they operate in this direction.
However, experience with C4.5 and its relatives sug-
gests that much of their power lies not in their forward
selection scheme but in their use of pruning to elim-
inate unnecessary attributes. This suggests an alter-
native approach in which one starts with a full oblivi-
ous decision tree that includes all attributes, then uses
pruning or backward elimination to remove features
that do not aid classification accuracy. This scheme’s
advantage lies in the fact that accuracy decreases sub-
stantially when one removes a single relevant attribute,
even if it interacts with other features, but accuracy re-
mains unaffected when one prunes an irrelevant or re-
dundant feature. This means that one can use greedy
search rather than enumerative methods.

We have developed an algorithm, called OBLIVION,
that instantiates this idea. The method begins with a
full oblivious tree that incorporates all potentially rel-
evant attributes and estimates this tree’s accuracy on
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the entire training set, using a conservative technique
like n-way cross validation. OBLIVION then removes
each attribute in turn, estimates the accuracy of the
resulting tree in each case, and selects the most accu-
rate. If this best tree makes no more errors than the
initial one, OBLIVION replaces the initial tree with the
best one and continues the process. On each step, the
algorithm tentatively prunes each of the remaining fea-
tures, selects the best, and generates a new tree with
one fewer attribute. This continues until the accuracy
of the best pruned tree is less than the accuracy of the
current one. Unlike Focus and Schlimmer’s method,
OBLIVION’s time complexity is polynomial in the num-
ber of features, growing with the square of this factor.

There remain a few problematic details, such as de-
termining the order of the retained attributes. How-
ever, one need not assign an order at all, since every
order should produce equivalent behavior. Instead, one
can view an oblivious decision tree as a set of disjoint
rules, each using the same attributes in their condition
sides. Because pruning can produce impure partitions
of the training set, each rule specifies a distribution of
class values. When an instance matches a rule’s con-
ditions, it simply predicts the most likely class. But
sparse training data raises another issue — making pre-
dictions when a test case fails to perfectly match any
rule. In this situation, we assume that one finds the
best matching rules, sums the class probability distri-
butions for each one, and predicts the most likely class.

In fact, this scheme is equivalent to using the simple
nearest neighbor algorithm, but with some attributes
ignored during the distance calculations. Given a test
instance, this technique retrieves all those training cases
that are nearest to it in the reduced space. If many
features have been pruned, it becomes likely that a
perfect match will occur so that the distance will be
zero. Pruning also makes it probable that many train-
ing cases, though different in the original space, will
appear identical in the reduced space. Given a tie, we
assume that nearest neighbor takes the majority vote,
which produces the same effect as predicting the most
frequent class associated with an abstract rule. If no
perfect matches exist, the method takes the majority
vote of the nearest stored cases (which can correspond
to multiple rules), giving the same result as the prob-
abilistic scheme above. This insight into the relation
between oblivious decision trees and nearest-neighbor
algorithms was an unexpected benefit of our work.

3. Experimental Results with OBLIVION

We have carried out two types of experiments to eval-
uate OBLIVION’s learning ability in comparison with
nearest neighbor and decision-tree methods. In the
first, we presented the three algorithms with artificial
data, which let us explicitly vary the number of irrele-
vant Boolean features and observe the resulting degra-
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Figure 1. The number of training instances required for
decision-tree induction, nearest neighbor, and OBLIVION to
reach 95% accuracy on a separate test set, as a function
of the number of irrelevant features, for the target concept
(AABACQC V (-AA-BA -C)).

dation in behavior. The second type of experiment
examined the ability of the algorithms in natural do-
mains. These results demonstrated the comparative
ability of OBLIVION in tackling real-world problems,
and provided some clues as to the presence of irrele-
vant features in these domains.

We designed the studies with artificial data to test
the methods’ ability to scale to domains with many ir-
relevant features. Briefly, we found that the empirical
sample complexity of nearest neighbor was exponen-
tial in the number of irrelevant features, confirming
Aha’s (1990) results. Moreover, this relation appears
to hold across a variety of target concepts. In contrast,
C4.5 scales linearly on some concepts (e.g., conjunc-
tions and other concepts that can be stated as linear
trees), but its sample complexity appears exponential
on others (such as parity concepts). We present results
for a parity-like concept in Figure 1. The number of
training cases that OBLIVION requires to reach a given
accuracy appears to be linear in the number of irrel-
evants, independent of the target concept, supporting
our prediction that the algorithm should scale well to
irrelevant features even in the presence of attribute in-
teraction.

The experiments with natural domains provided a
comparison of the three algorithms on a variety of data
sets from the UCI repository and elsewhere. Although
we could neither vary nor measure the number of ir-
relevants in these domains, we could make educated
guesses about the prevalence of irrelevant features by
comparing the patterns of results to those found with
artificial data. In four domains — voting records, mush-
room, DNA promoters, and breast cancer — we found
no difference among the learning curves for the various
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methods. Inspection of the features selected by C4.5
and OBLIVION indicated that both algorithms used a
small number of features in prediction. Since nearest
neighbor’s learning rate was no different in these do-
mains, we hypothesized that the remaining attributes
were probably redundant rather than irrelevant.

Different patterns emerged in two other natural do-
mains. On chess endgames, we found that C4.5 learned
more rapidly than OBLIVION, and that nearest neigh-
bor fared the worst. On one of Cardie’s (1993) natural
language tasks, which involved prediction of a word’s
semantic class, we found that the learning curves for
C4.5 and OBLIVION were indistinguishable, but that
both were better than that for nearest neighbor. The
poor performance of nearest neighbor in these domains
suggests a reasonable number of truly irrelevant at-
tributes. The superiority of C4.5 in the chess domain
suggests that the target concept lacks feature interac-
tions, and inspection of the induced trees confirmed
that they were nearly linear in structure.

In summary, our experiments revealed a clear differ-
ence in the effect of irrelevant attributes and feature
interaction on the behavior of nearest neighbor, the
C4.5 algorithm, and OBLIVION. The rate of learning
for the nearest neighbor method decreases drastically
with the number of irrelevant dimensions, regardless of
the target concept. The effect of irrelevant attributes
on decision-tree induction depends on the nature of the
target concept, giving a sample complexity that is lin-
ear for some and exponential for others. In contrast,
the sample complexity for OBLIVION appears to be lin-
ear in the number of irrelevant terms, independent of
the target concept. However, these encouraging re-
sults had little impact on six natural domains, where
C4.5’s learning curves were always as good or better
than those for OBLIVION.

4. Concluding Remarks

Clearly, the experimental results we have presented are
preliminary and must be treated with caution. In fu-
ture work, we hope to replicate our findings in the
presence of noise and on a broader range of target con-
cepts, including ones that incorporate more relevant
features, alternative Boolean combinations, and nu-
meric attributes. In addition we would like to explore
alternative schemes for searching the space of oblivious
decision trees that may further improve OBLIVION’s
ability to scale to domains with many irrelevant fea-
tures. We also hope to forge a stronger link between
our studies of natural and artificial domains.

Another direction for future work involves compar-
ing our approach with other methods for feature se-
lection, including Almuallim and Dietterich’s (1990)
Focus algorithm, Kira and Rendell’s (1992) more ef-
ficient RELIEF technique, and Aha’s (1990) scheme
for determining attribute weights for use in case re-



trieval. In addition, we should examine the relation
of our work to similar feature-selection methods that
a number of researchers have developed in parallel.
These include methods for selecting attributes to use in
decision-tree induction, described by John et al. (1994)
and by Caruana and Freitag (1994), as well as analo-
gous techniques for use with nearest-neighbor methods,
developed by Moore and Lee (1994), Skalak (1994),
Townsend- Weber and Kibler (1994, and Aha and Bank-
ert (1994). Like OBLIVION, all of these methods embed
the induction algorithm within the feature-selection
process, using estimated accuracy to direct a greedy
search through the space of feature sets.

Despite the work that remains to be done, we be-
lieve that our initial studies have revealed interesting
insights into the relative abilities of three different in-
duction methods in handling two important sources of
difficulty in learning. We anticipate that future exper-
iments with OBLIVION and its relatives will produce
deeper understanding of the characteristics of both al-
gorithms for feature selection and the domains in which
they operate, and we hope that other researchers will
join us in their study.

Acknowledgements

Thanks to David Aha, George John, Karl Pfleger, Russ
Greiner, Ronny Kohavi, Bharat Rao, and Jeff Schlim-
mer for discussions that improved the work reported in
this paper. We also thank Ray Mooney, who provided
modified C4.5 code for producing learning curves, and
Claire Cardie, who provided her natural language data.
Some of the material in this paper appears in the Work-
ing Notes of the AAAI9, Workshop on Case-Based
Reasoning. This work was supported in part by ONR
Grant No. N00014-94-1-0505.

References

Aha, D. (1990). A study of instance-based algorithms
for supervised learning tasks: Mathematical, empir-
ical, and psychological evaluations. Doctoral disser-
tation, Department of Information & Computer Sci-
ence, University of California, Irvine.

Aha, D. W., & Bankert, R. L. (1994). Feature selection
for case-based classification of cloud types. Working
Notes of the AAAI94 Workshop on Case-Based Rea-
soning (pp. 106-112). Seattle, WA: AAAI Press.

Almuallim, H., & Dietterich, T. G. (1991). Learning
with many irrelevant features. Proceedings of the
Ninth National Conference on Artificial Intelligence
(pp- 547-552). San Jose, CA: AAAL

Cardie, C. (1993). Using decision trees to improve
case-based learning. Proceedings of the Tenth Inter-
national Conference on Machine Learning (pp. 25—
32). Amherst, MA: Morgan Kaufmann.

Caruana, R. A., & Freitag, D. (1994). Greedy at-
tribute selection. Proceedings of the Eleventh Inter-
national Conference on Machine Learning (pp. 28-
36). New Brunswick, NJ: Morgan Kaufmann.

John, G. H., Kohavi, R., & Pfleger, K. (1994). Irrele-
vant features and the subset selection problem. Pro-
ceedings of the Eleventh International Conference on
Machine Learning (pp. 121-129). New Brunswick,
NJ: Morgan Kaufmann.

Kira, K., & Rendell, L. (1992). A practical approach
to feature selection. Proceedings of the Ninth Inter-
national Conference on Machine Learning (pp. 249
256). Aberdeen, Scotland: Morgan Kaufmann.

Langley, P., & Iba, W. (1993. Average-case analysis
of a nearest neighbor algorithm. Proceedings of the
Thirteenth International Joint Conference on Arti-
ficial Intelligence (pp. 889-894). Chambery, France.

Littlestone, N. (1987). Learning quickly when irrele-
vant attributes abound: A new linear threshold al-
gorithm. Machine Learning, 2, 285-318.

Moore, A. W., & Lee, M. S. (1994). Efficient algo-
rithms for minimizing cross validation error. Pro-
ceedings of the Eleventh International Conference on
Machine Learning (pp. 190-198). New Brunswick,
NJ: Morgan Kaufmann.

Pagallo, G., & Haussler, D. (1990). Boolean feature
discovery in empirical learning. Machine Learning,
5, 71-100.

Pazzani, M. J., & Sarrett, W. (1992). A framework
for the average case analysis of conjunctive learning
algorithms. Machine Learning, 9, 349-372.

Quinlan, J. R. (1993). C4.5: Programs for machine
learning. San Mateo, CA: Morgan Kaufmann.

Schlimmer, J. C. (1987). Efficiently inducing determi-
nations: A complete and efficient search algorithm
that uses optimal pruning. Proceedings of the Tenth
International Conference on Machine Learning (pp.
284-290). Amherst, MA: Morgan Kaufmann.

Skalak, D. B. (1994). Prototype and feature selection
by sampling and random mutation hill-climbing al-
gorithms. Proceedings of the Eleventh International
Conference on Machine Learning (pp. 293-301). New
Brunswick, NJ: Morgan Kaufmann.

Townsend-Weber, T., & Kibler, D. (1994). Instance-
based prediction of continuous values. Working Notes
of the AAAI9{ Workshop on Case-Based Reasoning
(pp. 30-35). Seattle, WA: AAAI Press.

135





