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Abstract
A tradeoff exists between the range of
learning tasks solved by an induction sys-
tem, and its performance on those tasks.
We propose dynamic-bias induction, an
approach in which bias is dynamically con-
structed as a function of the learning task.
This admits the possibility of a high per-
formance inductive learner that applies to a
wide range of learning tasks. We assess the
benefits and limitations of dynamic-bias
induction by comparing an implementation
of the approach to two existing inductive
learning systems.

1. INTRODUCTION

Learning performance is greatly influenced by the
strength of the learner’s bias. Strong bias reduces
the complexity of induction by reducing the number
of alternative hypotheses considered. Bias that ap-
plies to a narrow class of leaming tasks is free to in-
clude a narrow space of inductive hypotheses. Bias
associated with a narrow space of hypotheses is, by
definition, strong bias, and thus results in high
learning performance.

In addition to high learning performance, it is im-
portant for an inductive learner to apply to a broad
class of learning tasks. To be an effective tool for
use in a given domain, an induction system must be
capable of solving a range of learning tasks within
that domain. This requirement of broad applicabili-
ty conflicts with the task specificity suggested as a
means of improving learning performance. How
can an inductive learning system simultaneously
possess the improved learning performance of a
task-specific bias while retaining the broad applica-
bility of less task-specific bias? We propose dyna-
mic-bias induction as a solution to this dilemma. In
this solution bias is constructed dynamically as a
function of the particular learning task at hand. This

solution rests on a new form of information that we
refer to as relevance knowledge. Relevance knowl-
edge, when combined with the problem specifica-
tion for a particular learning task, yields a strong,
task-specific bias for that learning task. Given the
description of a different learning task, the same
relevance knowledge can yield a different bias spe-
cialized to that task.

This approach follows in spirit work done by Stuart
Russell on deriving bias from "high-level regulari-
ties in the world" [Russell86, Russell87]. The par-
ticular class of regularities considered by a learner
has a profound effect on the concepts that may be
entertained and thus learned. The remainder of this
abstract discusses requirements on dynamic-bias
induction to motivate the particular high-level reg-
ularity we consider--relevance knowledge.

Additional requirements are needed to ensure that
dynamic-bias induction is a practical tool for induc-
tive learning. An obvious solution to the problem
of broadly applicable, high performance induction
is to encode a task-specific bias for each possible
learning task. This set, when indexed by a particular
learning task description, yields a strong bias en-
coded specifically for that task. Though such rele-
vance knowledge solves the problem as stated, it is
not a practical solution. Such a representation re-
quires a bias for each possible learning task to be
considered and encoded independently. Informa-
tion expressed in the bias for one of these tasks can-
not be applied to any of the other learning tasks.

The failure of the solution proposed above stems
from its violation of additional constraints on rele-
vance knowledge that ensure the practicality of dy-
namic-bias induction. We have identified three cri-
teria for relevance knowledge. Relevance
knowledge must be: compact, general, and avail-
able.
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The solution proposed above fails because its rele-
vance knowledge is not compact. In that solution,
information regarding the bias for one learning task
cannot be shared by other tasks, no matter how re-
lated the tasks are. Such sharing is important when
biases for many learning tasks are derived from
some common body of knowledge.

Relevance knowledge must be general. Though the
goal of dynamic-bias induction is to capture task-
specific bias, it is important that the relevance
knowledge itself is independent of any particular
learning task. The task dependance of the generated
biases arises from the interaction of the particular
problem specification and the general relevance
knowledge. This independence from particular
tasks is necessary if dynamic-bias induction is to be

a practical approach to the problem of broadly
applicable, high performance induction.

Relevance knowledge must be based on informa-
tion that one can reasonably expect to be available.
Our approach of providing the learner with specific
knowledge about the task at hand is useless if the
knowledge required is no more accessible to the hu-
man user than the definition of the target concept it-
self. Thus, relevance knowledge must be a form of
knowledge that is both available prior to learning
and detailed enough to yield strong, task-specific,
bias.

2. MODEL OF DYNAMIC-BIAS
INDUCTION

Figure 1 is a block diagram of our model of dyna-
mic-bias induction. The shaded region corre-
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Figure 1: A model of dynamic-bias induction.

sponds to conventional (statically biased) induction
(i.e., ID3 [Quinlan86], AQ11 [Dietterich82], FOIL
[Quinlan90], version space induction, connection-
ist networks, etc.). The training instances in the fig-
ure are represented as instance attributes with their
associated values, and a classification for each
training instance. Instance attributes are referred to
as domain features, and the classification of an in-
stance is simply its value for the goal feature. The
concept definition is an expression that predicts the
goal features as a function of the remaining features.
The inductive bias is a (possibly infinite) structured
set of candidate target concept definitions. The un-
shaded portion of Figure 1 represents the enhance-

ments of dynamic-bias induction. The learning
goal is the name of the target concept to be induced.
The relevance knowledge is some fixed source of
domain knowledge used to dynamically construct
biases.

3. PROPERTIES OF RELEVANCE
KNOWLEDGE

The use of relevance knowledge in our model of dy-
namic-bias induction, and the principles enumer-
ated in the introduction both constrain relevance
knowledge. We present these constraints as a set of
properties on relevance knowledge. These proper-
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ties are used in turn as the basis for the formalization
of dynamic-bias induction.

According to our model in Figure 1, relevance
knowledge gives rise to task-specific hypotheses.
Many practical applications of induction are si-
tuated in domains where a wealth of knowledge re-
garding the domain features is available. Since the
hypotheses are just particular combinations of do-
main features this knowledge can potentially pro-
vide strong guidance. We denote some of this
knowledge using a relation over the domain fea-
tures. Intuitively, this relation denotes the "rele-
vance" of some features for the prediction of other
features. As an example, consider the relevance of
the feature is-a-bird for the prediction of the can-
fly feature. Using the value of is-a-bird along with
the values of other features like is-dead, and has-
wings, the value of can-fly can be predicted, thus is-
a-bird is relevant to can-fly. Since the aim of induc-
tion is the prediction of the target feature, the
relevance of particular features for the prediction of
other features can guide the task-specific choice of
inductive bias. We refer to a declaration of the rele-
vance of one feature to another as a relevance link.
We use the ’ >-’ symbol to denote a relevance link.
The relevant feature occurs on the left hand side,
and the predicted feature is placed on the right. The
relevance link above is written as: is-a-bird~can-
fly. In general, a ~ b iff there exists some concise
concept definition of b that uses a.1

Like Russell’s determination, the relevance link ex-
presses generalities about the world used to con-
strain induction. Because the knowledge available
prior to learning is likely to be incomplete/impre-
cise both the determination and relevance link are
weaker than the corresponding deductive implica-
tion. Indeed the relevance link can be seen as a fur-
ther step in the same direction, since it is weaker
than the determination. If some predicate a deter-
mines a predicate b then it must be the case that a is

1. A concept definition c is a "concise" concept
definition for b if there does not exists some defini-
tion c’ for b where the predicates in c’ are a proper
subset of those in c.
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relevant for the prediction of b, i.e. a is part of some
concept definition for b. Russell’s example deter-
mination "[a person’s] Nationality determines
[their primary] Language" implies the correspond-
ing relevance link: "Nationality is relevant to Lan-
guage," The converse, however, does not hold.
Given some predicate a relevant to the prediction of
b does not guarantee that a alone determines b. For
example, Gas-pedal-position is relevant to deter-
mining a car-velocity, but it does not determine
car-velocity. Many other features must also be in-
cluded in any determination of the car-velocity,
current gear, clutch, and break settings, gas level,
road inclination, etc. Indeed it is precisely this abil-
ity to specify the relationship between a small num-
ber of concepts that facilitates the encoding of
knowledge in our formalism.

According to the criteria in the introduction, the re-
presentation of relevance knowledge must be com-
pact. We achieve this compactness by sharing infor-
mation about the bias (relevant features) for
different learning tasks within a domain, where a
domain is simply a group of related learning tasks.
Relevance knowledge expresses systematic proper-
ties at the domain level, not the task level. The rele-
vance of some feature o~ for the predication of
another feature 13 is domain level knowledge, since
it potentially impacts many tasks within that do-
main. For each learning task with goal feature ~5,
where 13~5, o~ impacts that task since, ct~13,
and 13 ~ 6 implies tx ~ ~i. This transitivity of the rele-
vance relation permits the compact representation
of relevant features for tasks within a domain by en-
coding them as a network of domain-specific (but
task-independent) relevance knowledge.

Dynamic-bias induction uses specialized domain
knowledge as a source of strong, task-specific bias
for induction. The next properties of relevance
knowledge enable it to express two commonly
available types of specialized knowledge.

One commonly available type of specialized
knowledge indicates whether some feature is posi-
tively or negatively correlated with another feature.
A feature is positively correlated with another fea-



ture if positive values for the first are associated
with positive values for the second. So, is-a-bird
is positively correlated with can-fly. A feature is
negatively correlated with another, if positive val-
ues for the first are associated with negative values
for the second. So, has-hair is negatively corre-
lated with can-fly. The relevance link denotes a
positive correlation between its left and right hand
sides. A negative correlation is denoted by negating
the left hand side of the relevance link; the example
above is written: -,has-hair,can-fly.

Another common type of specialized knowledge or-
ganizes features into conceptual units. These
groups of features are used for predicting other fea-
tures. The expression is-speeding^police-present
is a conceptual unit that is relevant to the feature
traffic-citation-received. Such groups of features
are treated as a unit when combined with other fea-
tures. Treating groups of features as a unit greatly
reduces the number of inductive hypotheses since
the combined features are treated like a single fea-
ture.

We have a number of constraints on relevance
knowledge derived from our model of dynamic-
bias induction. We summarize these constraints as
a set of properties of relevance knowledge:
l) Relevance knowledge is a relation over domain
features.
2) Relevance knowledge captures domain-level
knowledge in a transitive relation.
3) Relevance knowledge can express correlation
information between features.
4) Relevance knowledge can express groups of
features to be treated as a unit.

4. RESULTS

In the extended version of this paper [Oblinger94]
we use the properties enumerated here to motivate
our syntactic encoding of relevance knowledge, and
the formal specification of the bias (set of inductive
hypotheses) derived from this knowledge. The use
of dynamic-bias induction is demonstrated by en-
coding a simple domain as a set of relevance links.

A pair of experiments are performed using learning
tasks within this domain. These experiments empir-
ically measure the effectiveness of dynamic-bias
induction. In the first experiment, we show the
benefit of dynamically constructing bias by com-
paring our approach to a statically biased induction
system. For this experiment FOIL [Quinlan90] is
given an optimal static bias for a class of problems.
Its performance is compared with an implementa-
tion of dynamic-bias induction, given relevance
knowledge for the same task. In the second experi-
ment our approach compares quite favorably to
FOCL [Pizzani91], another induction system that
dynamically derives its bias from a background
knowledge. This comparison provides some sense
for the constraint relevance knowledge places on in-
duction, relative to other forms of knowledge also
used to dynamically derive bias for induction.
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