From: AAAI Technical Report FS-95-03. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Improving Case Retrieval by Remembering Questions *

Daniel Griffin and Richard Alterman
Center for Complex Systems
Computer Science Department
Brandeis University
Waltham, MA 02254
dang@cs.brandeis.edu
alterman@cs.brandeis.edu

Abstract

The goal of this research is to develop technology for
interactive case retrieval systems that improve their
performance, after they have been deployed, by re-
membering previous questions.

Depending on the origin of the case-base, one can ex-
pect a variable vocabulary and structure to the cases,
leading to difficulties in determining exactly how the
system should use the cases. By remembering ques-
tions, structure and uniformity can be built into the
case-base, leading to improved system performance.
In this paper, we describe a retrieval system that takes
advantage of a question history. Experimental results
are presented which confirm that this technique im-
proves precision and recall of the system.

Introduction

The goal of this research is to develop technology for
building interactive case retrieval systems that improve
their performance, after they have been deployed, by
remembering previous questions.

In general we see several advantages to systems that
remember questions:

o It allows the system to build expertise for the ques-
tions most frequently asked.

o It offers a way to profile and differentiate end-users,
classes of end-users, and their associated concerns.

o It allows the system to structure and to smooth out
inconsistencies in the data.

Given an existing CBR retriever, the approach we
describe is to augment the system with a module that
remembers all the questions that were previously asked
as well as the answers/cases that were generated in
response to the question along with relevance ratings
for each case. The module uses that information to
improve the performance of the retriever.

In the normal course of events, a CBR system will
collect cases and use them to improve its performance.
There may come a point, however, when the case-base

*This work was supported in part by DEC Contract
1717

begins to stabilize and the rate of cases being added
to the case-base slows down or even stops. Take for
example a CBR system that reasons about legal prece-
dents; there is a fairly stable set of court cases that
the system has in its case-base, and these cases are the
basis for the reasoning process. It is at this point that
the system could continue to learn about its domain by
learning about the usage of the cases in its case-base.

The way that cases in the case-base are gath-
ered/structured, may reflect the design time uncer-
tainty as to the eventual usage of the cases. The meth-
ods discussed in this paper offer an approach to miti-
gating the uncertainty in these kinds of domains. The
notion is that after the system is built and deployed
you want it to continue to develop. Inconsistencies
and problems in the data can gradually be overcome
through the usage of the system. Thus, for example, a
case which initially has a bad index, will eventually ac-
quire a set of questions that can be used as alternative
indexes which better reflect the usage of the case.

The notion of remembering questions, as a method
for modeling the usage of a given data set, can be ap-
plied to a wide range of applications of CBR technol-
ogy. The key ingredient is to include the interaction
between the end-user and the retriever as a part of the
evolution of the system. In this paper we will apply
this notion to a help desk application, but we are also
looking at this as a technique to support multi-agent
memory systems and certain online information sys-
tems.

Basic Retrieval Mechanism

The base retrieval system can be described as follows.
A user specifies a list of keywords which are relevant
to his information need. This will be referred to as the
user-query. Queries are of the form,

((keywordy key-flagy) ... (keyword, key-flagy))
where key-flag; is a boolean value denoting the pres-
ence or absence of keyword; in a desired case. The
case-base is organized as a binary ID3 tree (Quinlan,
1986) with nodes separating cases by features (does
the case have feature X? Yes or No). The retriever will
traverse the tree using the user supplied keywords to

decide which branch to take at a node. In the situa-
tion when an impasse occurs, i.e., when a node in the
tree specifies a feature Y not supplied by the user, the
system moves into an interactive mode where the user
is allowed to say :

1. Take the branch with cases that have feature Y

2. Take the branch with cases that don’t have feature
Y

3. Take both branches (“I don’t know” option)

The users decisions are recorded in the interactive
portion of the retrieval, and along with the initial user-
query will be referred to as the user-ezpanded-query.
This process is repeated until cases are reached at the
leaf nodes. After retrieval is complete, the user steps
through the cases marking each case as relevant (+4),
not relevant (-), or neutral (0) to the users question.
Although view this evaluation process as minimal work
for the end-user, it may not be necessary for the user
to evaluate all of the retrieved cases. The system can
still use the partial information supplied by the user to
improve its performance.

Remembering Previous Episodes

The basic idea is to track the history of questions. Each
time the end-user asks a question of the system, he
sifts through the list of cases that are recalled marking
cases according to their relevance. The system retains
a record in the form of a set of transactions between
the end-user and the retrieval system. Thus, the basic
unit of our analysis is:

(associate <question>
<case and its index>
<relevance-of-case-to-question>)

The system learns associations between questions and
cases; those cases that are retrieved and relevant and
also cases that are retrieved and that are not relevant
are both added to the history. Sometimes the associ-
ation that is retained is not only between a question
and a case, but also between two questions, i.e.,

(associate <question> <question>)

Such a situation would occur when an initial question
does not produce an adequate answer for one reason
or another and the end-user tries a different approach.

Building up a history of associations between ques-
tions and cases (or between two questions) leads to
a different view of the cases then what you get by
organizing cases based on their content. By keeping
track of questions, the retrieval system can begin to
learn the different ways of asking about a case, and
also learn about questions which should not retrieve a
given case. Remembering questions enhances the po-
tential of system performance by allowing the system
to reason about future questions not only based on the
content of the cases, but also based on the previous

questions and their associations to cases or other ques-
tions.

We are exploring two methods for storing previous
episodes of question answering (Figure 1). In this
paper we will discuss in detail one technique that ex-
ploits the first method of storing question-answering
histories: recognizing a question.

Techniques that Exploit a
Question-Base

Our research at this point has investigated several ways
to exploit the existence of a question-base. Here we will
discuss one such method.

The strategy for storing the history of questions dis-
cussed in this paper is to form a separate case-base of
questions. Keeping a question-base allows the retrieval
system to build up expertise about the cases most reg-
ularly asked about and to recognize different questions
and their correct responses. Under this scheme the
retriever would first use the question-base to see if it
recognized the question. Questions are ‘recognized’ by
first retrieving from the question-base using the user-
expanded-query, and then pruning the retrieval list by
applying a weighted similarity function to the match
between the new question and each previous question.
If the question is not recognized as being similar to any
previous questions, or if the similar previous questions
had no positive associations, then the clustering based
on the content of the cases is used to retrieve cases (see
Figure 2).

Notice that our use of the question-base does not
preclude the system from continuing to use the content
of the case as a basis for retrieval. This is especially
important early on when there are not many previous
question and answering episodes available; it is also
important on the occasions when the system is evolving
due to the development of new applications, interfaces,
or kinds of users.

Evaluation

In this experiment, we used a case-base of 293 cases.
Each case was a diagnosis of a bug in a release of soft-
ware consisting of mostly unstructured pieces of text
and was entered by one of a number of different peo-
ple. We identified a list of about 348 keywords used in
the description of cases. We used the ID3 algorithm
to build a clustering of the cases over the keywords. A
simple interface was developed that allowed the user
to enter a query in a keyword format.

We then enlisted seven subjects to write queries. All
of the subjects wrote queries for seven of the same
target cases. Each of the subjects also wrote queries for
seven unique cases. Finally the subjects were divided
into three groups (two of the groups were size 2 and
the third group was of size 3), and each group wrote
queries targeted for 7 cases unique to that group. Thus,
in total, each subject wrote queries for 21 cases. After

1. Create a case-base of previous questions.

(a) Maintain memory of questions in terms of differences and similarities of questions themselves.

(b) Alternate view of cases based on questions.

2. Attach questions to cases.

(a) Organize questions around existing organization of cases.

(b) Filter a retrieved case using questions attached to the case.

Figure 1: Two approaches to keeping a memory of preﬁious questions.

Given test query g¢;, let @Q; be the set of queries retrieved from the query base, and let R be the initially empty set

of cases retrieved by this technique.
1. For each query ¢; € Q; :

(a) If ¢; produced positively evaluated cases, then include them in R

(b) Otherwise include no cases from ¢; in R.
2. If R = 0 do normal case base retrieval using g;.

3. Otherwise return R.

Figure 2: TECHNIQUE 1:

Recognize a question.

the test subjects finished entering their queries, we had
239 queries. This number is larger than the expected
21 per user because the users were encouraged to try
several times if a retrieval was not successful. Of the
239 queries, 132 were used as a training set and the
remaining 107 as the test set. The test set was divided
into 2 sub-groups: those questions that had no relevant
history (numbering 64) and those that did (numbering
43).

We used two standard metrics for evaluating the ef-
fectiveness of our techniques:

Precision is defined as the proportion of relevant
cases in the retrieved set of cases.

Recall is defined as the proportion of relevant re-
trieved cases to the total number of relevant cases
in the case-base.

Precision tells you what percentage of the retrieval list
is relevant. Recall tells you what percentage of the
relevant cases are retrieved. For this particular data
set (case-base) there was only one relevant case per test
query. This affects the interpretation of of precision
and recall in the following ways:

e A high precision directly translates into a short re-
trieval list (and less work for the user in evaluating
the retrieved cases).

o Since for each test query recall is either 0 or 1, when
recall is averaged over all of the test- queries, the
result tells you in what percentage of the test queries
the target case was retrieved.

Testing Technique 1: Recognizing
Questions

We tested Technique 1 (recognizing questions) as fol-
lows. The test set was divided into 2 groups those
question that had no relevant history (numbering 64)
and those that did (numbering 43). For the purposes
of this paper, we will present the results of technique
1 on the queries which had a relevant history only.

This experiment was also run twice, once with un-
expanded queries, and the second time with expanded
queries. That is, Technique 1 is run twice, once with ¢;
equal to user-query and once with ¢; equal to ezpanded-
query (see Figure 2). The results of testing technique
1 using user-query retrievals are shown in Table 1.

As you can see, both techniques resulted in high re-
call. This is due to the fact that user-query is fairly
general and the retrievals are therefore very large.
Recognition gave no benefit to recall, but it did not de-
crease it either. Precision, on the other hand, benefits
from the recognition technique since when a question is
recognized, only the correct answer (case) is returned.
This results in a smaller retrieval set, and a higher
precision. The precision of the recognition technique
is better than that for the case-base retrieval.

The results of testing technique 1 using user-
expanded-query retrievals are shown in Table 2. Using
the more specific expanded-query, recall is reduced in
both the case-base retrieval and the recognition based
retrieval, but as you can see, recognition performs bet-
ter than the case-base retrieval. Precision using recog-
nition has shot up to almost 50% whereas it has re-
mained at 16% for case-base retrieval. Both precision

Technique Precision Recall
Case-Base 0.0446 0.9302
Recognition 0.1459 0.9302
Improvement (95% confidence) | 0.0186 > ps > 0.1841 | 0.0000 > s > 0.0000

Table 1: Recognize using unexpanded Retrievals

Technique Precision Recall
Case-Base (user-expanded) 0.1559 0.5814
Recognition (user-expanded) 0.4996 . 0.6977
Improvement (95% confidence) | 0.2176 > us > 0.4698 | 0.0163 > ps > 0.2162

Table 2: Recognize using user-expanded Retrievals

and recall for recognition are better than that for case-
base retrieval within a 95% confidence interval.

Overall this experiment confirms that the technique

of recognizing questions does improve the performance
of the system for questions that have a relevant history.

Discussion and Related Work

An important feature of our system is that it maintains
the difference between questions and the content of the
cases. In our view there are several reasons to do this.

*

There can be large inconsistencies in the data. This
can result from different people gathering the data
and non-uniformity in the vocabulary used to write-
up each case. These kinds of inconsistencies can be
filtered out when building the retriever by establish-
ing a uniform vocabulary for retrieval. Thus where
the initial cases may be a hodge-podge of vocabulary
and description styles, from the vantage point of the
questions the cases will appear to have a higher de-
gree of uniformity.

Different end-users (within the same application)
may have different styles of asking questions. Keep-
ing around explicit information about the questions
being asked allows the system the potential to learn
these kinds of systematic differences and take advan-
tage of them.

In addition to there being inconsistencies in the data,
it may be the case that a CBR, system is using al-
ready existing data as its case-base, and this data
may have little or no structure. By building a col-
lection of questions and answers, we are in effect
building structure into the data based upon its us-
age.

With regards to the literature there are several

points to be made:

Others have explored the role of ‘unanswered’ ques-
tions in directing learning (Ram & Hunter, 1992) or
reading (Ram, 1991; Carpenter & Alterman, 1994),
our interest here is in retaining and using a memory
of previously ‘answered’ questions.

e Improving system performance by adjusting to a

particular individual or individuals profile has been
investigated (see McTear, 1993). These systems
adjust their behavior based upon consideration of
the users goals, capabilities, preferences or beliefs.
These factors are used along with fairly detailed
domain knowledge to adapt system performance to
better suit the user. A problem with these tech-
niques is that they use some form of apriori knowl-
edge about how a system is used by users with cer-
tain goals, capabilities, preferences or beliefs. This
knowledge is not always available or obvious for a
given domain, or it may be prohibitively expensive
to extract such information.

In contrast to specific indexing schemes that are
claimed to apply to a wide selection of domains
(Schank et. al, 1990), the approach to indexing
here is the indexing and retrieval is contingent on
the ongoing interaction between the end-user and
the system. By separating questions from cases, the
case retriever can view cases from the perspective of
their usage — in principle each question the case is
relevant for is another index for the case.

In contrast to systems that attempt to learn a best
index for a case by refining the index of a case based
on retrieval performance and/or utility (e.g. Riss-
land & Ashley, 1986; Veloso & Carbonell, 1993), our
approach is to learn the multiple kinds and instances
of questions that either positively or negatively re-
trieve a case.

Altering case-base indices based upon the utility of
cases has also been investigated in the field of CBR
(Veloso & Carbonell, 1993). Techniques that adjust
the organization of case/index memory based upon
the utility of cases work with the assumption that
the past usage of a case is how the case should be
used. Although we may hope that this is true, it is
not true for all situations. .

The idea of attaching relevance/utility ratings to re-
trieved documents has been investigated in the In-

formation Retrieval (IR) field. Relevance feedback
1s a technique in which a query is made, the re-
trieved cases are evaluated, and the evaluations are
used to make an improved retrieval (Harman, 1992).
Relevance feedback does not take advantage of past
relevance ratings. This may result in several itera-
tions of the relevance feedback loop. Using our tech-
niques the amount of work that an end-user has to
go through will be reduced by taking advantage of
similar past query sessions.

1t is important in general to differentiate CBR from
IR. For example, IR technology was developed to
work with document file numbering in the tens of
thousands, but many CBR application only need
work with a few hundred cases — and technology
that is developed towards working with huge num-
bers of documents will not necessarily scale down
as the best approach to working with case libraries
numbering in the hundreds. Another important dif-
ference stems from the inclusion of adaptive mech-
anisms in the CBR paradigm. Thus for CBR plan-
ning any relevant case may suffice (because it can
be adapted), but for IR and document retrieval all
relevant cases may need to be retrieved.

Despite these differences, there may be some pay-
off in applying the technology developed here to the
task of IR. In principle, one could substitute a infor-
mation retrieval system for the base case retriever
described above, thus potentially improving system
performance by allowing the system to gain skill, af-
ter it has been deployed, for the questions that are
most frequently asked. We have, in fact, run tests
that have shown an effective technique for query ez-
pansion, an important IR research topic.

Ongoing Work and Future Directions

Several other experiments are either in progress or have
been planned for the future:

In addition to technique 1, we have also run tests
on using the question base to expand the question.
In other words, the system, given user-query, auto-
matically generates an ezpanded-query based upon
the question-base, with reduced work required of the
end-user. Space constraints limit discussion of these
tests, but the results were favorable.

Another group of test that we have run have to do
with using questions attached to cases (see figure 1
approach two). We are using this memory structure
to recognize what answers (cases) are inappropriate
for a given question. In other words, we use this
structure to prune the retrievals. We have also found
favorable results using this technique.

We have also used the questions attached to cases
structure to sort cases by inferred utility (sort by
relevance). This has also produced interesting re-
sults.

We plan on expanding the idea of a question beyond
the relatively simple keyword format that we have
presented in this paper. By doing this, we hope to
be able to give even better structure to existing cases
and their indexes by remembering questions.

The same data may be used for two different ap-
plications, with each application emphasizing differ-
ent vocabularies and clusterings for retrieval, even
though the cases and their content are stable. Qur
techniques should be able to recognize the different
usage of this data.

We plan to use the question-base to model users and
classes of users by the types of questions that they
ask and/or how they ask those questions, and use
this information for information filtering.

We plan to apply all of the techniques to a multi-
agent memory system.

References

Carpenter, T., and Alterman, R. 1994. A reading
agent. In AAAI-94. to appear.
Fisher, D. H. 1987. Knowledge acquisition via in-

cremental conceptual clustering. Machine Learning
2:139-172.

Hammond, K. J. 1990.
framework for planning from experience.
Science 14:385-443.

Harman, D. 1992. Relevance feedback revisited. In
Proceedings of the 15th Annual International ACM
Conference on Research and Development in Infor-
mation Retrieval New York, New York: ACM Press.

Kolodner, J. L. 1983. Reconstructive memory: A
computer model. Cognitive Science 7:281-328.
Leake, D. B. 1991. An indexing vocabulary for case-
based explanation. In Dean, T., and McKeown, K.,
eds., Proceedings Ninth Annual Conference on AL
AAAT

Lebowitz, M. 1987. Experiments with incremen-
tal concept formation: Unimem. Machine Learning
2:103-138.

McTear, M. F. 1993. User modelling for adaptive
computer systems: a survey of recent developments.
Artificial Intelligence Review 7:157-184.

Ram, A., and Hunter, L. 1992. The use of explicit
goals for knowledge to guide inference and learning.
Applied Intelligence 2:47-73.

Ram, A. 1991. A theory of questions and question
asking. Journal of Learning Sciences 1:273-318.
Rissland, E., and Ashley, K. 1986. Hypotheticals as
heuristic device. In Proceedings of the Fifth National
Conference on Artificial Intelligence.

Schank, R. 1990. Toward a general content theory
of indices. In Proceedings, AAAI Spring Symposium,
36-40.

Case-based planning: A
Cognitive

Veloso, M., and Carbonell, J. 1993. Derivational anal-
ogy in prodigy: Automating case acquisition, storage,
and utilization. Machine Learning 10:249-278.

