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Abstract

This paper describes a software agent that learns procedural
knowledge from a human instructor well enough to teach
human students. In order to teach, the agent needs more
than the ability to perform a procedure. It must also be able
to monitor human students performing the procedure and be
able to articulate the reasons why actions are necessary. Our
research concentrates on helping an instructor instruct the
agent in a natural manner, on reducing the burden on the
instructor, and on focusing learning on the procedure being
taught. Initially the agent has little domain knowledge. The
instructor demonstrates a procedure by  directly
manipulating a simulated environment. However, one
demonstration is not sufficient for understanding the causal
relationships  between a  demonstration’s  actions.
Unfortunately, the more demonstrations a procedure
requires, the greater the instructor’s burden. However, fewer
demonstrations can be required if the agent autonomously
experiments. Our experiments attempt to understand the
causal dependencies between a demonstration’s actions by
perturbing the order of the demonstration’s actions.

Introduction

One way for human students to practice tasks is in a virtual
reality version of their work environment. Not only could
students practice on many training problems, but they
could also have exposure to many unusual situations. This
approach for teaching procedural tasks could be especially
valuable in domains where training is expensive or failure
is hazardous, such as surgery and machine maintenance.
However, training could be more effective if a helpful
instructor were available. Some forms of help include
demonstrating a task to students, monitoring students
performing a task, and explaining the reason for the actions
in the task. Unfortunately, a human instructor’s
availability may be limited. One alternative is to provide a

software program (or agenr) to serve as an instructor.

Before instructing a student, the agent needs to acquire
the knowledge of domain tasks necessary for teaching.
One method used by the Al community is tutorial
instruction aided by machine learning techniques (Tecuci
and Hieb 1996, Huffman and Laird 1995, Redmond 1992).
The most basic type of knowledge is being able to
demonstrate (or perform) a task. For our purposes, a
domain task (or procedure) is a sequence of steps, where
each step represents an action to perform. In fact, almost
all systems that learn procedural knowledge only attempt
to achieve this goal (Pearson 1995, Huffman and Laird
1995, Shen 1994, Benson 1995). In contrast, our goal is
more challenging because teaching requires using
knowledge in multiple ways. An agent that teaches also
needs to be able to explain a task to students and to
monitor human students performing a task.

Part of teaching a task is explaining it to students. One
type of explanation is stating what the system is doing and
why. Many systems have this capability. However,
another type of explanation is explaining the causal
relationships between steps. While many systems contain
enough knowledge to produce some form of explanation,
their explanations would seem inadequate to humans.
Many explanations would be either too complicated (Shen
1994), contain incorrect knowledge (Pearson 1995) or the
have unacceptable content (Benson 1995). One class of
system that has problems explaining causal relationships
are systems that only learn how to react in specific
situations (Huffman and Laird 1995, Pearson 95). In short,
the system should not only be able to explain what it is
doing but also be able to describe the causal relationships
between its actions.

Another part of teaching is monitoring students as they
perform a task. Human students may legitimately perform
a task’s steps in a different order than demonstrated by the



instructor. An agent that merely performs a task only
requires knowing enough about the causal relationships
between the steps for the task to succeed. However,
changing the order of a procedure’s steps can expose errors
and incompleteness in the agent’s knowledge of causal
relationships. Thus, a system that teaches procedural tasks
should know the necessary causal relationships rather than
those that are just sufficient to perform a task.

Acquiring knowledge of domain tasks for a software
agent is often very difficult. Because it is so difficult, it has
been called the knowledge acquisition bottleneck. One
reason for the difficulty is that human domain experts, who
may not be programmers, might have to enter tasks in an
awkward and unnatural manner. Some reasons for
awkward and unnatural data entry are the use of arcane
specification languages or the requirement for many
training examples. Because of awkward and unnatural data
entry, instruction may not be focused on the relevant
problem features. The lack of focus and the agent’s limited
knowledge may also place a greater burden on the domain
expert. Even after data are entered, the domain expert may
be unable to get a reasonable bound on the uncertainty in
the agent’s knowledge. Thus, some factors that contribute
to the knowledge acquisition bottleneck include unnatural
and unfocused instruction as well as the inability of an
agent to communicate with a human about problems in its
knowledge.

This work addresses factors that contribute to the
knowledge acquisition bottleneck by investigating how a
pedagogical software agent can acquire knowledge of
domain tasks with the aid of a simulation and the guidance
of a human instructor, who may not be a programmer. The
instructor demonstrates a procedure in a natural manner by
directly manipulating a simulated environment. Next, to
better understand the demonstration, the agent uses the
simulation that controls the simulated environment to
perform experiments. The experiments help the agent
understand the causal relationships between the
procedure’s steps and help reduce the uncertainty in the
agent’s knowledge.  After the agent has finished
experimenting, it interacts with the instructor to further
refine its knowledge.

This paper describes the Diligent learning component of
Steve (Soar! Training Expert for Virtual Environments)
(Rickel and Johnson 1997a, Johnson 1995, Johnson et al.
1997, Rickel and Johnson 1997b).  The learning
component is diligent because a few examples
(demonstrations) are examined carefully in order to
maximize its use of limited knowledge.

Sources of Knowledge

The sources of knowledge available to the agent include a
helpful, human instructor, a simulated environment, and
some limited, initial domain knowledge.

1 Steve is implemented using Soar (Laird, Newell and Rosenbloom
1987).

We want the human instructor to tutor the agent in a
natural manner. The instruction is natural because
instruction is as close to as possible to performing the task
and because instruction resembles the interaction with a
human student. The instruction needs to be natural
because, even though the instructor is a domain expert, he
may not be an experienced programmer. As a domain
expert, the instructor cannot only demonstrate tasks but can
also provide focus and answer questions. However, the
instructor will have limited patience so his time must be
utilized effectively.

The simulated environment supports instruction by
providing a model of the domain. The environment allows
the instructor to demonstrate procedures for the agent. The
environment also allows the agent to test its understanding
and reduce its uncertainty by performing experiments.
Additionally, the environment allows the agent to reset the
environment’s state to a given configuration. The ability to
reset the environment is appropriate in pedagogical
systems where students start problems in specified initial
states. The ability to reset the environment also allows the
agent to perform multiple experiments from the same
initial state. Although the environment can be reset, the
environment does not allow the agent or the instructor to
make arbitrary changes to its state.

If the agent has a limited ability to change the state, then
why not make it part of the simulation controlling the
environment? The agent’s manipulation of the simulation
state should always result in well-formed and feasible
states. If the agent is free to make arbitrary state changes,
inconsistent or impossible states might result. To avoid
this problem, we restrict the agent to either setting the state
to some previous simulation state or performing actions
that correspond to actions that the user can perform via the
user interface. A major drawback of this approach is that a
portable agent has little domain dependent initial
knowledge.

The agent’s initial domain knowledge allows it to
understand and manipulate the simulated environment.
The agent’s initial domain knowledge contains the ability
for the agent to recognize actions performed in the
environment and the ability to perform actions in the
environment. These actions are the building blocks from
which procedures are built.

It is very unusual for a system to utilize a helpful
instructor, a simulated environment that supports
experiments along with limited domain knowledge.
Tecuci and Hieb (Tecuci and Hieb 1996) describe such a
system, but it learns a very different type of knowledge
than our agent and requires much more interaction with the
instructor.

How the Agent Learns

The agent gets its initial knowledge about a procedure
from an instructor’s demonstration. The instructor
demonstrates a procedure by directly manipulating the
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Figure 1: Agent Input/Output

simulated environment. In our current system, direct
manipulation is done by using a mouse in a 3-D virtual
world. Acquiring procedures in this manner is called
programming by demonstration (Cypher et al. 1993).
Because demonstrations are interactive, it would be too
burdensome on the instructor to require more than a few
demonstrations. The limited number of demonstrations
requires that the agent get maximum use out of each.

The agent gets maximum use out of a demonstration by
experimenting with it, biasing learning towards changes in
the environment that occur during the demonstration, and
asking the instructor questions. The agent’s questions ask
for a specific type of knowledge (e.g. name) or ask the
instructor to verify an hypothesis. The agent’s experiments,
learning bias and questions are good sources of knowledge
because they reduce the instructor’s burden and focus
learning.

We believe that the agent should focus its experiments
on understanding demonstrations rather than solving
practice problems. A demonstration has an initial state and
a sequence of actions that lead to its final state. In contrast,
a practice problem has an initial state and a final, goal state
but does not specify the sequence of actions necessary to
change the environment to the goal state. Practice
problems are useful for learning general knowledge in
systems that do not use demonstrations (Gil 1992).
Practice problems are also useful in system’s have a lot of
domain knowledge. However, practice problems are hard
to solve with little domain knowledge and may not be
focused on understanding the dependencies between the
actions in a demonstration. This is seen in OBSERVER,
which requires many demonstrations and practice

problems (Wang 96). Requiring many demonstrations and
practice problems also places a much greater burden on the
instructor. The burden on the instructor is greater because
demonstrations are tedious and time consuming and
because selecting practice problems requires care if the
agent is to solve them. An alternative method would be to
reduce the number of required demonstrations by focusing
experiments on better understanding each demonstration.
In fact, studies of human learning seem to support this
approach. Human students who are good problem solvers
tend to study a few examples in detail rather than take a
shallow look at many examples (Chi et al. 1989).

Experiments can be focused on a demonstration by
perturbing a trace of the demonstration, executing it and
observing what happens. Some earlier systems perturb a
demonstration by changing the state of the environment
(Porter and Kubler 1986). However, the simulation that
controls the environment is an external program that does
not allow the agent to make arbitrary state changes. The
agent overcomes this by perturbing the demonstration’s
sequence of actions rather the environment’s state. This
has the additional benefit of focusing on the actions inside
the demonstration. After all, what the student learns are the
procedure’s actions.

Experimentation is complemented by biasing learning
towards environment state changes during a task. What
experiments reveal are the preconditions of actions which,
in turn, result in causal dependencies between steps. The
agent assumes that the order of actions in a demonstration
has significance and that the effects of earlier actions are
likely to be preconditions for later actions. The agent uses
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Figure 2: How the Agent Learns Procedures

this assumption to create heuristic preconditions for the
actions it observes. The heuristic preconditions provide
the agent with some initial task competence, while
maximizing the use of the limited knowledge in a single
demonstration.

Because the preconditions are heuristic, the agent is
uncertain about them. The uncertainty in the heuristic
preconditions is represented by using a version space to
bound the set of candidate preconditions. A version space
identifies the most specific and most general candidate
preconditions (Mitchell 1978). By bounding its
uncertainty, the agent can focus learning towards reducing
the uncertainty. Additionally, the explicit representation
of the agent’s uncertainty supports communication with the
instructor.

After the agent has finished experimenting, it can ask
the instructor questions to verify its task knowledge.
Mistakes in the preconditions for actions can result from
the agent’s lack of domain knowledge and limited amount
of input. These cause the agent to rely on induction and
heuristics. However, the burden placed on the instructor
can be reduced by experiments which correct mistakes in
the task knowledge. The instructor’s burden has been
reduced because fewer mistakes allow the instructor to
verify rather than explicitly generate task knowledge.

In summary, maximizing the use of limited knowledge
is supported by biasing experiments and learning towards
demonstrations and maintaining a  precondition
representation that supports communication with the
instructor.

System Overview

Input and Output

Figure 1 shows the knowledge used by Diligent to learn
procedures. Initially, the agent can recognize and perform
actions in the environment. The agent uses the ability to
recognize actions for understanding demonstrations and
the ability to perform actions for experimenting. Initially,
the agent knows nothing about the preconditions and
effects of actions

The instructor supplies the framework for the knowledge
which the agent is initially lacking. The instructor can
control the interaction with the agent by giving it
commands (e.g. learn a new procedure). The instructor
can also demonstrate procedures in the simulated
environment. The instructor augments a demonstration by
supplying names and English descriptions. In our current
system, descriptions include the purpose of procedures and
actions as well as messages associated with causal
relationships.  The English descriptions are used to
communicate with human students. The instructor also
provides the agent with feedback by verifying or
modifying hypotheses proposed by the agent.

The environment simulation? provides a detailed model

2 Our current simulation environment is authored with Rides (Munro et
al. 1993)
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that can be manipulated and observed. The instructor
demonstrates procedures by manipulating the environment.
The simulation then notifies the agent about the actions
performed and changes to the environment’s state. The
simulation also provides the agent with the ability to
perform actions and observe their result.

When a procedure has been learned, it is output in the
form of a partially ordered plan. A partially ordered plan
contains a set of steps and sets of causal links and ordering
constraints. Each step corresponds to an action performed
in the environment. Causal links record how the effects of
one step are preconditions for subsequent steps
(McAllester and Rosenblitt 1991). Ordering constraints
indicate the required order of execution between two steps.
Ordering constraints prevent latter steps from clobbering
the preconditions of earlier steps.

The preconditions and effects of steps are derived using
operator models. Operator models map actions performed
in the environment to their preconditions and effects. The
agent also outputs a set of operator models, which can be
reused in other procedures.

Learning Procedures

Figure 2 shows how the agent converts a demonstration
into a partially ordered plan.

Initially, the instructor provides the agent with a
demonstration. The agent creates a trace of the
demonstration, which is the demonstration’s sequence of
steps. The trace does not indicate the causal relationships
between the steps.

During a demonstration, the agent creates and refines
operator models for each of the demonstration’s steps.
Each step corresponds to some action in the environment.
If the agent has not seen the action before, it creates a new

figure 4: Plan represented as a graph3

operator. Otherwise, an existing operator is refined. Each
operator maps a set of preconditions to a set of effects.
Preconditions are stored in a version space representation
(Mitchell 1978). The version space bounds the “real”
precondition between a most specific and a most general
candidate precondition. Because version space learning
may converge slowly, the agent uses a heuristic
precondition in between the most general and specific
candidate preconditions.  The heuristics favor state
changes during the procedure. It is the heuristic
precondition that is used to generate plans.

Figure 3 shows the agent learning how to close a valve.
The valve is closed by selecting the circular object in the
middle of the scene that appears to be sitting on an X
shaped object. The first time a valve is closed the agent
does not recognize the operation. The agent asks the
instructor for an operator name and a description that can
be given to students. As shown in figure 2, the agent also
creates an initial model for the close valve operator.

After a procedure has demonstrated, the agent needs a
representation of the procedure that can be understood by
the instructor. Figure 4 shows a procedure represented as
a graph. Each of the procedure’s steps is represented by
node. By selecting a node, the instructor can access
menus that allow examination and modification of the
agent’s understanding of a step and its relation to other
steps.

Once a procedure has been demonstrated and operator
models are defined, figure 2 shows that the instructor can
tell the agent to generate a proof for the procedure. The
proof records the causal relationships between the
preconditions and effects of the procedure’s steps. A
step’s preconditions are the heuristic preconditions in the
operator models. Given a proof, it is trivial to transform
the proof into a partially ordered plan.

3 The graph was produced with TCL/TK (Ousterhout 1994) and the
tkdot portion of the Graph Visualization tools from AT&T Laboratories
and Bell Laboratories (Lucent Technology) (Krishnamurthy 1995).



However, a plan may have mistakes in its causal
relationships if the operator models are not mature enough.
The agent can reduce these mistakes by experimenting.
The agent performs multiple experiments where the
demonstration’s steps are executed in a slightly perturbed
order. The change in order exposes the interdependencies
between the steps. Once the operator models have been
sufficiently refined, the instructor can ask the agent to
generate a new version of the plan.

Status

A prototype learning component has been incorporated
into the Steve agent and tested on some simple, non-
hierarchical procedures.

One area for improvement is expanding the types of
interaction between the agent and the instructor. This can
done by allowing an instructor to demonstrate a procedure
multiple times, build hierarchical procedures and test how
well the agent has learned a procedure. Allowing multiple
demonstrations does not contradict our goal of reducing
the number of required demonstrations. Our focus has
been on learning as much as possible from each
demonstration so that many demonstrations become
redundant. This, however, does not mean that an instructor
should not be able to provide extra demonstrations if he
desires to do so.

The ability to demonstrate a procedure multiple times
supports the acquisition of more complicated procedures.
Because procedures are more complicated, instructors
may demonstrate small pieces of a procedure in different
demonstrations. For example, the instructor could
demonstrate how to handle different variations in the
procedure’s initial state. Multiple demonstrations also
allows procedures to handle different classes of initial
states where each class results in very different sequences
of actions being performed. Multiple demonstrations
would also allow an instructor to demonstrate the
independence of groups actions by changing the order in
which they are demonstrated.

Providing the instructor the ability to compose
hierarchical procedures out of lower level procedures also
supports creating more complex procedures. Hierarchical
procedures reduce the number of steps that an instructor
must demonstrate by reusing existing procedures. Using a
hierarchy also allows complicated procedures to be split
into logical sets of lower level procedures.

Providing the ability to compose hierarchical procedures
has implications on the types of experiments performed.
The agent needs to limit the number of experiments
performed on hierarchical procedures, which can be large
and incorporate lower level procedures. Some lower level
procedures may have already been tested. One approach
is to perform experiments in a bottom up manner starting
with the lowest level procedures and working up the
hierarchy. Each experiment would only look at the current
level and ignore lower levels unless an error is observed.

Providing the instructor with the ability to test how well

the agent has learned a procedure will provide more
confidence in the agent’s knowledge. Validating the
agent’s knowledge through testing augments rather than
replaces an instructor’s ability to explicitly verify the
agent’s knowledge. This would allow the instructor to
catch mistakes in the agent’s knowledge and to watch the
agent perform the actual problems given to human
students.  If a mistake is detected, learning should not
depend as heavily on heuristics as during initial
demonstrations because the agent’s knowledge should
have been verified by the instructor and be fairly stable.

In summary, a goal of this work is to make the agent’s
interaction with an instructor model more closely a human
student’s interaction with an instructor.

Related Work

Many Programming By Demonstration (PBD) systems
learn how to perform simple procedures. Most of the basic
techniques needed by Diligent have been discussed in the
literature. The best reference is Cypher’s book (Cypher et
al. 1993). Previous PBD systems learn to correctly
perform a procedure by executing it steps in some order
rather than to understand the causal relationships between
the steps. Any agent that teaches needs to understand
causal relationships in order to monitor students
performing procedures and to explain the causal
dependencies between steps.

Many previous systems that learn from tutorial
instruction require detailed domain theories. Two such
systems are ODYSSEUS (Wilkins 1990) and CELIA
(Redmond 1992). This reduces the portability between
domains and requires a human who has the expertise to
construct the domain theory. Diligent does not need a
detailed domain model because it exploits a simulation and
a helpful, human instructor. The DISCIPLE (Tecuci and
Hieb 1996) systems require simpler domain models, but
DISCIPLE systems ask instructors more questions than
Diligent because DISCIPLE systems do not use a
simulation to perform autonomous experiments.

Some systems learn a representation for preconditions
that does not support articulating explanations that a
human would find reasonable. TRAIL (Benson 1995) and
LIVE (Shen 1994) learn preconditions that are in
disjunctive normal form. The preconditions are formed so
that they cover all examples of when the operator should
be applied. There is no effort to learn preconditions of
which a human would approve. Instructo-Soar (Huffman
and Laird 1995) and IMPROV (Pearson 1996) learn rules
to reactively perform procedures. Reactive systems learn
to recognize a portion of the current state rather than the
preconditions that cause dependencies between states.

Some systems require many practice problems or
demonstrations. EXPO (Gil 1992) refines an incomplete
domain theory using practice problems, but EXPO is
unable to correct errors in its knowledge and does not use
demonstrations. OBSERVER (Wang 96) learns operator
models using many demonstrations and practice problems.



Diligent and OBSERVER use very similar precondition
learning algorithms. OBSERVER, however, does not
perform experiments based on demonstrations. Instead,
OBSERVER tries to learn general knowledge by solving
practice problems. Instead of solving general practice
problems, Diligent focuses its experiments on
understanding the procedures that it will teach.

Diligent performs experiments by observing how the
actions in a demonstration influence each other. Even
though Diligent makes no attempt to model human
cognition, this approach was motivated by studies of
human learning (Chi et al. 1989). Another system that
learns by examining a demonstration in detail is PET
(Porter and Kubler 1986). PET requires the ability to
make small changes to the state of the environment. In
contrast, Diligent does not assume the ability to make
arbitrary changes to the environment’s state.

Conclusion

This paper describes an approach to authoring that
attempts to provide a natural interaction between a human
instructor and a software agent. The interaction is natural
because it is as close as possible to performing the
procedure and because it resembles the interaction between
an instructor and a human student. Our goal is to avoid
problems that result when the interaction is awkward and
unnatural.  The instructor answers questions, provides
English descriptions, and demonstrates procedures by
directly manipulating a graphical environment. The agent
uses demonstrations and interaction with the instructor to
focus learning. The agent overcomes its limited initial
domain knowledge by experimenting. The experiments
turn a single demonstration into multiple examples and
reveal the causal relationships between the steps in a
procedure.
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