From: AAAI Technical Report FS-97-01. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Authoring Simulation-based Intelligent Tutoring Systems

Terrance L. Goan and Richard H. Stottler and Andrea L. Henke

Stottler Henke Assoc. Inc.
2016 Belle Monti Ave
Belmont, California 94002
{goan, stottler} @shai.com

Abstract

Intelligent tutoring systems (ITSs) have shown great
promise in military training domains (among others) where
they can achieve many of the same benefits as one-on-one
instruction, in a cost-effective manner. However, the
development of real-world simulation-based ITSs is
hampered by the knowledge acquisition bottleneck and
difficulties creating instructive simulation scenarios. In this
paper we describe an innovative approach to simulation-
based ITS development using a case-based reasoning (CBR)
paradigm and unique scenario generation techniques that
largely circumvent the difficult and time-consuming process
of knowledge elicitation. A case-based approach to
knowledge gathering is highly intuitive and greatly
simplifies training course authoring. Additionally, we
describe how the scenarios generated with our approach can
offer substantially improved realism and instructional
quality through the use of intelligent simulation control
techniques.

1.0 Introduction

In complex domains, instruction is often complicated by
the need for the student to master a variety of concepts and
to apply them in unique situations and in different
sequences. In these kinds of domains, the student must
develop not only a competence in the relevant facts and
skills, but also an understanding of the concepts underlying
these procedures. Instructional courses must be attuned to
the trainee's background and needs, motivate him to
develop an accurate and thorough understanding of the
subject matter, and then effectively verify the correctness
of his understanding and remediate inaccuracies.

When students are required to be flexible in their
understanding of principles and potential applications, the
most effective teaching strategy is to maximize the role of
the teacher to a one-on-one interaction. In fact, [Bloom
1984] describes the two-sigma problem as the fact that
students receiving one-on-one instruction perform two
standard deviations better than students receiving
conventional instruction. One-on-one instruction
maximizes the adaptability of the instruction process, to
help the student construct and test a mental model on
different circumstances. The student can ask specific
questions of the instructor, and the instructor can respond
with immediate answers and supporting examples, tailored

25

to the individual student. This interaction is also effective
because the teacher can gauge the student's learning speed
and performance, and tailor the introduction of future
concepts accordingly. The instructor can also ask specific
questions and present specific examples or tests to counter
suspected inaccuracies in the student's mental model.
Unfortunately the financial and human resources are
simply not available to provide this kind of one-on-one
instruction for many complex domains.

The use of an intelligent tutoring system (ITS) for
individual and team training achieves many of the same
benefits as one-on-one instruction. Additionally, an ITS
can promote instructor productivity, cope with the higher
skill requirements for trainees, provide tailored instruction
and remediation, while simultaneously allowing flexibility
in teaching methods. And, when ITSs are enhanced with
interactive simulations, students demonstrate greater
motivation during training as well as greater retention of
course material. Thus, a simulation-based ITS provides
instruction that is at once cost-effective and potentially
superior fo traditional classroom teaching methods. In this
paper we describe an innovative approach to simulation-
based ITS development using a case-based reasoning
(CBR) paradigm and unique scenaric generation
techniques which largely circumvent the difficult and time-
consuming process of knowledge elicitation and realistic
scenario development. Additionally, we describe how the
scenarios generated with our approach can offer
substantially improved realism and improved instructional
quality through the use of intelligent simulation control
techniques.

2.0 A Case-Based Approach

ITSs have shown great promise in numerous fraining
domains. However, the key to the effectiveness of this
instruction is the technical knowledge the system contains.
Traditional approaches to development of TITSs are
hampered by the knowledge acquisition bottleneck—the
need to construct an explicit expert mental model. We
present an innovative approach to ITS development using a
case-based reasoning (CBR) paradigm. A case-based
approach largely circumvents the difficult and time-
consuming process of constructing an explicit expert

mental model. We do not need to develop an expert
system that exactly models the domain expert and exhibits
identical expert behavior, nor do we need to precompile a
body of expert knowledge that anticipates all student
interactions and errors. Instead, one or more experts'
knowledge is contained in a collection of examples. The
expert is asked to present a problem and its solution, with
an explanation of the steps required to produce the
solution. The explanation refers to principles or concepts
underlying the example. Thus, the principles serve as the
organizational structure of the knowledge, and the
examples serve to illustrate concepts. Because a case-by-
case approach to knowledge gathering is highly intuitive,
authoring of the training course is greatly simplified and
requires no special computer training. Further,
maintenance of the ITS and the addition of updated course
material is accomplished primarily through addition of new
cases.

A case-based approach offers the further benefit of
automatically or semi-automatically generating the
student's mental model. The only completely accurate way
to assess a student’s mental model of a given domain is to
combine performance records from specific scenarios with
responses to specific cross examination, which consists of
questions designed to get a direct explanation of the
motivations for the student's actions and reactions in a
given situation. In other approaches, this knowledge is
then precompiled in an attempt to anticipate all the
mistakes that a student might make. However, this kind of
analysis can be extremely cumbersome, both for the
student and the instructor, so it is a worthwhile goal to
automate this procedure by developing an analytical
technique for inferring the structure of the student's mental
model from performance records. Then, active questioning
of the student is used simply to verify his understanding.

There are a number of obstacles to the automation of the
analysis of the student model. First of all, a student may
accidentally select the correct procedures without having a
thorough understanding of the domain. Likewise, a
student may act incorrectly due to one of several
shortcomings in his mental model of the domain. In either
case, it would seem that direct questioning would be the
only way to determine whether the student's performance
reflects true understanding. Secondly, the student may
have developed a skill with the procedure in the testing
environment, but not have sufficient understanding of the
overall domain to be able to apply learned concepts in new
situations.

However, the intelligent use of examples is a potential
way to counter these difficulties with the assessment of a
student mental model. By presenting exercises requiring
knowledge of principles and counter principles, it is more
likely that correct student performance reflects true
understanding. For example, in the domain of aircraft
detection avoidance, it may be better in one situation to fly

26

over land, and better to fly over water in another. If the
student truly understands the motivations for flight path
decision making, he would choose correctly in both cases.
Otherwise, if he always simply chooses to fly over land, he
may accidentally select the correct choice in the first case
but will select the incorrect choice in the second case, thus
indicating the problem with his mental model. If examples
are automatically indexed by the various aspects of a
domain representation that they correspond to, they can be
used fo identify these kinds of shortcomings in the
students’ understanding. Furthermore, the more examples
presented to the student, the more likely it is that the
student will be able to apply concepts in new situations
without linking parts of his mental model to the specific
contexts of training examples. If these examples are not
mere ftext, but sophisticated multimedia scenarios,
simulations, animations, 3-dimensional graphics, audio,
video or hypertext, they will offer greater realism for the
student, engage his interest more fully, and ultimately
result in superior training and retention of concepts.

The validity of the case-based approach has both
intuitive appeal and empirical backing. As early as 1940,
[Gragg 1940] argued for case-based instruction. By
presenting (often with a simulation) cases which illustrate
the important principles, the student can see how principles
are applied in operational contexts and tasks. It also
defeats the well-known problem of inert knowledge first
described by [Whitehead 1929] and frequently validated by
other researchers. Inert knowledge is information or
principles that a student knows and can recall, but which
he does not apply when the situation clearly calls for if.
Case-based instruction (and related concepts such as
anchored instruction, scenario-based instruction,
simulation-based instruction, and situated instruction)
overcome this problem by showing students the application
of principles in an operational setting and forcing them to
apply them as well.

Case-based instruction embodies other relevant theories
of instruction. For example, research has shown
[Farquhar, et al. 1992] that in dynamic environments, the
provision of graphical dynamic simulations improves the
development of a proper mental model in students. Thus,
the use of scenarios, presented graphically and dynamically
is important to illustrate related principles. Another theory
of instruction is situated-learning, where the importance of
tying learned knowledge to tasks in an operational
environment is emphasized. Again this supports the use of
a simulation that approximates the operational environment
for which the student is being trained.

In the next section we describe our general ITS
architecture and how we implemented a simulation based
ITS for Naval tactics training. We then describe our
ongoing efforts to create an anthoring tool that will allow
Navy instructors to create and maintain their ITSs as
requirements change over time.

N

User ser
Intelligent Tutoring System
. Student |
ITS Tactical Monitor Student Remediation || / Remediation
. . Model Planner & Topic Files
Simulation Sconario
Selection/ .
7,3 Generation :.
:
: Student ,
Current .
Scenario Analysis \

Instructor

Scenario
Elicitation

Figure 1. System Overview

3.0 A CBR-based ITS Authoring Framework
and a Specific Example

The initial focus of our project was training Navy tactical
action officers (TAOs). This domain is of particularly high
priority to the Navy and offered a very rich task for which
to explore intelligent tutoring system authoring techniques.
The ITS architecture we developed is shown as a
component of the overall authoring system shown in
Figure 1. The student interacts with the I'TS through either
a simulation or through the remediation planner. The ITS
Student Monitor gathers information about student actions
during simulation runs and writes performance records into
the Student Model. This student model will maintain
information about the student’s actions and decisions
during different exercises. Included in this model is
information about how the student performs on the
principles, procedures, and techniques which have been
presented in the exercises. Based on the pattern of his
unsatisfactory performance on exercises as well as
knowledge elicitation, the ITS will form a hypothesis as to
what information the student does not understand. This
hypothesis can then be used by the ITS along with
information about the student’s particular learning style to
select remediations. After instruction, the ITS can then
retrieve or generate a new scenario to retest the student.
This iterative process will provide the student with a course
of instruction tailored to his individual needs.

The general ITS architecture developed for this project
not only resulted in an implementation in a particular
domain (TAQO training), but also in a reduction in
development time for future ITSs in other domains. The
primary components of this ITS framework are discussed
below in greater detail.

27

3.1 The Student Model

The Student Model is perhaps the most important
component in the ITS architecture. For a particular domain
or course, the student model contains both basic
information and derived (inferred) information. The basic
information includes which scenarios the student has seen,
his performance in these scenarios, as well as which
remediations the student has received. Additionally,
information about the success of specific remediations and
remediation styles in correcting student behavior is
inferred. The whole process of evaluating the performance
of students is made more challenging by the fact that our
ITS framework utilizes “intelligent simulation” (see below)
instead of the highly scripted scenarios used in many other
Navy trainers. It will be necessary to keep a log of
significant simulator events which can be later scanned to
determine which principles the student faced in a particular
scenario run. This is because the events that occur in an
intelligent simulation depend largely on the actions of the
student. For example, if a student successfully evades
detection, he will not be tested on principles related to
defending the ship against an incoming missile.

—— g Unexpected
Action Q] ! o—: Actions
Event []|: RO_. O
: 0—0
: O Principles
: . Expected /
. Le— : Action
Scenario . :
. - . : Remediations

Figure 2. Connecting Student Actions to Remediation Through Events and Principles.

Within our architecture, simulation scenarios have
associated “expected actions” (and “unexpected actions™)
in response to different types of events; expected actions
are tied to principles to be taught; and these principles are
tied to several remediations. An expected action is an
action the instructor would hope the student would take in
response to a particular situation. Unexpected actions are
those actions that are deemed inappropriate for a particular
situation. Both expected and unexpected actions may have
an associated time period of action applicability. For
example, the principle Reduce RCS (radar cross-section)
was attached to the expected action of turning the ship to
one of four preferred angles with respect to an incoming
missile. This action was in turn tied to the event that a
hostile platform has fired a missile at the student’s ship. If
that event occurred, then the ITS activated this expected
action and principle. If the student took the correct action
(within the allotted time), he received credit for this
principle; but if he did not (or was too slow to protect his
ship), he was considered weak in this area. These
constructs consist of possible events, expected actions, and
relevant principles only needed to be defined once and then
could be reused across scenarios. Based on the possible

evenis that actually did occur in a scenario, the ITS could
compile the lists of principles utilized and the principles
failed for the exercise and then incorporate them into the
student model.

Our ITS builds mental models for students based on
performance in tactical scenario exercises. The student
model itself describes the student’s areas of strength and
weakness through the use of a “principle” hierarchy
developed with the help of Surface Officer Warfare School
(SWOS) instructors. This hierarchy provides an effective
data structure for monitoring student learning progress as
well as reasoning about the learning styles of specific
students. Figure 3 presents a portion of the unclassified
TAOQO principle hierarchy used in developing our initial
prototype. This taxonomy allows the developed ITS to
appropriately determine the depth of the student’s
knowledge (e.g., does the student understand the general
principles related to weapon assignment?). Additionally,
by maintaining statistics on the success rate (for individual
studenis) of different styles of remediation associated with
principles in the hierarchy, the ITS is able to tailor the
instructional dialog to suit the student’s learning style.

TAO Principles
Sensing
Tactics Weapon Assignment
Combat Air Battlegroup Own Ship LAMPS Helicopter
Patrol
CIWS Tomahawk Harpoon Standard = Cuns
Missile
Path Selection Launch Launch
Basket Basket

Evasion Priorities Pursuit

RShoot the Wolf

Shoot the Archer (yogest to the Sled

Figure 3. A Small Portion of the TAQ Principle Hierarchy

28

In developing our TAO ITS we developed a unique
approach to propagating evidence (as to the success of
remediation techniques) throughout the principle
hierarchy. Our approach is based on two insights. First,
when selecting a remediation for a specific student on a
specific principle, the system must consider: the success
rate of specific remediations on that specific student (i.e.,
did it fail to correct the student’s behavior previously?), the
success rate of remediation styles on that student (e.g.,
does the student generally learn better with diagrams?), the
success rate of specific remediations on students at large,
and the success rate of remediation styles on students at
large. Second, when propagating evidence through the
hierarchy it is useful to recognize that similar principles are
often best taught through the same medium (e.g.,
animation sequences and historical context to teach
specific types of tactics).

In the future, we will extend our evaluation procedure
by observing student actions in a series of scenarios—our
ITS will determine how the student’s problem solving
strategies differ, if at all, across situations. This type of
assessment will better allow the ITS to select appropriate
remediation techniques and appropriate scenarios for
testing. Additionally, techniques are required to determine
the underlying reasoning used by the student in selecting
his course of action. Understanding the student's
underlying reasoning is key to developing corrective
instruction. For this reason, we see the addition of
knowledge elicitation techniques as a valuable supplement.

3.2 Scenario Selection

The Scenario Selection module selects scenarios to
implement a particular training or tutoring strategy for a
particular student at a particular time in his development.
This module takes as input the training requirements
including the current objective for the student, his current
level of experience, what he has mastered and needs to
master, and what knowledge the ITS still needs in order to
assess the student. This information regarding the student
model is used by the Scenario Selection module as a target
for retrieval from the scenario case-base. Desired teaching
style could also be used as input to the selection process.
Teaching style includes such learning themes as whether
the scenario should attempt to coax the student into an
inappropriate action or attempt to divert the student from
an action he should take; or whether to stress the student’s
cognitive load or isolate a particular principle in a
simulation from as much external distraction as possible.
Other influences may come from the domain expert
specifying the level of expertise of each case/scenario
(whether it is appropriate for novice, intermediate, or
expert students) or specifying a priority ordering on
principles to be taught.

Typically the Scenario Selection system would retrieve
for novices, a wide breadth of scenarios to give students an
appreciation for the diversity of the domain and to build up
the student model as quickly as possible. This would allow

29

the ITS to reduce the number of inappropriate scenarios
that are presented to a student by quickly separating areas
of expertise from areas requiring additional training.
Another typical retrieval task would be to retrieve two
scenarios which are both very similar to each other but
different in one aspect. These pairs allow for better
diagnosis of student problem solving ability by observing
the difference in the student's behavior. Alternatively, it
might be appropriate to retrieve a set of very similar cases,
especially for students near the expert level. These show
the student the nuances, the effects of small differences in a
scenario and allow him to refine his skills. Finally,
scenarios may be selected that return a student to subject
matter previously considered mastered. This might occur
if a student later unexpectantly fails a “mastered” principle
(or a principle related to one thought to have been
“mastered”).

Scenario selection within our ITS architecture is largely
based on Case-Based Reasoning (CBR) concepts, where
the cases presented to the students are scenarios. The ITS
automatically retrieves appropriate scenarios for the
current student based on the current model of the student.
The use of CBR allows the ITS to tailor itself without
requiring the developer to foresee the order in which users
progress through scenarios and remediations. We do not
know which principles will be missed nor the order in
which they will be missed, so we do not know beforehand
which remediations will be used or the order in which
scenarios will be presented. With CBR we do not need to
consider beforchand which scenarios will be appropriate
for different students in different parts of the course. The
ITS decides this dynamically and automatically. Using
CBR, the ITS can identify and retrieve the most
appropriate one for the particular student at the particular
time.

The output from the Scenario Selection/Generation
module is a simulation independent scenario which is
converted by the simulation interface into a scenario that
can be run in a particular simulation.

3.3 Scenario Execution

Most current tactical trainers used by the Navy use highly
scripted scenarios where events occur in a rigid and
predictable fashion, or scenarios where simulation entities
must be controlled by support staff. This approach to
automated ftraining suffers from multiple drawbacks. The
most obvious drawbacks are that these types of simulations
frustrate students and are not perceived as realistic and
therefore reduce the teaching potential of the trainer. This
frustration arises from the students’ inability to alter the
outcome of the scenario regardless of how well they
execute their actions. A second and related problem with
these simulations is that students feel they are at an unfair
disadvantage because the simulation entities (e.g.,
opposing forces) have unrealistic access to information
about the simulated world.

Our proposed approach presents a whole new way to
think about tactical simulation. Within our intelligent

simulation framework, entities in the simulation are viewed
as intelligent agents with realistic sensor models, individual
missions and behaviors, varying levels of proficiency etc.
This approach makes for a more challenging and
instructive simulation by adding an unprecedented level of
realism. Since simulation entities only have access to the
information available through their simulated sensors and
take actions based only on what these sensors tell them
about the student’s ship’s location, students will experience
a higher degree of realism and a greater feeling of control.

4.0 ITS Authoring Tool

The generic ITS framework described in Section 3
provides a necessary starting point for the creation of an
ITS authoring tool. The ITS authoring tool we are
developing will allow domain experts to create specific
ITSs without the need for programming skills. This will be
accomplished through the use of a friendly user interface
that guides the user through the entry of knowledge,
scenarios, principles, and descriptive information. The
information provided by the user will serve to instantiate a
generic ITS framework to form a specific ITS that suits the
instructor’s requirements and will intelligently tailor
instruction to student needs and learning styles.

There are several software components that will be
required to elicit the ITS’s domain knowledge which is
stored in three locations: scenarios, the principle
hierarchy/student model, and the collection of remediation
files. Our overall approach to automated ITS authoring is
based on a simple prompting mechanism, by which a
course designer could enter new cases (see Sections 4.1
and 4.2) and the associated course information. Examples
would be automatically indexed by the components of the
domain that they correspond to, which will be treated as
principles for training purposes in the ITS. Each new case
may refer to principles that are already in the ITS, or to
new principles, in which case the designer can be prompted
for the information associated with these new principles
(i.e., related remediation materials, and any relevant
relationships with other principles (e.g., hierarchical,
conflict etc.)). Finally, our authoring tool will support the
creation and addition of remediation material (e.g.,
animations, diagrams, text messages, etc.) via a large
number of existing tools.

4.1 Scenario Creation

A significant part of our effort to design a simulation-based
ITS authoring tool, will be the creation of mechanisms to
allow domain experts to create, edit, and test scenarios and
scenario prototypes for intelligent simulations. We
propose a graphical tool that will allow Navy personnel to
create scenarios through an intuitive step by step process.
Through the use of graphical drag and drop operations,
domain experts will be able to design the initial setup of
the scenario including the placement of land masses and
the specification of environmental conditions. The domain

30

expert would then specify the control mechanism for the
various simulation entities. This specification process will
consist of the simple connection of pre-existing
“behaviors” drawn from a library. These behaviors will
represent actions such as conducting an air search, or
pursuing a target. The domain expert will simply describe
through a graphical user interface, what actions are
triggered by what events. For example, an enemy aircraft
can be instructed to search a particular area in the theater
of operations, and conduct a missile attack on the student’s
ship when (or if) the student’s ship is discovered.

The other significant component of scenario creation
will be the incorporation of learning objectives. Once the
simulation entities have been laid out (as described above),
our scenario generation tool will allow users to specify a
set of expected student actions. These expected actions
will be associated with simulation events (e.g., the
student’s ship detects an incoming missile), an instructor-
specified time frame within which the student should act
(e.g., 1 minute), and a set of principles associated with the
expected actions (e.g., ship defense principles).

4.2 Automatic Scenario Generation

There will be times when the current case-base does not
contain a scenario which adequately satisfies the selection
criteria. This would tend to occur when the student has
already seen several scenarios in a particular area and for
testing, the ITS needs a scenario that the student has not
seen before. In these situations, it will be very useful to be
able to automatically generate a new scenario. This is most
easily performed using scenario prototypes which only
define the central learning events. A single prototype can
then give rise to an almost infinite number of individual
scenarios by simply filling in additional detail (e.g.,
geography, ambient ship traffic ete.), though they will all
tend to exercise the same principles and contain the same
themes. After a scenario is generated, it becomes part of
the growing case base for future reuse.

A special case of scenario prototypes are scenario
fragments. A scenario fragment constitutes a small
fraction of what would normally be found in a scenario.
Such fragments would generally be well focused on
teaching a particular principle or group of principles. For
example, a scenario fragment may call for an incoming
hostile aircraft which launches a missile. This particular
fragment would specifically test the student’s ability to
protect his ship. Fragments can be individually retrieved
and utilized. Complete scenarios can also be created from
fragments or from combinations of fragments and existing
scenarios. These scenario fragments would not be created
by the instructor, but rather they would be identified and
extracted from existing scenarios. Since both scenarios
and scenario prototypes, when actually instantiated and
used, will tend to cause certain events to take place and
corresponding principles to be exercised, and because the
ITS keeps the chain of events that occur during a particular
execution, the Scenario Generation module will be able to
extract fragments (i.e., required elements from several

