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Abstract
This paper describes the technical investigation, design, and
implementation of integrating the Student Modeling
Approach for Responsive Tutoring (SMART) into a tutor
built with the Rapid ITS Authoring Development Shell
(RIDES). The effort resulted in RIDES software
components and a definitive methodology that can be used
to instantiate the SMART approach to instruction in a
RIDES tutor.

Background and Goal

The Rapid Intelligent Tutoring System Development Shell
(RIDES) was built by Behavioral Technology
Laboratories (BTL) of the University of Southern
California under contract to Air Force Armstrong
Laboratory. This tool was designed to cost effectively
develop, deliver and maintain intelligent computer-based
tutors for field and laboratory applications. Application of
such training systems have the potential of doubling the
instructional effectiveness of more traditional instructional
approaches.  Also, the initial investment required to
convert to these systems is paid back and cost savings
begin to be realized within 2 years (Regian et. al. 1996).
The full functionality of the RIDES authoring shell is
documented elsewhere (see Munro 1997). This paper will
only present those features and elements of the authoring
shell relevant to this technical investigation and the
determined course of action.

In general, the RIDES Authoring Shell allows
developers to rapidly 1) implement a graphical simulation
of any device or process, 2) develop instructional exercises

using the simulation as the basis for interaction with the
student, 3) easily modify or extend both the simulation and
the instruction, 4) tie instructional exercises to specific
learning objectives, and furthermore, to a course plan, and
5) adapt instruction based on student performance.

Typically, a course of instruction in RIDES consists of a
set of learning objectives. Each objective is associated with
a RIDES lesson and can be satisfied by “successful”
completion of that lesson, where “success” is defined by a
score considered by the instructor to be “passing.” A
course structure is created by defining some objectives as
prerequisites for others. The RIDES shell manages lesson
presentation, taking into account the student’s performance
on each attempt of a lesson and which objectives are
prerequisites for others. Although any performance or
simulation parameter may be tracked as part of the student
model, an integral part of the model in a traditional RIDES
course is the student’s score and number of attempts for
each learning objective. The student model is updated
continuously as the student progresses through the course.

Although many courses can be adequately addressed
using this approach, instructors may choose to utilize more
advanced sequencing mechanisms in an effort to realize
more effective tutoring. The RIDES simulation engine and
relation rule capabilities facilitate implementation of more
sophisticated student modeling approaches and the use of
such student models in lesson selection.

One such advanced sequencing mechanism is the
Student Modeling Approach for Responsive Tutoring
(SMART). The SMART student modeling paradigm is
designed to enhance the efficacy of automated instructional
systems across a broad range of domains (Shute 1995). The
target domain knowledge is derived via a principled
cognitive task analysis procedure, resulting in three distinct
outcome types: symbolic knowledge(SK), procedural
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skill(PS), and conceptual knowledge(CK). Knowledge
types are in turn described by a set of curricular
elements(CEs) arranged in an inheritance hierarchy (Figure
1). This hierarchy represents the prescriptive order of
knowledge acquisition.

The student model is comprised of performance values
for each CE reflecting the inferred probabilistic value of
mastery.  Problems in the tutor are used to evaluate sets of
CEs. The basic structure of the tutor is to provide
instruction, then problem sets, starting with the lowest
order set of CEs in the hierarchy. As questions in a problem
are completed, the student model is updated for each CE
currently being evaluated. In a SMART tutor, a critical
component of evaluating the student’s value of probable
mastery is the amount of feedback required to accomplish a
task. When mastery level is eventually achieved for all CEs
in the set, the tutor progresses on to the next set of CEs, as
described by the inheritance hierarchy.
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Figure 1. Hierarchy of a subset of curricular elements in
Stat Lady (Shute 1995)

SMART has been used effectively in Stat Lady (Shute
1995) and the PC-IMAT tutor (Schuler and Wulfeck, in
press). These tutors use an interactive, graphical interface
to present domain knowledge to students. Both tutors were
implemented using Visual Basic, a generalized
programming language. In contrast, the RIDES shell is
directed toward the production of simulation-oriented
instruction. Could a RIDES tutor be adapted to use the
SMART paradigm of instruction? If so, then productivity
in tutor development and maintenance could be afforded
by the RIDES shell, and efficiencies in student learning
could be provided by use of the SMART technology.

Functional Specifications
The SMART student modeling paradigm was reviewed,
with particular attention to the functionality of SMART in
Stat Lady (Shute 1995) and the design of the generic

SMART module for the PC-IMAT tutor (Lefort and Dubbs
1995). The core components of the SMART technology
were noted. In general, SMART works as follows: (a)
calculates probabilistic mastery levels via a set of
regression equations, (b) evaluates what learners know in
relation to these low-level bits of knowledge/skill, (c)
tailors the curriculum per learner through micro-and
macro-adaptive modeling techniques (Shute 1993), and,
(d) adapts to both domain-specific knowledge/skills as well
as general aptitudes. A more detailed summary of SMART
concepts is delineated below:
(1) Curriculum elements (units of instruction) represent

the complete set of knowledge and skill elements that
comprise the curriculum. These are arranged in an
inheritance hierarchy. Figure 1 illustrates a subset of
the curriculum from a group of CEs covered in Stat
Lady. (For more on this, see Shute 1995.)

(2) Each new chunk of instruction introduces the next set
of CE(s) which in turn are evaluated during problem
solution in the tutor. Furthermore, each question
within a problem set posed by the tutor is associated
with one specific CE, so blame assignment (and
consequent remediation) is precise and timely.

(3) A value which represents the learner’s probable
mastery of the curricular element, p(CE), is
maintained for each CE. The program allows for
continuous representation of the learner’s probable
mastery values, employing regression equations to
compute new p(CE) values (Figure 2). Each of the
four equations is linked to the learner’s required level
of assistance in the solution of a problem involving
one or more of the CEs. In other words, the equation
invoked is tied to the actual number of hints (i.e., level
of feedback) provided by the system to the learner.

Figure 2. Regression equations used to update the student model

(4) SMART is initialized based on pretest performance
data, where each pretest item is scored, in real-time,
from 0 to 1, with partial credit given where
appropriate. The pretest contains items assessing all
CEs. This provides the potential for pre-assessed
abilities (per CE) which influences tutor delivery. A
learner is placed within the curriculum at the lowest
level (given the CE hierarchy) instructional piece that
presents a CE where their p(CE) value is below some
pre-established mastery criterion (e.g., < .70).

(5) The hints given are progressively more explicit
(ranging from level 1, vague, to 3, specific).
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Moreover, the feedback is specific to the particular
problem being worked on, and sensitive to the number
of retries. It is provided in response to erroneous
inputs, not explicitly requested by the student.

Our technical investigation then turned to reconciling
these essential features of SMART with the functionality
available in a typical RIDES tutor, or through adaptations
to be implemented using the RIDES rule language and
simulation engine (Munro et al. 1993). Since one of the
major design principles in the development of RIDES was
to facilitate a variety of pedagogical approaches, we
expected to utilize the traditional simulation, lesson, course
and student model components of the shell to achieve a
SMART-RIDES tutor. We looked for the parallels between
the five components of the SMART paradigm, previously
listed, and a simple student modeling approach derived
from traditional RIDES course development (Munro
1996). Our analysis determined the following:
(1) There exists a strong parallel between the inheritance

hierarchy of curricular elements used in SMART, and
the RIDES approach to authoring a course as a series
of objectives and any prerequisite relationships that
may hold among the objectives. Thus, RIDES authors
can build an objective hierarchy by defining one
objective as an enabling objective for another.

(2) A RIDES lesson corresponds to an instructional piece
in a SMART tutor that introduces new CEs, then
follows with problem sets to evaluate those CEs. Each
problem can be described in the RIDES lesson by a
group node, a component of the RIDES lesson editor.
Other components of the lesson editor include a wide
variety of scored instruction items to measure student
knowledge, e.g., multiple-choice question, keyboard
question, find task, set-control task. Individual scored
items, i.e., questions in the problem, can be associated
with specific CEs through a user-defined attribute.

(3) In a traditional RIDES course, the student model
consists of the retries and score attribute values of
each learning objective. As the student works through
the course material and these attribute values change
(i.e., she attempts the learning objective), the
corresponding values in the student model are
automatically updated by RIDES. Actually, a student
model in RIDES can contain any RIDES attribute,
including new attributes designed by the RIDES
author. So, building a student model comprised of the
probable mastery values, p(CE), for all curricular
elements in the hierarchy is facilitated by the RIDES
shell. These p(CE) values will be automatically
updated in the student model as the student progresses
through the course. Authored instruction can re-
calculate the appropriate CE value, as questioning
progresses, and a continuous representation of
probable mastery values can be maintained in the
student model, according to the equations in Figure 2.

(4) The RIDES student model is an ASCII text file, so it is
easily readable and editable. This facilitates use of
pretest performance measures to prime the p(CE)

values in the student model. RIDES tutors allow
students to exit the tutor at any point, saving the
student model to disk and resuming instruction at the
lowest level unattained objective (assuming an
objective hierarchy) upon re-entry.

(5) The instruction lesson editor in RIDES facilitates
specification of number of retries allowed for each
scoring item. Also, for each scoring item, RIDES
simulation and instruction can access the current
number of student attempts to successfully answer the
question. This functionality is key to providing more
progressively explicit hints in response to erroneous
student inputs.

Design Issues
Given the parallels listed above, we decided not to
compromise the instructional authoring productivity
inherent in the RIDES shell. Consequently, we could make
full use of the traditional RIDES instruction engine to
maintain individual student models, enable student logins
and course selection, and facilitate instructional delivery
and student monitoring through the RIDES student
instruction window.

RIDES relational expressions, used to effect the
simulation, can also be used to dynamically affect
instructional presentation within a lesson. However, this
approach would incur a lot of overhead, custom authoring
attributes and rule expressions for many individual RIDES
instruction items. Our goal was to produce a SMART-
RIDES tutor while minimizing the need for customization.
We hoped to achieve this goal by using RIDES simulation
objects to monitor instructional presentation and student
performance, and continuously update student p(CE)
values according to the regression equations established by
the SMART paradigm. These simulation objects could be
imported for use in any RIDES tutor, effectively
automating the SMART functionality, and thereby
minimizing custom instruction authoring. Such objects
would materialize through use of the RIDES Library
facility, the RIDES rule language and its interpretive
nature, and the ability for a RIDES simulation to “author”
rules dynamically. However, realization of this plan
required us to deal with a few limiting factors identified in
RIDES.

Although RIDES permits authoring relationships
between instructional objectives, i.e., an objective
hierarchy, RIDES course management restricts that
relationship to be expressed in terms of a “passing” score
for the enabling objective. The score for a learning
objective (lesson) in RIDES is usually the accumulation of
points received for each scoring item in the lesson. In a
SMART-RIDES tutor, we want mastery of specific CEs to
serve as the enabling requirement for teaching subsequent
CEs. Therefore, our design requires authoring a rule
expression in the score attribute of each objective to assign
a “passing” score if and only if mastery is obtained for all
CEs taught in that objective.



Another service imposed by our design plan is the name
of the instruction item, if any, which is currently in play.
Our prototype efforts were able to obtain this information
in a rather contrived manner from the debriefing capability
of RIDES. When debriefing is turned on in RIDES, a play-
by-play of student performance on each instruction item is
dumped to an ASCII file. Based on this requirement in
implementing SMART, we proposed a RIDES
modification to provide a currentInstruction system
attribute that would always contain the name of the
instruction item currently being played.

The technical investigation concluded that dynamic
problem generation (within a lesson) was not key to the
SMART technology. That is,  once the tutor selected a set
of CEs according to the current state of the student model,
the specific content of the problem used to evaluate
mastery of CEs in the problem set was not pivotal. It
should be stressed that while a RIDES lesson could contain
a large pool of problems, limitations to the sequencing of
problems within the lesson and the ability to dynamically
generate the expected student tasks or answers for any
given problem were limited. Sequencing (random or
sequential) can only be modified during instruction
authoring. If the pool of problems is to be presented
randomly, randomness is controlled by RIDES and is not
user-definable. If problems are to be presented in a specific
order, they are required to appear in the lesson in that order
and cannot be changed dynamically during tutoring.
Instruction items requiring student completion (i.e., tasks
or questions) are authored very specifically in RIDES, for
the most part. Although this technical investigation did not
produce an example of dynamically generating problem
content, it is realized that a RIDES author might achieve
this through careful simulation and instruction planning.
The correctness of any task established by dynamic
problem content would have to be measurable by loosely
defined goal items or read indicator items.

One final design hurdle was a more elegant way for the
simulation to discontinue the current lesson when mastery
of the CEs in that lesson has occurred. In a traditional
RIDES course, each lesson would be played to its entirety.
Authors can dynamically alter this behavior by placing a
rule expression in individual doDemo and doPractice
attributes of instruction items or instruction group nodes.
Again, in an effort to minimize the required custom
authoring, we proposed a RIDES modification to the rule
language. This modification allows a RIDES simulation
event to generate a stopLesson command to the RIDES
instruction engine.

The Derived Scheme

Since RIDES provides a powerful, object-oriented
programming environment, the scheme which evolved from
this study defines only one possible solution, and generally
serves to illustrate the potential of implementing advanced
sequencing models in RIDES tutors.

The derived scheme assumes a pre-defined CE hierarchy
for the target domain. Consider a hypothetical SMART-
RIDES B-E (Basic Electricity) Tutor based on some of the

Figure 3. Some electricity principles (Shute 1993)

electricity principles defined within the Ohm Tutor (Shute,
1993), shown in Figure 3. If we represent these principles
as curricular elements 1 through 9, we can define a simple
CE hierarchy for the basis of the B-E Tutor (Figure 4).

The RIDES simulation should provide an interactive
environment to illustrate key domain concepts to the
student. We assume that each CE in the hierarchy can be
evaluated with a RIDES scoring instruction item (e.g.,
menu question, goal, set-control). The student demonstrates
knowledge of the CE by either correctly answering the
question posed or performing the required interaction(s)
with the RIDES simulation. The student’s current level of
knowledge about the domain is represented by the p(CE)
values maintained in a smart course objective, and
subsequently saved in the student model.

Our approach also requires the RIDES simulation to
implement a hinting mechanism. The hint would appear in
any RIDES scene, and its content driven by the task at
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• When the current (I) goes up or down and
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bresistance (R), or I=V/R

• If the voltage goes up or down and
hresistance stays the sam, this implies that
hcurrent will go up or down with the

l• Current, in a simple series circuit,
something

• The current at one point in an
i dpiece of wire is equal to the current at

hpoint in the uninterrupted piece of
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i di id lcomponents of a series net sums up to
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component of a series net than across
whole net



hand and the current number of attempts to answer
correctly. A hintnum counter is established with this
scheme for this purpose. Three levels of assistance (i.e.,
hints) are assumed in the scheme to maintain consistency
with the regression equations defined in SMART.

Once the simulation is authored, the RIDES lesson
editor is used to create individual lessons, each of which
addresses some small fixed set of CEs. Although there is
no rule for how many CEs are optimally grouped in a
lesson, a range of 1 - 4 is suggested. A single problem in
the lesson addresses several CEs, concurrently, through its
set of specific tasks or questions. A RIDES lesson to teach
current in a simple series circuit as proposed for the B-E
Tutor is shown in Figure 5.

Since RIDES lessons cannot “loop,” each lesson should
contain the maximum number of problems required to

demonstrate mastery. Problems can be presented in a
predetermined or random order within each lesson, and the
lesson continues until either the student reaches mastery
level for all relevant CEs, or all problems are exhausted.
The examples given here do not address the latter
condition, but there are many options available to the
RIDES author.

Mastery evaluation of each CE in the problem is
measured through the student’s attempt(s) to accomplish a
given task or answer a specific question in the problem. In
general, RIDES authors customize instruction in a tutor
through instruction item dialog boxes in the RIDES lesson
editor. However, even more control of instruction is
available to a RIDES author through the instruction item
data view. Using the lesson editor and the instruction item
data view, the RIDES author adds an attribute to each
scored instruction item to associate it with a specific CE. In
the example in Figure 6, a keypad question is used in a
problem to evaluate the student’s understanding of CE6,
given a simple series circuit.

Figure 6. Associating a question or task with a specific CE

The pre-defined CE hierarchy is further imposed on the
flow of instruction in our SMART-RIDES tutor with a
three-step procedure, using the RIDES Course and
Objectives Editor: 1) Define a learning objective for each
sibling set of CEs, and tie each objective to the lesson that
presents and evaluates that instructional piece; 2) Establish
the enabling objective(s) for each defined objective, if any;
and 3) For the score attribute of each objective, author a
rule that checks for mastery level of all CEs covered by
that objective. Figure 7 illustrates some of the steps of this
procedure for the SMART-RIDES B-E Tutor.

To this point, we have authored all of the instructional
pieces and their relationships, creating a course which
ultimately refers to the current student p(CE) values.

Figure 5. Teaching Current in a Simple Series (B-E Tutor)
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However, we are lacking the RIDES “code” required to
monitor instructional presentation and student
performance, and continuously update student p(CE)
values according to the applicable regression equation for
each task attempted by the student. Here, our scheme relies
on three SMART-RIDES library objects we designed to
monitor performance and update student values. Working
with the course of instruction authored as described above,
the library objects we developed serve to: a) recognize
when a CE-specific question/task is presented; b) consider
the number of hints required to correctly complete the
question/task; c) re-calculate the p(CE) value; and d) stop
the lesson when all CEs in that lesson have reached
mastery level. Our hope to minimize custom instruction
authoring is realized, for the most part, through use of
these SMART-RIDES library objects. Basically, the
objects are imported with the Open Library command into
any RIDES tutor being designed to use the SMART
technology. Authors wishing to implement a SMART-
RIDES tutor need only concern themselves with a few
special attributes in the objects.

  Figure 7.  Defining a SMART-RIDES course for the B-E Tutor

As mentioned, the SMART-RIDES objects apply the
regression equations, deriving each new p(CE) value from
the previous p(CE) value. Therefore, curricular element
values have to be accessible throughout the course of
instruction However, there are features in RIDES, not
specifically addressed in this paper, that allow the
simulation to revert to some prior state during instruction.
While the specific features are not pertinent, at this point,
the effects are. Because implementation of SMART
requires p(CE) values to persist until actively re-computed,
we must maintain these p(CE) values outside of the
simulation attributes. Our scheme requires the values to

reside in a smart objective, which is defined as part of the
SMART-RIDES course. The smart objective is considered
a “dummy” objective because it will never be presented to
the student during the course of instruction, i.e., it is not
tied to a RIDES lesson. Instead, the author uses it to define
a number attribute that maintains the student’s probable
mastery value, p(CE), for each curricular element in the
course. These attributes are then also used to create the
student model (Figure 8).

 Figure 8. Defining the CE attributes and generic student model

Conclusions
Intelligent Tutoring Systems (ITS) (Regian and Shute,
1992), are often characterized through their use of: 1)
elaborate models of domain knowledge; 2) a software
simulation that provides the student with interactive
practice opportunities; and, 3) pedagogical software to
make run-time curriculum decisions and manage learning
activities. Although the instructional effectiveness of these
advanced automated instructional systems has been
demonstrated many times (Shute and Regian 1993), the
costs of development and maintenance can be prohibitive.

Tools such as RIDES promote productivity in the
development of simulation-based instruction. The
pedagogy implicit in a RIDES tutor is a simple instruction
sequencing mechanism based on an objective hierarchy.
SMART, an advanced sequencing mechanism, defines a
highly effective pedagogical algorithm that is domain-
independent. A SMART-RIDES tutor would allow us to
increase the effectiveness of computer-based instruction,
without sacrificing productivity in development and
maintenance.

This study resolved that the RIDES authoring shell



offers enough flexibility to accommodate the SMART
student modeling paradigm, without an excessive increase
in the workload generally required to produce a RIDES
tutor. Since this investigation did not produce a domain-
specific tutor and associated empirical data, this remains an
enticing exercise for future research.
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