
A Fully-Integrated Approach to Authoring Learning Environments: Case
Studies and Lessons Learned

Menachem "Kemi" Jona & Alex Kass

The Institute for the Learning Sciences
Northwestern University

1890 Maple Avenue
Evanston, IL 60201

jona@ils.nwu.edu, kass@ils.nwu.edu

Abstract
While the idea of using modular, interchangeable
components in building authoring tools for Intelligent
Tutoring Systems sounds quite appealing from a software
engineering perspective, we’re skeptical about the
educational validity of this idea, and of the implicit model
of learning which underlies it. The mix and match
approach is not theoretically neutral with regard to the
questions of what really drives learning, and what are the
central features of a learning environment. In this paper, we
present an alternative approach to authoring learning
environments, present 10 case studies of applications built
using our authoring tools, and conclude with some
reflections on lessons learned using our approach to date.

Problems with a component approach to

building ITS tools

Traditional Intelligent Tutoring Systems (ITSs) are
typically constructed out of four primary components or
modules: the user interface, expert model, student model,
and instructional module. It is not surprising, then, that
authoring tools for constructing these tutoring systems tend
to consist of specialized editors for building each
component (i.e., a user interface builder, expert model
editor, etc.). Recently, researchers have begun to
investigate whether these component editors could be
developed into stand-alone tools, with the goal of then
being able to mix-and-match the best tools for building
each component of an ITS.

However, while the idea of modular, interchangeable
components sounds quite appealing from a software
engineering perspective, we’re skeptical about the
educational validity of this idea, and of the implicit model
of learning which underlies it. The mix and match
approach is not theoretically neutral with regard to the
questions of what really drives learning, and what are the
central features of a learning environment. For example,
the approach generally assumes that the central component
of a learning environment is the tutor, and that the critical
learning events are interactions between the learner and the
tutor. This view is not compatible with what many who
study education and human learning have found. For
example, many progressive educators would argue that the

most important aspect of a learning environment is a
complex, realistic activity in which the learner becomes
engaged, and not the tutoring received. Under this view
there may still be an important role for computer-based
tutors in computer-based learning environments, but it is a
secondary role; the crucial interaction is between the
student and some sort of simulation, or task environment,
rather than the interaction with the tutor. Furthermore, the
structure of interaction with tutoring is fundamentally
driven by the structure of the task environment or
simulation.

For this reason we feel it is misguided to focus narrowly
tutoring, student modeling, or user interface pet" se when
thinking about tools for authoring learning environments.
It is arguable whether it is even possible to do a needs a
analysis for, say, a tutor, or a tutor-building tool, absent a
broader picture of the context in which the tutor will be
operating. For example, here are some examples of the
crucial questions which contribute to the effectiveness of a
learning environment, which aren’t part of the design of a
tutoring module, per se, the answers to which help place
key constraints on what the tutor should look like:

What type of goal will the student be pursuing?
¯ What kinds of activities will the student be engaged

in?
¯ What special types of hard issues will the activities

present, which will make achieving the goal a difficult
challenge?

¯ What types of failures will the student who does not
fully understand the subject matter experience?

¯ Why kinds of questions will the activities in the
leaming environment raise in the student’s mind?

An integrated approach to tool building

We have adopted an alternative methodology for building
computer-based tutoring systems that entails creating a
fully designed and implemented teaching architecture
along with a special-purpose tool for instantiating that
architecture in a variety of domains. A teaching
architecture (Schank 1994), in the sense used here, means
a system that includes:
¯ a task for the student to perform and a simulation or

39

From: AAAI Technical Report FS-97-01. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



other environment in which to perform that task;
¯ a representation of the student’s task that the system

can use to understand what the student is doing;
¯ a set of teaching strategies or interventions tailored to

the student’s task; and
¯ a user interface that allows the student to engage in the

task, access whatever informational resources are
required during the task, and receive guidance.

In other words, the architecture is a complete tutoring
system, but one in which all the specifics of the domain to
be taught are isolated and thus can be replaced by other
domain content. What makes this approach different than
the traditional approach described above, is that the
structure of the learner’s task within each architecture is
fixed and cannot be changed. The predetermined nature of
the learner’s task allows for the creation of special-purpose
authoring tools for specifying the details of the task and
customizing the user interface. In order to preserve the
pedagogical integrity of the system, the tools permit only
limited modifications; in essence, the author is
instantiating a framework (or teaching architecture) with
particular subject matter.

This approach has a number of advantages, argued for in
previous work (Jona & Korcuska 1996). One
disadvantage, relative to more general purpose authoring
tools is a lack of flexibility in creating a wide range of
teaching systems. In recognition of this, a goal of our
research program at the Institute for the Learning Sciences
(ILS) is to create a suite of eight such teaching
architectures (Schank & Korcuska 1996) that will provide
a variety of approaches to teaching suitable for a wide
range of subject matter. We now have four of the eight
planned architectures operational and in use, with a fifth
currently in active development. The five architectures
are:
1. Advise. The student plays the role of an advisor to an

important decision maker and must evaluate a set of
plans and recommend one that does best on a specified
set of goals.

2. Investigate & Decide (INDIE). The student must
investigate a phenomenon in detail, performing and
interpreting lab tests, and make a decision based on
the results of his or her investigation.

3. Run. The student must manage a complex system or
group and respond to unforeseen events that threaten
the stability of the system.

4. Script. The student must learn to correctly perform a
procedural task under a variety of conditions, and to
recover appropriately from any errors made.

5. Persuade (in development). The student plays a role
in a social simulation and must understand the other
characters’ goals and agendas in order to persuade
them change their positions or reach consensus on an
issue.

In the remainder of this paper we seek to illustrate this
approach to learning environment development tools by

briefly describe each tool we are actively using, along with
a couple example applications we have built with that tool.
We conclude with some reflections on the lessons we have
learned about our approach to authoring tool development,
and about developing learning environments in general.

Ten example applications built using the ILS

tool set

This section is divided into five subsections one for each
tool--and provides a short description of two of the
applications built using each tool. In total, we describe ten
applications across a wide range of topics, that have been
built using our approach.

The Advise Architecture

In an Advise application the student plays the role of an
advisor to an important decision maker and is asked to
create a report evaluating several alternative solutions to a
given problem. For example, the student may be placed in
the role of an advisor to President Kennedy during the
Cuban missile crisis and be asked to evaluate several
options for responding to the Soviet threat. To help
complete the task, the student is given a large hypermedia
database of information and expert opinions about the
issue, a skeletal report, and a panel of opinionated experts
who represent conflicting perspectives about the issue.
Upon submitting the report for review, the student receives
a critique which focuses on the quality of the evidence she
used to support their conclusions. The student can then
revise and resubmit the report. The Advise architecture is
described in more detail in (Korcuska forthcoming);
(Korcuska, Herman, & Jona 1996); and (Korcuska, Kass,
& Jona 1996).
Crisis in Krasnovia
In this system, the student plays a top advisor to the
President of the United States, who asks the student to
review and evaluate possible U.S. responses to the
situation in Krasnovia, a fictional country based on the
former Yugoslavia. The student can call on a panel of
advisors to help with the evaluation. These advisors--
whose policy preferences run the gamut from military
intervention to diplomacy----offer their opinions buttressed
with evidence from a video database that includes
interviews with real experts in history and foreign policy
as well as information and footage about past foreign
policy problems. The student evaluates the options by
asking questions of the advisors, and consulting with the
experts in the video database. Finally, the student
constructs a report to the President outlining his or her
conclusions, with supporting evidence from the video
database. The President critiques the report based on how
thoroughly the student has documented his or her opinions,
how consistent the report is, and how well it articulates the
administration’s foreign policy goals.

Emerging Economies

40



Emerging Economies, developing in collaboration with the
Kellogg School of Management, is a learning environment
for business school students and executives seeking to
master the intricacies of doing business in an emerging
economy. Emerging economies are those countries around
the world that seem poised for explosive growth--for
example, China, Brazil, some areas in Eastern Europe, and
countries in South Asia. These are the places where every
business that wants to grow wants to be.

The problem is that business success in these unevenly
developed, changeable, culturally distant markets is by no
means assured. Without experience it is all too easy to
make fatal miss-step, and people with experience in these
markets are in short supply. The Emerging Economies
system provides an environment in which students are set
the task of advising a fictional company’s CEO on how
best to take the company into a fictional emerging
economy (specifically, a baby-food company that is
plotting its strategy for entering Eastern Europe). In the
role of consultant, the only way to prepare a complete
report for this CEO is to learn from the experts about how
other companies have fared in other markets.

The Investigate & Decide (INDIE) Architecture

In applications built using the Investigate and Decide
(INDIE) architecture, students must make a decision about
some issue, and in order to make this decision are given a
set of investigative tools to collect the necessary evidence
to back up their decision. To represent their decision,
students’ typically prepare a structured report and must
back up whatever decision they’ve reached with evidence
collected from running tests or doing other types of
investigative actions. (Bell 1996) discusses the INDIE
architecture at length.

Immunology Consultant
Built in conjunction with Northwestern University’s
medical school, Immunology Consultant is a goal-based
scenario (GBS) designed to teach the basic physiology and
pathophysiology of the immune system to second year
medical students. A student plays the role of a consultant
to a generalist physician, who is dealing with a puzzling
case that might have an immunological etiology. The
student’s task is not simply to provide a diagnosis, but
rather to explain the underlying causes of the patient’s
illness to the physician. During an exploratory process that
may take several hours, the student may ask questions of
the patient, request laboratory tests, and consult a large,
well-structured database of expert knowledge in the form
of video clips, text, and graphics. We have just completed
a prototype version of the system that contains a single
case. After testing the system with students, we hope both
to use it in classes at Northwestern’s medical school and to
seek additional funding to expand the content to create a
complete, computer-based course in immunology.

Is it a Rembrandt?
Recently, the art community has come to question the

authenticity of many works previously ascribed to
Rembrandt. Attribution is no easy task. Aside from the
obvious issue of forgeries and unsigned works, there are
also issues related to Rembrandt’s workshop model of
painting: for a painting done by both student and master, is
it a Rembrandt? To answer this question, scholars
examine features of a painting such as subject,
composition, and palette; they review conservation
records; and they perform scientific tests such as X-ray
analysis, dendrochronology, autoradiography, and pigment
analysis. The "Is it a Rembrandt?" GBS, built in
collaboration with Northwestem University’s Art History
Department, introduces the students to these issues by
having the student determine the authenticity of three
Rembrandtesque paintings. The student learns how to
examine a painting to determine attribution, using
evidence from both connoisseurship and technical analysis.
In this process, the student encounters general problems
about attribution, and learns more about both painting in
general and Rembrandt in particular.

The Run Architecture
The Run architecture places the student in the role of
managing or controlling a system, process, organization, or
team to achieve a desired outcome or end state. The
architecture provides a mechanism for simulating the
dynamic interrelationships that exist in a particular
domain, and it is through exploring these interrelationships
that students’ come to learn the relevant aspects of the
domain. Throughout the course of the simulation, students
are confronted with a variety of challenges and unexpected
situations that they must address or resolve. At each
decision point the student has the opportunity to hear from
experts in the domain, and can use their advice to inform
his or her decision about what course of action to pursue.

Fire Commander
Fire Commander is a educational software program
designed to teach 6th-8th graders about fire safety and
ftrefighting by putting them in the role of incident
commander at the scene of a house fire. The student is
responsible for directing the flrefighting teams to put out
the fires and save the lives of the people at the house.
After the student gives firefighters instructions, he will see
video of the flrefighters carrying out those instructions, as
well as video of everything else that happens in the world
at that time. At any time, the student can ask questions of
flrefighters about what just happened, what to do, or the
current state of the world.
Zookeeper
The goal of the system is to teach 3rd to 5th graders about
zoo diet/nutrition, zoo habitat, and zoo care for a number
of different animals. The student plays the role of a
zookeeper who must complete everyday tasks as well as
assess and solve unexpected zoo-related problems. The
student is presented with problems which need to be
solved for various animals at the zoo. These problems are
things that go wrong at the zoo (e.g. the gorillas are

41



fighting). The student needs to prioritize the problems and
decide in which order the problems need to be addressed,
Each problem has 3-4 actions which can be chosen to
solve that problem. For every problem and the associated
actions, the student can ask questions as an aid in
determining which is the best solution for a given problem.
As the student ignores problems or chooses incorrect
actions, existing problems will worsen and/or new
problems will be created.

The Script Architecture
The Script architecture is a descendant of the Moped tool
developed by (Ohmaye 1992) and extended by (Jona
1995) and (Guralnick 1996). In applications built with 
Script architecture, the student engages in a simulated task
that is highly scripted or proceduralized. A tutor observes
the student’s progress through the procedural task and
intervenes to point out incorrect or missed steps. The
student can also query the tutor at any point on what to do
next or why a particular step is correct or incorrect.

ChemLab
To truly understand chemistry, a student must work in the
laboratory. Unfortunately, tab time is a precious
commodity, and much too often, students become
overwhelmed by the procedure and fail to understand the
underlying theory. When complete, the "Chemlab" GBS
will allow students to spend unlimited time learning both
procedure and theory in a virtual laboratory. The student
will learn how to perform experiments such as Thin-Layer
Chromotography in simulation. Expert chemists will be
available to help, and the student will be permitted to try
things which in the real laboratory would mean rushing to
the emergency shower (or worse). Built in collaboration
with Northwestern University’s Chemistry Department,
this GBS will serve as auxiliary material for organic
chemistry students who will first become familiar with the
procedures in simulation, and then truly explore chemistry
in the lab.

411
Built for the purpose of training directory assistance
operators, 411 provides 50 different situations that
operators would likely encounter on the job. Through
practice, trainees learn how to answer many different types
of calls with speed and accuracy. 411 provides just-in-
time tutoring; that is, key information and instruction are
always available, just when trainees need them. Other
advantages of 411 are that employees become productive
faster and that the company does not need as many
instructors, both of which reduce training costs. The
company anticipates that the software will reduce a
training session from five days to two days.

The Persuade Architecture
Applications built using the Persuade architecture put
students in a social simulation in which they interact with
simulated characters and seek to persuade them to change
their positions on an issue, or build consensus among them

on a set of issues. The student has the option to explore
any approach they may wish to take by consulting a richly
indexed database of experts.
French Revolution
French Revolution is a computer-based learning
environment for undergraduate French majors studying the
cultural history of France. The goal of the system is to
familiarize these students with the social situation
prevailing in France just prior to their revolution. The
approach this system takes is to cast the student as a
member of the 3rd estate delegation to the Estates General,
taking on the mission of recruiting other delegates to join
the nascent National Assembly. Transported to a
computer-simulated Versailles garden, the student
converses with members of many different social strata of
French society. In order to succeed at convincing these
simulated characters to join the Assembly, the student must
learn about the characters’ background and interests. By
the time students have met and talked with all the available
characters, they will be conversant in the issues current on
the eve of France’s revolution.

EPA Community Partnering
In collaboration with the U.S. Environmental Protection
Agency (EPA) we are developing a computer-based
learning environment called Community Partnering for
Environmental Results. The goal of the project is to build
a simulation-based system that can be used by a broad
range of EPA staff to practice and refme public outreach
and community relations skills. In the system the learner
must field calls, run meetings, seek input, and manage the
community relations (including relations with state and
local agencies) for various simulated EPA initiatives or
projects.

In the first scenario, for example, the learner plays the role
of an EPA coordinator for the fictional community of
Evans Bay. The learner is introduced to come of the
environmental issues be confronted in Evans Bay via news
videos and background documents and reports. After
reviewing this background material, the learner’s first task
is to conduct a "Question & Answer" meeting to identify
the public’s concerns. Conducting this meeting entails
interacting with simulated audience members (who
represent a range of personality types and interest groups
commonly found in public meetings). Through the use of
advanced blue-screen video technology, simulated
audience members appear to be speaking directly to the
learner, heightening the realism of the simulated meeting.
The scenario is designed to make the meeting quite
challenging; some members of the audience can be quite
unpleasant. Moreover, a response that makes one audience
member happy may cause another to become upset. If the
learner exhibits a lack of preparation, insensitivity to the
public’s feelings, poor judgment, or other common
problems, the audience will become even more hostile.
After the simulated meeting concludes, the student can see
the results of his or her decisions via simulated public
opinion polls and press reports of the meeting.

42



Lessons Learned

While still relatively new, we have learned some
interesting lessons about our approach to authoring tool
development. Some of the key successes and "lessons
learned" of our approach include:

¥ Overall development time for typical applications
using our existing teaching architectures has been
reduced from around 12 months to 6-8 months,
depending on the complexity of the application.

¥ We have dramatically reduced the need for
programmers on our project teams. In the past,
applications required 2-3 programmers for the
duration of the project. Now we need only about 0.25
FTE programmers.

¥ We have cut development costs for average projects
by around 75%.

¥ Access to subject matter experts is now the rate
limiting factor in completing projects. Prior to
development of the teaching architectures and tools,
programming and interface implementation were the
rate limters.

¥ The tools allow for more rapid prototyping and permit
earlier opportunities to "test" the system under
development and refine the content in the system.
This allows us to notice problems and gaps in the
content much earlier than was possible before the
tools were developed.

¥ Given the scaffolding provided by the design
embodied in the teaching architectures, the design task
has been eased, especially in the early stages of project
development.

¥ However, even despite the design scaffolding afforded
by the teaching architectures, skilled design oversight
is still required to insure that a high quality learning
environment is produced. We had initially hoped that
the tools would enable designers with less specialized
design training to build consistently high quality
software. This hope has not been realized to the
extent we had thought it would.

¥ While we have achieved significant reductions in the
time needed to develop new applications, we have not
been able to reduce it as much as initially thought.
Our goal was to reduce development time for typical
projects to around 4 months. The limited availability
of subject matter experts with whom we are
collaborating and difficulty in coordinating their
schedules with that of the development team has been
a key factor in keeping the development time longer
than we were shooting for.

References

Bell, B. 1996. A special purpose architecture for building
educational software. Unpublished Ph.D. dissertation,
Northwestern University.

Bell, B., & Korcuska, M. 1995. The Goal-Based Scenario
Builder: Experiences with Novice Instructional Designers.
Paper presented at American Educational Research
Association Meetings, San Francisco, CA.

Bell, B.L., Kedar, S.T. 1995. When Less is More:
Supporting Authoring and Interface Building via Special-
Purpose Task Models. In Proceedings 7th World
Conference on Artificial Intelligence and Education,
Washington, DC., pp. 533-540.

Guralnick, D. 1996. Training systems for script-based
tasks. Ph.D. dissertaton, The Institute for the Learning
Sciences, Northwestern University.

Jona, M. 1995. Representing and Applying Teaching
Strategies in Computer-Based Learning-By-Doing Tutors.
Ph.D. dissertaton, The Institute for the Learning Sciences,
Northwestern University.

Jona, M., & Korcuska, M. 1996. Same Architecture New
Domain (SAND): An Alternative Methodology for
Building High-Quality Reusable Tutoring Systems.
Proceedings Third Conference on Intelligent Tutoring
Systems, Montreal, CA.

Korcuska, M. (1998). Knowledge-based Authoring Tools
for Educational Software. Unpublished Ph.D. dissertation,
Northwestern University. In preparation.

Korcuska, M., Herman, J., & Jona, M. 1996. Evidence-
based Reporting. In P. Carlson & F. Makedon (Ed.),
Educational Multimedia and Hypermedia, (pp. 783).
Boston, Ma: Association for the Advancement of
Computing in Education.

Korcuska, M., Kass, A., & Jona, M. 1996. Matching
teaching goals to learning-by-doing tasks: When to use
EBR. Proceedings Second International Conference on
the Learning Sciences, June 1996.

Ohmaye, E. 1992. Role playing and social simulation.
Ph.D. dissertation, The Institute for the Learning Sciences,
Northwestern University.

Schank, R. & Korcuska, M. 1996. Eight GBS Tools.
Technical Report #67. The Institute for the Learning
Sciences, Northwestern University.

Schank, R.C. 1994. Teaching Amhitectures. Technical
Report #3, The Institute for the Learning Sciences,
Northwestern University.

43




