
Collaborative Authored Simulation-Centered Tutor Components

Allen Munro, David S. Surmon, Quentin A. Pizzini, and Mark C. Johnson

Behavioral Technology Laboratory
University of Southern California
250 No. Harbor Drive, Suite 309

Redondo Beach, CA 90277
munro @usc.edu

Abstract
As we have developed a number of authoring systems for
simulation-centered tutorial development, each successive
authoring system has achieved its original goals, and yet has
been quickly shown to have limitations that motivated the
next authoring system. The history of these systems reveals
two emerging requirement themes. The first theme is that
there is a need for more than one level of tutor development.
For example, a two-level authoring system might provide an
easy-to-use system tbr novice tutor developers and a deeper
level of authoring for expert tutor developers. A second
theme is that the tutor delivery system should be
componential and open so that it can work with
collaborating applications, some of which may not have
even existed when the authoring system was originally
designed. The second part of this paper describes one
essential element of a componential approach to simulation-
centered tutor development, the specification of simulation
services that may be required by tutors.

I. Authoring Simulation-Centered Tutors:
Lessons Learned

We have been involved in the development of a series of
authoring tools for the development of tutors for many
years (Towne, Munro, Pizzini, Surmon, Coller & Wogulis,
1990; Towne & Munro, 1991, 1992; Munro & Towne,
1994; Munro, Johnson, Surmon, & Wogulis, 1993; Munro
& Pizzini, 1996; Munro, 1997). A primary motivation for
building such authoring systems for developing tutors is to
increase the cost-effectiveness of tutor development. Using
a well-designed authoring system, an author should be able
to much more rapidly develop, test, and modify a tutor than
if a number of lower-level development tools, such as
programming languages and expert system shells, are used.
A cost effective approach will make feasible the
development of a much larger number and wider variety of
tutors than would be possible using more expensive
techniques.

IMTS: The Intelligent Maintenance
Training System (1984-1989)
This authoring system, described by Towne & Munro
(1988), supported the development of interactive graphical

simulations based on schematics (electrical, hydraulic, or
mechanical). Authors could create behaving simulations by
connecting behaving components from a parts library.
Additional information about system level symptoms and
causes could be entered in table form. A generic
troubleshooting expert could assist a maintenance trainee
in selecting tests to perform and in evaluating those tests.
Figure 1 displays an example of a simple static state
schematic simulation.

va lye

Pump I s--t -~1 /
I I ’
I I

Pwr ~;upplyA
Figure 1. A simple static state simulation

In this figure, there is a switch under the control of the
student. The student can observe changes in a valve, an
actuator, and an output light. These are the indicators in the
simulation. A good deal of usefid instructional interaction
with students can be phrased in terms of the states of
controls (such as the switch) and such indicators. The
simulation authoring system let developers draw objects in
all their possible states and enter rules for transitioning
among the states. A separate simulation scene editor was
used to compose these authored objects into connected
systems.

IMTS included an intelligent monitor of student
performance called Profile. Profile watched students
manipulating controls and noticed changes in indicators. It
was designed for equipment troubleshooting (fault
isolation) training. It made judgments about what
malfunctions students should suspect, based on their
actions and the indications they had observed. It could
offer advice on the potential usefulness of tests and
observations being considered by the student, and it could

6O

From: AAAI Technical Report FS-97-01. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

advise about what should and should not be suspected,
based on what had been done in the session.

Lessons Learned from IMTS. IMTS could be used to
build equipment simulations of a certain class. With
additional authoring about malfunction effects, it could
also be used to deliver equipment troubleshooting
instruction. Unfortunately, the naturalness and ease of use
of the simulation authoring environment encouraged its
application in domains for which it was not designed.
¯ Shnulation authoring systems should not be too special-

purpose.
The ease of use of the simulation composition system
generated demand from a wider authoring community
than was originally envisioned. The special-purpose
maintenance training focus was a negative for this larger
group of authors. The range of systems that could be
simulated was also found to be too restrictive.
Simulations were based on object states and did not
support contiimous effects. Some authors needed deeper
control over simulation objects and simulated systems.
One way of describing the simulation authoring
limitations of IMTS would be to say that it tried to be
too intelligent. The authoring system itself had an
understanding of hydraulic effects, electrical effects, and
mechanical effects. As soon as authors tried to apply the
system to simulating economic systems, chemical
reactions, satellite orbits, or any other domain that did
not fit into the ’equipment’ orientation of IMTS, the
authoring system kept authors from accomplishing what
they wanted to.

¯ It should be possible to author instruction, as well as to
generate it at run-time.
IMTS also offered too little authoring control over
instructional intelligence. Tutor development was fast
and effective only if a particular type of maintenance
tutor was wanted; no other type of tutor could be
developed using the system.

RAPIDS: A Rapid Prototyping ITS Development
System (1988-1990)

The lessons learned from IMTS were first applied to our
RAPIDS project (Towne & Munro, 1991). The RAPIDS
authoring system increased the openness and power of the
simulation authoring system by letting authors build
simulations with continuous value changes, as well as with
state-oriented objects. It required authors to more fully
specify how values were propagated in a system of
connected objects, instead of trying to automatically apply
physical laws to every object connection. This made it
possible for authors to build systems that were outside the
narrower domain of equipment simulations permitted by
IMTS. Figure 2 below displays a simulation scene for a
RAPIDS tutor about a helicopter blade-folding system.

RAPIDS also provided a more open instructional
system. It supported a variety of simple instruction
templates that authors could use to create simulation-

centered tutorials. Authors would build complete graphical
simulations using one set of authoring tools. Then, using a
different set of instruction authoring editors, they would
build lessons for delivery in the context of those
simulations.

Figure 2. A schematic simulation with continuous effects

Lessons Learnedfrom RAPIDS. A lesson of the RAPIDS
project was that still more control needed to be provided to
authors. There was also demand for an easy-to-use
simulation-centered authoring system that could be used on
widely available workstations, rather than only on
specialized Lisp workstations.
¯ Simulation authors sometimes require very detailed

control over object behavior.
Although the simulation approach was much more
general-purpose in RAPIDS than in IMTS, some authors
needed finer control over graphical features than it
provided. Authors could control universal characteristics
of objects like location, rotation, scale, and visibility, but
they could not control the detailed, unique characteristics
of most graphic primitives, such as fill pattern or color.
RAPIDS still encouraged a state-oriented ’bitmap-style’
representation of objects.

¯ Ease of instruction authoring is good, but detailed
control is necessary.
The instructional authoring system was easy to use, but
it provided only a few types of structured lessons.
Nonetheless, there was considerable interest in using
RAPIDS. Authors were sometimes frustrated by their
inability to make simple changes in the wording or
structure of generated lessons.

¯ Multiple development and delivery platfotTns shouM be
supported.
Potential users were put off by the fact the RAPIDS, like
IMTS, was available only on specialized Lisp machines.

61

RIDES: A Rapid ITS Development Environment
(1990-1996)
The RIDES authoring system provides a much richer
simulation authoring environment, one that encourages the
development of continuous behaviors and that offered very
fine control over the behavior of graphical objects.
Simulations can control the specialized attributes of certain
types of graphic primitives, including the colors and
patterns of objects, the text of text primitives, and so on.

RIDES offers two levels of authoring for creating
behaving objects in a simulation. The ’libraries’ authoring
level lets inexperienced authors select behaving objects (or
groups of related objects) from libraries. See Figure 3,
below. These objects can then he pasted into simulation
scenes.

Figure 3. Selecting simulation objects fi’om a library.
New library objects can be created simply by selecting

authored objects on a simulation scene and saving them in
a library.

More expert simulation authors can develop novel new
objects by drawing them (or by importing their graphics)
and then writing rules, using the RIDES event and
constraint editors, that control the behavior of those objects
in RIDES simulations. See Figure 4.

RIDES also provides two levels of instruction authoring.
A high-level authoring system permits subject matter
experts who are not experienced instructional developers to
quickly and interactively produce several different kinds of
simulation-centered lessons. This approach to authoring is
called patterned exercise authoring and is shown in Figure
5. A lower-level system lets authors who are more expert
develop lessons with varied internal structures and with
fine control over what is said to the students. This
approach, called custom instruction authoring, is shown in
Figure 6. In this figure, a lesson that was generated using a
patterned exercise editor is being modified.

i{

i--~:-~+ i~.-- I 7 i7}
i-,i~, ;,.u i {7 :ii

Figure 4. Custom simulation object authoring

Image 6tou,~ e d Object
~i~

Figure 5. Authoring a patterned exercise

¯ we.-~ii i: 7 i iii iiiii iiiiiiiiiii ::;~i !,~

+ n ll~ e.,,erc+~e, we’ll 6emen~liale stand~_.d ogera:ion-d s~tup, ~ich iry~ ii

.~-~ N~-~ i iiiii 7;~: i i iiiiiii

Figure 6. Modifying insttTwtion in the custom lesson editor
As a result of applications of the lessons learned during

the development of IMTS and of RAPIDS, RIDES has
been widely experimented with in technical training
applications. Its acceptance has undoubtedly been
enhanced by the fact that it is an efficiently implemented
application that runs on a variety of Unix workstations,
including PCs running Linux.
Lessons Learned from RIDES. RIDES offers a much
better range of development approaches that call for
differing levels of expertise and offer different levels of

62

control than did our earlier authoring and delivery systems.
In fact, the range of options for controlling simulations
seems to be about right. However, still more instructional
control is required by some authors. Furthermore, RIDES
isn’t multi-platform enough! Developers want to be able to
deliver on Windows 95 and, as new platforms emerge,
authors will want to deliver tutors on those platforms as
well. Finally, RIDES could be more open and more
componential, so that it could be more widely used by our
research colleagues.
¯ Instruction authors need as much power andflexibility

as do simulation attthors.
Even the ¢ustonl instruction authoring in RIDES is still
somewhat too constrained. It needs to be more flexible,
in order to give advanced developers more control over
the structure and flow of tutorials. There should be a
deep level of representation of instruction that provides
the power and flexibility of a programming language.
Many casual authors would never use this deep level of
instruction, but it should be available for those who need
it.

¯ More platforms shouM be supported.
In addition to Unix workstations, many developers have
requested support tbr Windows NT and Windows 95--
and, ideally, future platforms as well. At least it should
be possible to deliver simulations and simulation-
centered tutoring on virtually any platform, even if the
authoring system is not universally available.

¯ An open architecture of collaborative components.
Not every feature of the RIDES simulation-centered
tutorial development and delivery system is required for
every project to which it has been applied. In particular,
some of our research colleagues at other institutions
have wanted to use portions of the RIDES system, such
as its simulation engine or its course administration
system, while substituting for other portions of the
system their own applications. An architecture of
collaborative components--some providing simulation,
others instructional or course management~efined
with open communication standards, would facilitate the
integration of our work with that of our colleagues.

Summary of Lessons Learned

Support two or more levels of authoring. We have
learned that widespread acceptance of an authoring system
requires that each of the major aspects of the system should
support at least two levels of authoring: a very easy-to-use
interface that can be employed with little training to
productively generate useful tutorials, and a very flexible
and powerful system for tutorial elaboration and editing by
well-motivated expert developers. Our latest authoring
environment for simulation-centered tutor development,
VIVIDS, will support two levels of simulation authoring,

similar to those of RIDES. Similarly, VIVIDS will support
two levels of tutorial authoring: a high level specification
that is very easy to generate for certain classes of
predefined tutorial structures, and a detailed tutorial
scripting level, which will be more powerful than that
provided in RIDES.

Make the authoring system extensible. In VIVIDS,
authors can add newly defined behaving simulation objects
to the libraries, where they can be utilized by others. We
plan to provide a mechanism for allowing advanced tutor
developers to create their own templates for rapid
instruction authoring using high-level specifications.

Make the delivery system open and componential. Many
colleagues have expressed an interest in using only a
portion of our tutor delivery system, e.g., only our
simulations, in conjunction with their own tutorial
components. Our current VIVIDS delivery system is a
monolithic application, but we are architecting a new
version that will support much greater openness. Our next
generation VIVIDS delivery system, which we call
JavaVivids, will consist of a confederation of collaborating
applications, including a simulation engine, tutorial
modules, a course control system, and a student modeling
system. Our research partners and other advanced
developers will be able to replace one or more of these
components with their own collaboration-compliant
applications.

Support platform independent delivery of tutors.
JavaVivids will be implemented in Java (a high-speed
optimized simulation engine component may be available
for certain platforms), so that the same tutor delivery
system can be used on any platform that supports Java.

II. Collaborating Components

The most complete and capable of the authoring systems
developed at our laboratory are RIDES (the Rapid ITS
Development System) and its immediate descendent,
VIVIDS. The key concepts in these systems are
¯ Instruction in an interactive graphical simulation

environment
¯ Direct manipulation authoring of simulations
¯ Facilities for authoring content-based help
¯ A highly productive approach to authoring structured

lessons in the context of interactive simulations

¯ Courses organized around learning objectives

Many interactive graphical simulation-centered tutors
have been built using R/DES and VIVIDS, both in our
laboratory and at other sites. Most of these are centered
around 2D simulations, such as those shown in Figure 7,
below.

63

i i
! i

Figure 7. Two 2D simulations built in RIDES
Several substantial 3D simulations have been built using Links to content based help, hypertext-like browsing

VIVIDS, includin the one shown in Fi Feedback about reference in behavior authoring editors

Figure 8. A 3D simulation Built with VIVIDS
RIDES and VIVIDS 1 are monolithic development-and-

delivery environments_that provide a wide range of user
interface features in support of simulation development,
tutorial development, and course development. These
features include the following:
Simulation Authoring Features

Behavior specified by Constraints
Advantages: Modularity, locality of effect,, cause

tracing, un-authored flow of control
Behavior specified by Events
Library Objects

Both graphics and behavior

Special reference typography, error highlighting,
pasting objects as references where appropriate, name
changes automatically update in referenced contexts

Multiple levels of Undo and Redo
Transparency of Effects

Appearance changes can be accomplished by editing
object data in interactive editors, or by using
graphical tools. The effects of the graphical tools
are reflected in the object data editors.

Smart Copy and Paste
Parallel behaviors are maintained when a multiple

selection set is copied and pasted.
Find tool

Supports searching for named objects and attributes,
searching in constraints or events, searching
among attribute values.

Simulation debugger
Supports step-by-step execution, tracing, breaks

Instruction Authoring Features
Build certain types of tutorials by demonstrating

procedures in the simulation
Modify and customize such generated tutorials in an

interactive lesson editor
Robust linkage between simulation and instruction
Simulation name changes automatically reflected in

instruction, etc.
Objectives-based course design
Trace lesson execution
Log student actions
Student performance reporting over network

64

VIVIDS-1 Collaboration in the VET Project

We have been conducting a project in collaboration
with the Lockheed Artificial Intelligence Center and
Informatiol~ Sciences Institute to explore the potential of
virtual environments for technical training--VET (Stiles,
McCarthy, Munro, Pizzini, Johnson, & Rickel, 1996;
Johnson, Rickel, Stiles & Munro, in

Figure 9. Virtual environment with VIVIDS instructional
intelface

The VET proiect m~es use of three major collaborating
software applications: VIVIDS--from our lab, Vista--a
3D interactive environment from Lockheed Martin
research group headed by Randy Stiles, and Steve--an
autonomous agent developed by Lewis Johnson and Jeff
Rickel at Information Sciences Institute.

The success of this project has increased our interest in
developing a more open approach to tutor components. In
this brief paper, we focus on a single question: What are
the core low-level services that an instruction module
should be able to request of a simulation module?

Open Architecture Tutors
A successful architecture for simulation-centered

learning environments must be extremely robust and very
open. It is very important that the architecture itself not be
closely wedded to one particular theory or approach to
tutoring in the context of simulations, because we must
expect that our theories will evolve and improve as we
conduct research and as we observe the tools that we
develop in use. In fact, and ideal architecture will
encourage the development of a variety of different
instructional approaches in the context of interactive
simulations.

?

Instruction
Module

Student Model
Module

Simulation
Module

Figure 10. Oversimplified approach to tutor modules
Figure 10 presents a conventional simple high-level
architecture for a tutoring system. In this much-
oversimplified figure, we assume that pedagogically
relevant domain knowledge can be found in the component
labeled ’Instruction’.

As we have wrestled with the design and implementation
of a real-world approach to these modules, we have found
it useflal to focus on widely required primitive instructional
services for simulation-based tutors.

To make the instructional services problem tractable, we
envision an instruction system in which there are low-level
instructional services (such as presenting a piece of text to
a student or requiring that a student touch or click on a
simulation object), and higher level instructional modules,
such as one that presents previously scripted lessons or one
that monitors complex student problem-solving activities
and offers advice and correction. The high-level
instructional modules express themselves by calling on
low-level instructional services. Some of these low-level
instructional services may have nothing to do with the
simulation module. For example, instructional text may be
presented in a window that is not under the control of the
simulation module, or such text may be presented using a
text-to-speech or pre-recorded voice system. Figure 11
sketches a portion of this type of system.

IxL-~Imefion Simulation Module

,=
~ ~°~t~I~l / R~B"-~ I |°~I~al I I

IAutl:°redI-e~"°n| ~-xPea’tTut°rial°t I ~-:m~on~l I I
I

++,.+ ’ I ILow-le~+l Ia_.~.ax~n Modules

+II++’+-°+’++++’+°"¯ -i+++++-i+ I ,l+:--
Figure 11. More detailed approach to tutor modules

Below we lay out preliminary lists of

65

¯ Simulation-based presentation services to be provided
by a low-level instruction module, and

¯ Evaluative simulation-based student interaction services
that are to be provided by low-level instruction in
collaboration with the simulation.

We are attempting to identify the primitive vocabulary
of simulation-centered tutorial events. We ask for feedback
from our colleagues in the simulation-centered tutoring
community. Are the proposed sets of low-level services
adequate for the requirements of the high-level tutorial
modules that they plan to develop in the future?

In what follows, we have organized a list of proposed
low-level student interaction services for tutors into four
groups.

1 Non-simulation presentation services

2 Non-simulation student judging services

3 Simulation presentation and monitoring services

4 Simulation judging services
The first two groups are not of special concern for this

paper, and are not meant as an exhaustive list. Our focus is
on the third and fourth sets of services, which relate to
authored simulations.

1 Presentation services (not simulator-based)
These services are non-evaluative. The instructional
component may provide these services directly, or may
request them from one or more presentation or media
service providers. These components are designed to
collaborate in a complete tutor delivery system.

¯ openTextPresenter

¯ closeTextPresenter

¯ repositionTextPresenter

¯ clearTextPresenter

¯ presentText

¯ presentURL

¯ presentMPEG

¯ presentAVI

2 Student judging services (not simulator-based)
These services require an action of the student, and must

evaluate the quality of the student’s response, but they are
not dependent on the presence of a simulation.

¯ Get menu answer

¯ Get keypad answer

¯ Get typed answer

¯ Get spoken answer

Of special interest to us, given our focus on simulation-
centered tutorials, are the low-level services that a tutor
may reasonably expect a collaborating simulation to
provide.

3 Simulation-based presentation and monitoring
services

These services are non-evaluative. The instructional

component can simply request the service and expect a
confirmation that the simulation has carried it out.
¯ openSimulation--A simulation produced by an

authoring system will typically be saved as data in a file
that can be opened by a collaborating simulation player.
Hard-coded executable simulations would lack the
ability to open different simulations.

¯ closeSimulation--When a simulation is closed, any
visible characteristics of the simulation (e.g., open
windows) should disappear.

¯ openScene---Not all simulations will support the
delivery of multiple views (in, for example, different
windows). Those that do, however, should offer the
instruction module the service of opening a requested
scene.
closeScene--If a simulation can open scenes, it should
also be able to close them at the request of the tutor.

saveConfigurationISome simulations, such as those we
have developed, have a mechanism for capturing the
complete state of the simulation and restoring that state
upon request. This is important for many complex
simulations, because the tutor wants the system to be in
a particular state before it begins to discuss features of
the simulated world that may depend upon the state.
Some tutors need to capture a state of the simulation
before letting the student work with the simulation. That
way, if the student fails to carry out an assigned task, the
tutor can restore the state of the simulation before
remediating the student.

instalIConfiguration--Restore a previously saved state
of the simulation.
startSimuiator--lt can be very usefftl to freeze and
unfreeze a simulation during the course of a tutorial.

stopSimulator

lockOutStudent--Sometimes a tutor wants simulation
effects to continue (time to pass, animated effects to take
place, etc.) while denying the student the ability to carry
out any manipulations in the student environment.
setSimulationClock--Some simulations may exhibit
behaviors that are dependent on the simulated time.

setClockMultiplier--It is often useful to be able to
compress or expand the time scale, so that students can
be shown processes that are too fast (or too slow) to
observed ordinarily.

executeEvent--Some simulations have defined events
(such as the appearance of an enemy on a radar screen or
the start of a coolant leak in a nuclear power plant) that
the tutor may want to invoke under conditions of its own
choosing.
setAttribute--The concept of setting a simulation
attribute to a particular value is similar to that of
invoking an event, but it gives a tutor more intimate
control over the characteristics of a simulation, because
events must be pre-authored to be available in the
simulation.

66

¯ getAttributeVah~eIA tutor can ask the simulation for an
attribute value so that it can accurately refer to or discuss
that value in the current simulation state. It can also
make teaching decisions based on features of the
simulation state that arises as a result of student
manipulations.

¯ getEapressionValue--This service allows a tutor to send
the simulation any arbitrary expression in the format
supported by the simulation and to receive back the
current value of the expression. This allows the tutor to
refer to values that may not be explicitly computed in the
simulation (e.g., "The current output of the five
generating units is 1.21 gigawatts.").

¯ addExpressionListener--This service allows a tutor to
announce to a simulation that it would like to be
informed whenever the value of a particular expression
changes. A common use of this service is to monitor
some aspects of the state of a simulation after directing
the student to achieve a particular goal in the simulated
world. When the expression of interest becomes true, the
student has succeeded.

¯ removeEXpressionListener--Lets the tutor unregister a
previously expressed interest that is no longer needed in
the tutorial.

¯ highlightObjectIA simulation should offer the tutor
some mechanism for making graphical components of a
simulation visually salient. In RIDES and VIVIDS,
highlighting is accomplished by rapidly alternating the
colors of the object or objects that are to be highlighted.

¯ unhighlightObjectIThe tutor also needs some way to
make objects stop being so visually salient. A useful
variant form of this service is to unhighlightObject All,
which restores all the graphics that are currently being
highlighted to their normal visual appearance, as
prescribed by the current state of the simulation.

¯ addObjectListenerIA tutor can ask a simulation to tell
it whenever a student touches a simulated object. This
service can be used in combination with the
lockOutStudent service to let the student point out
objects without manipulating them. It can also be used to
monitor object manipulations.

¯ removeObjectListener--Lets the tutor unregister a
previously expressed interest in the student’s object
touches.

¯ carryOutUserActionIThis option lets the tutor "reach
over the student’s shoulder" to carry out a manipulation
in the simulated environment. This service is very useful
for demonstrating to students how to carry out
procedures. It is also necessary for remediating
erroneous actions in some simulation-centered tutors.

4 Simulation-based student judging services
These services may not actually be services of the

simulation itself, because they can be composed from the
low-level services described under 3, above. However, they
are very commonly utilized in tutorials developed using the
RIDES and VIVIDS authoring systems, and are likely to

often prove very useful as low-level simulation-centered
instruction sen, ices. Here are examples of these services in
action.

¯ requireSetControl
This low-level instruction service employs a nmnber of

the low-level simulation services described above to
require that a student carry out a step in a procedure in the
simulation environment. It judges each student
manipulation, and resets the simulation to its prior state
when incorrect manipulations are carried out. After an
author-specified number of unsuccessful attempts, the
correct object to manipulate is visually highlighted, and the
action is carried out for the student..

¯ requireReadlndicator
Students are required to touch the named indicator and

then to tell what value is displayed by the indicator. (In
RIDES and VIVIDS simulations, numeric values are
entered using a graphical keypad, while other values are
entered using a popup menu.) If the student fails, automatic
remediation points out the indicator and says what value it
displays.

¯ requireFindObject
The FindObject instructional service only requires that a

student touch a named object. It offers remediation through
highlighting automatically after an author-determined
number of attempts..

¯ requireStateAttainment
In R/DES and VIVIDS, students can be required to

achieve a particular state of the simulation. For example,
the tutor can specify that the student must ensure that
certain operational indicators are displaying their normal
values. At the author’s discretion, the tutorial can notice as
soon as the student succeeds and continue with the lesson,
or the tutorial can require that the student notify that the
state has been achieved (by clicking the Continue button).
The tutorial can point out to the student what aspects of the
required goal have not been achieved. If the student fails to
succeed in achieving the designated state, a previously
recorded procedure for doing so can be demonstrated.

A Call for Comments

The list of simulation services in 3 above is a candidate
list of universal low-level services that tutors might expect
simulations to provide. What is missing? What additional
simulation services do your tutors require? What additional
low-level services do your simulations provide for tutors?
Please address comments and suggestions for service list
modifications to munro@rcf, use. edu

67

Acknowledgments

The RIDES and VIVIDS projects are sponsored by the
United States Air Force under Contract F33615-90-C-
0001. Jim Fleming of Armstrong Laboratory serves as
tectmical program manager. The developers of RIDES and
VIVIDS include Mark Johnson, Allen Munro, Quentin
Pizzini, David Surmon, Douglas Towne, James Wogulis,
and Lee Coller. Design suggestions, exhaustive testing,
encouragement, and support were provided by Michael
Crumm, Donna Darling, Zuzanna Dobes, David Feldon,
Randall Hill, Carol Horwitz, Len Mackie, Wes Regian,
Trish Santos, Chuck Swanberg, Rusty Trainor, Josh
Walker, and others.

The VET project is sponsored by the Office of Naval
Research under Contract No. N00014-95-C-0179 awarded
to Lockheed Martin Co. This work is being performed in
collaboration with colleagues at the Lockheed Martin AI
Center--Randy Stiles, Laura McCarthy, and Sandeep
Tewari--and with colleagues at USC Information Sciences
Institute--including Lewis Johnson, Jeff Rickel, and Rich
Angros.

References

Horwitz, C., Fleming, J.L., and Munro, A, Demonstration
of RIDES: An Authoring Shell for Simulation-Based
Instruction in the Systems Demonstrations
Handbook, ITS’96, Montreal, Qu6bec, Canada, June
1996.

Johnson, W. L., Rickle, J., Stiles, R. and Munro, A.
Instructional agents in virtual environments. To
appear in Presence, in press.

Munro, A. Authoring interactive graphical models. In T.
de Jong, D. M. Towne, and H. Spada (Eds.), The
Use of Computer Models for Eaplication, Analysis
and Experiential Learning. Springer Verlag, 1994.

Munro, A. RIDES QuickStart, Los Angeles: Behavioral
Technology Laboratories, University of Southern
California, 1997.

Munro, A., Johnson, M.C., Pizzini, Q.A., Surmon, D.S.,
and Wogulis, J.L, A Tool for Building Simulation-
Based Learning Environments, in Simulation-Based
Learning Technology Workshop Proceedings,
HS’96, Montreal, Qu6bec, Canada, June 1996.

Munro, A. Johnson, M.C., Surmon, D. S., and Wogulis, J.
L. Attribute-centered simulation authoring for
instruction. In the Proceedings of AI-ED "93--World
Conference on Artificial Intelligence in Education,
1993.

Munro, A. and Pizzini, Q. A. RIDES Reference Manual,
Los Angeles: Behavioral Technology Laboratories,
University of Southern California, 1996.

Mmtro, A. & Towne, D. M. Productivity tools for
simulation centered training development,
Educational Technology Research and
Development, 1994.

Pizzini, Q.A., Mtmro, A., Wogulis, J.L., and Towne,
D.M., The Cost-Effective Authoring of Procedural
Training, in Architectures and Methods for
Designing Cost-Effective and Reusable ITSs
Workshop Proceedings, ITS’96, Montreal, Qu6bec,
Canada,, June 1996.

Stiles, R., McCarthy, L., Munro, A., Pizzini, Q., Johnson,
L., Rickel, J., Virtual Environnwnts for Shipboard
Training, Intelligent Ship Symposium, American
Society of Naval Engineers, Pittsburgh PA Nov
1996.

Towne, D. M. & Munro, A. The intelligent maintenance
training system. In J. Psotka, L. D. Massey & S. A.
Mutter (Eds.) Intelligent tutoring systems: Lessons
learned. I-Iillsdale, NJ: Lawrence Erlbaum
Associates, Inc., 1988.

Towne, D. M. & Munro, A. Simulation-based instruction
of technical skills. Human Factors, 1991, 33, 325-
341.

Towne, D. M. & Munro, A. Supporting diverse
instructional strategies in a simulation-oriented
training environment. In J. W. Regian and V. J.
Shute (F_As.), Cognitive approaches to automated
instnwtion. Hillsdale, NJ: Lawrence Erlbaum
Associates, Inc., 1992.

Towne, D. M., Munro, A., Pizzini, Q. A., Surmon, D. S.,
Coller, L. D., & Wogulis, J. L. Model-building tools
for simulation-based training. Interactive Learning
Environments, 1990, 1, 33-50.

68

