
Intelligent Diagnostic Tutoring
Using Qualitative Symptom Information

Douglas M. Towne

University of Southern California
Behavioral Technology Laboratories

1120 Pope St., Suite 201C
St. Helena, CA 94574

(707) 963-3060
dtowne@usc.edu

Abstract
An intelligent diagnostic tutor, DIAG1, selects problems
adaptively and generates all tutoring dialogs from its
analysis of a model of the target system. The learner
performs tests on a graphical representation of the target
system and calls on DIAG for assistance when needed.
During exercises, the tutoring functions can advise the
learner about the implications of particular test outcomes,
the rationality of suspecting particular replaceable units,
and advisability of performing various diagnostic actions.
After exercises, DIAG can critique the learner’s testing
strategy, and it can generate and explain an expert
diagnostic strategy for the previous fault. A prototype
application of a very complex system demonstrates the
range of tutoring capabilities achieved by the system.

Overview

Fault diagnosis is one of the most ubiquitous and difficult
tasks performed in everyday life, and it is an unavoidable
component of a wide range of medical, commercial,
industrial, and military operations. From the broadest
viewpoint, the diagnostic process is surprisingly
equivalent across domains. While the particular costs,
risks, and payoffs of testing actions vary greatly over
different applications, the diagnostic process can be
characterized in a manner that takes these variables into
account. Consequently, excellent diagnostic strategies can
be artificially generated in highly specific domains, based
upon a deep generalized conception of the diagnostic
reasoning task.

It would seem, therefore, that this class of human
performance would be a natural and highly amenable
subject area for intelligent tutoring approaches. In fact, a
number of intelligent diagnostic systems have been
produced, and several have demonstrated excellent

1 This work was funded by the Office of Naval Research

under Contract No. F33615-90-C-0001.

instructional power. Those approaches based upon expert
systems (Lesgold, Eggan, Katz, and Rat 1992) are
capable of generating discussions of impressive verbal
and technical content. Unfortunately, this instructional
depth and facility has come at a very high expense in
capturing and structuring the expert knowledge.

At least two other methodologies have been explored to
combat this discouraging cost-to-power relationship: 1)
structural ttwdel approach (Johnson, Norton, Duncan, and
Hunt 1988), in which the target system is specified in
terms of its normal input-output structure, and 2)
fimctional model approach (Towne, Munro, Pizzini,
Surmon, and Wogulis 1990), in which the target system is
modeled in a manner that it can be executed in various
normal and abnormal conditions.

The structural model approach specifies the target system
as a network of system elements, connected via directed
paths, and it then reasons about symptoms by assuming
that failures will propagate along the directed paths that
connect the system elements. Unfortunately, these
assumptions are commonly violated by faults in real
systems, and the developer is then burdened with devising
a representation of the target system that will somehow
yield valid fault effects under the many possible
aberrations that faults produce. This approach appears to
function well in instructing normal operation, however.

The functional model approach specifies the target system
as a set of system elements each characterized in terms of
its normal behavior and some of its abnormal behaviors.
When a specific fault is introduced into the system model,
its effects can be correctly determined under a wide range
of configurations and modes. The weakness of this
approach is a consequence of two facts, one of which is
obvious and one of which is devious:

86

From: AAAI Technical Report FS-97-01. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

1. the effort required to specify the abnormal behaviors of
the system elements increases with the number of
abnormalities to be embraced by the model (obvious);
and

2. achieving intelligent and effective tutoring demands
that the consequences of a very large number of faults
be available for consideration (devious).

We know from experience and from analytical studies that
a very modest number of faults can support highly
effective instruction in fault diagnosis. If this set of
failures--- the training set---is carefully constituted, then a
relatively wide range of fault conditions can be covered
with a surprisingly modest number of fault cases.
However, during the instruction of any of the faults in the
training set, the tutoring system must be able to reason
about the fault possibilities, i.e., what failures could
produce the symptoms seen. If the scope of this reasoning
is limited to the faults in the training set, the training
system is blind to the true complexity of the target system,
and this will substantially distort the diagnostic task from
that which the learner will confront in the field.

DIAG

This paper describes DIAG (Towne 1996), a system
conceived with the objective of generating all tutoring
interactions automatically, based solely upon a functional
model of the target system and symptom information that
a knowledgeable technician could readily supply. DIAG
(Diagnostic Instruction and Guidance) resembles its direct
ancestor, IMTS, (Towne, Munro, Pizzini, Surmon, and
Wogulis, ibid; Towne and Munro 1988) in that it employs
a functional model as the instructional vehicle, i.e., there
is an underlying representation of the target system that
models its functionality and maintains a graphical model
of the system as the learner operates upon it.

Whereas IMTS was a single system combining model
building tools along with diagnostic reasoning functions,
DIAG is a separate diagnostic tutoring system that
operates upon functional models developed with the
RIDES2 (Munro, Johnson, Surmon, and Wogulis 1993;
Towne 1994) system. While producing an interactive
functional model of a complex system is a specialized
skill, the great bulk of the effort is devoted to producing a
normally functioning model. Once this is completed, each
of the faults to be presented in exercises is then modeled
by enhancing the specification of the affected system
element, to include the impacts of that fault on the
behavior of the host element.

capturing and retaining much more extensive symptom
knowledge than could be drawn from the functional
model, with its limited set of faults. Furthermore, this data
needed to be in a highly compressed and even imprecise
form, to be manageable. The methodology employs
qualitative descriptors that express the strengths of
functional relationships between particular system
elements and particular test outcomes at system
indicators 3. This methodology was adapted from that
previously termed fuzzy logic and now termed Zadehan
logic (Zadeh and Kacprzyk 1992).

During development, the applicator may command DIAG
to automatically generate all the symptom information for
the faults that have been simulated in the training set. This
information may then be expanded and enhanced by
informing DIAG about other fault conditions of which it
is not aware via the system model.

During instruction, DIAG has control over the graphical
device model. It can introduce failures into that model,
remove failures when the learner makes the correct
replacement, and maintain the depicted state of the entire
representation. In addition, it can set the device model
into modes or configurations that are instructive, and
point out significant indications.

By combining a working, interactive device model with a
data base of qualitative symptom possibilities, DIAG has
the abilities to:
¯ select problems, based upon the characters of the faults

available in the training set;

¯ reason about the implications of the symptoms that the
learner’s tests produce;

¯ generate verbal advice in response to requests for
guidance;

¯ produce a step-by-step critique of the individual’s
performance;

¯ demonstrate and explain an expert approach to a
completed problem.

The tutoring functions rely heavily upon 1) complete and
precise fault effect information for the relatively small
number of faults in the training set, and 2) incomplete and
qualitative symptom information about all other possible
faults. The latter information is manageable because it
does not explicitly identify what faults could produce
what abnormalities.

To overcome the limitations of the functional model
approach, however, DIAG required some means for

2 RIDES was developed under Air Force funding,

Contract No. F33615-90-C-0001.

3 The term indicator will be used generically throughout

this paper, signifying any system element that reflects
system status, e.g., lights, meters, test points, sounds,
smells, and even vibrations.

87

DIAG has been used to produce one very large prototype
application, and is currently in use to produce a section of
a basic electronics course. The prototype application, a
shipboard radar transmitter, involved 17 separate screens
modeling the system, 86 replaceable (failable) units,
active indicators, 17 test points, and 31 active controls.
The most significant outcomes of this prototype
application process were these:

1. The hierarchical model of the target system proceeded
in a top-down fashion, working from existing technical
documentation. This permitted a simplified version of
the system model to be operational in a very brief time,
and to be expanded until the desired level of detail was
produced.

2. The technician4 providing the qualitative symptom
information began work after less than an hour of
explanation of the required form and content. He
accomplished this task independently and without error
in less than two calendar weeks.

The top-down development process is an essential feature.
The more common bottom-up approach requires that the
most detailed level of the application be completed before
any tutoring functions become operational. Under the top-
down approach, one can rapidly produce a tutoring system
for diagnosing major units of a system, and later extend
the level of detail wherever desired. It is hoped that this
will encourage and allow instructional developers to
introduce fault diagnosis early in instruction of system
operation, and to continue with such instruction
throughout training.

Application Development
A DIAG application is produced in five steps, all of which
are typically revisited as the application is refined:
1. produce a working model of the target system;

2. specify the modes of operation in which instruction will
be provided;

3. define the fault set;

4. provide broad, system-wide, symptom information;

5. specify parameters governing exercise presentation.

Produce a Working model

Using the tools provided within RIDES, the developer
creates graphical objects representing the physical
elements of the target system. Each object is identified as
one of these DIAG object classes:

¯ system block, representing an equipment, a module, a
circuit board or any other physical unit of the target
system. A system block may be decomposed without
restriction into more detailed blocks.

¯ control, which the learner manipulates to operate the
modeled system.

¯ indicator or test point, which provides information about
the modeled system;

¯ test equipment, which displays values at test points; and

¯ replaceable unit, which the learner may replace with a
known good spare.

As each object is created, a dialog box appears that
accepts the object name and other parameters relative to
that object type. The following dialog box is presented
when a replaceable unit is identified.

At the conclusion of this major phase, a user can navigate
through the hierarchical system model using DIAG’s
built-in navigation buttons and can operate and test the
system model (all symptoms will be normal at this phase
since there are no faults defined).

The developer can also construct a functional hierarchy of
the target system and link the physical views to the most
equivalent functional views. This equivalency permits the
learner to practice operating upon the physical model
while considering the internal functional architecture of
the target system.

Specify the modes of operation

The developer specifies each mode in which tutoring can
be conducted by setting the controls for that mode, via the
graphical representation of the system, and then entering a
name for the mode to the following dialog box.

4 Petty Officer James Armstrong, AEGIS Training Center,

Dahlgren, VA.

88

DIAG can then recognize what mode the learner has
established at any time, and it can set the system model
into particular modes at the initiation of exercises and
during tutoring.

Establish the Faults in the Training Set

For each fault in the training set the technical expert
provides an executable specification and a verbal
explanation. The executable specification provides the
abnormal effects of the fault, expressed in a form that the
fault can be simulated when it is the subject of an
exercise. The verbal explanation of a fault is presented to
the learner at the conclusion of an exercise involving that
fault. This recap may summarize the most significant
symptoms, and it may explain how the fault effects
propagated through the system and affected other
operational functions. The intent of this explanation is to
allow the learner to fully understand the effects of the
fault just experienced.

Provide Broad Symptom Knowledge

The previous step provides complete and precise symptom
knowledge about the faults to be presented in exercises,
thereby supporting simulation of those faults and the
generation of discussions about their impacts upon the
target system. To support intelligent fault isolation
reasoning DIAG must also have access to a broad bank of
symptom knowledge which expresses the effects of other
faults, ideally all other faults. In essence, DIAG must be
able to answer two types of questions during its reasoning:

1. Can a fault in <some replaceable unit> produce <some
abnormal symptom>?

and

2. Could <some normal symptom> be obtained if <some
replaceable unit> were faulty?

These two issues are central to all of diagnostic reasoning,
from the drawing of inferences of observed symptoms to
the decision concerning the next test to perform. The

knowledge base required to answer these questions need
not be at all precise, and fortunately it also need not
identify which faults within a unit might produce which
abnormalities.

DIAG provides two alternative or complementary ways to
supply this knowledge:

1. Automatic generation. The developer clicks a Generate
button which causes DIAG to insert each defined fault
from the training set into the device model, in each
system mode, recording the abnormal symptoms
produced at each indicator. The result is a data set that
expresses the frequency with which various symptoms
result from faults in each replaceable unit.

and/or

2. Manual input of qualitative symptom descriptors.
Under this approach the technical expert employs the
following dialog box to provide qualitative judgments
about the frequency with which each replaceable unit
could produce various symptoms, when faulty.

The technical expert first selects the mode, the faulty unit,
and the indicator to be specified, then selects one of the
seven likelihood descriptors (Never, Rarely Always)
for each symptom. The dialog box shown above is
reflecting the following assertion (about an indicator that
happens to be audio):

IIn Operate mode, faults in the Switch Driver A unit:
usually cause the Return to System Control indicator to be silent;
rarely cause it to be beeping; and
never cause it to be siren.

89

IWe’re getting a zero reading at the Power meter. IThe automatic generation approach may produce
sufficient broad symptom information about a target
system if the training set is large compared to the number
of possible faults. This might be true for a relatively
simple system, or one which is being instructed to a
relatively superficial degree. For most applications,
however, the developer will need to supply additional
symptom information, via the manual approach.

The labor involved to provide symptom information
manually is reduced by using the automated approach
first, then refining the symptom possibilities manually via
the dialog box. Effort is further reduced by the fact that
only abnormal relationships need be given. If one were
developing an application for a personal computer, for
example, there would be no need to specify relationships
between the floppy disk drive, a replaceable unit
according to most maintenance policies, and the mouse
cursor (an indicator), since faults in the former could not
affect the latter, at least according to this writer’s
understanding.

Specify course parameters

The developer shapes a course by providing the following
in a simple text file:

¯ the problem selection scheme (fixed order, random
order, or adaptively according to problem difficulty and
individual proficiency);

¯ the maximum time allotted to the course; and

¯ a set of candidate problems, each expressed as a fault
and a problem statement..

Because a DIAG problem, or exercise, consists of a
particular fault coupled with a particular problem
statement, any fault can be used in multiple exercises
under different problem statements. This gives the
developer some control over the difficulty of the problems
presented. For example, a class of highly experienced
students might be given a fault with the problem
statement

There seems to be something wrong with the Transmitter. [

while a class of new students could be given the same
fault with the more focused problem statement

There is a recUfica~on failure somewhere in the High Voltage J
power supply. I

Such a problem statement allows a novice to engage in
fault diagnosis much earlier in instruction, since it
restricts the search area to an one that has been addressed
in the course. Alternatively, the same fault could be
presented with the statement:

Finally, the problem statement could be purposely vague,
incomplete, or even incorrect, an extremely common
condition in the field that is rarely addressed in the school
environment.

At the conclusion of this development process, we have a
working system model into which faults can be
automatically inserted; tests can be conducted, either by
observing indicators directly or employing simulated test
equipment; and system units can be replaced. Unseen to
the user, DIAG records the tests performed and the
symptoms displayed. From this it generates instructional
advice during and following each exercise, as requested
by the learner. The next section outlines these
instructional and consultation functions.

Instruction and Guidance

DIAG performs a number of general instructional
management functions as well as highly domain-specific
advisement functions. This section deals first with
management functions.

Adaptive problem selection

When a learner starts a session, DIAG determines the next
problem to present to that individual, depending upon
previous progress, if any, and the course plan provided.
For adaptive problem selection the first problem is
selected at random, then for all ensuing problems DIAG
searches through the problem set for that one that presents
the most appropriate level of difficulty, considering the
individual’s success and progress. Higher success leads to
increased difficulty, lower success leads to reduced
difficulty.

The difficulty presented by a particular fault is computed
as the extent to which that fault corresponds to its broad,
or archetypal, symptom complex, as expressed via the
qualitative descriptors. For example, suppose the content
expert has indicated that faults in a floppy disk drive can
affect three indicators, as follows:

Indicator
1

2

Symptom -o
ON
OFF

0
1-10

11-20
>20
Low

Medium

Likelihood
Rarely

Often as not
Sometimes
Sometimes

Often as not
Often as not
Never

9O

Suppose further that the particular fault being simulated is
in the floppy disk drive, and that it produces the following
symptoms:

This fault will yield a very high difficulty measure since
two of the symptoms it produces indicator 1 is ON and
indicator 2 reads above 20---are not typical of faults in the
floppy drive. Alternatively, the following floppy drive
fault would be much easier to identify:

Indicator ~ i
--r-i ~~].......... ¯ ~i~i

Performance Tracking

After the problem report is displayed at the start of an
exercise, the learner sees the top level of the system
representation. For the prototype application the top view
is a simple diagram of major equipment units, one of
which is a Driver unit. A selection of the Driver unit
produces the following display.

=== ___---

[]

/
[~:.- - -.~¢ :-:-:-:-.--x-:.:.:-:.x.:.-.:.:.:.:.~ y~.-.:.:.:.:.>...::i:i

+ i!~i

~~~: ~’x-~-:.X+.*’, .:~£

[~-~-":::’Y ::."::: :-::.~-"; :: ~- -: ~.~?.’-: -:::: Y.:

:::::::::::::::::::::::::::::::::::::::::::~ ~:.~.~

f+~~NNN

¯ "--, 0~T
P~IEI, M7

~_i+~... ..~iN~~+-.~...~ ...~+~. ~:-.--.-,.:....’~.. -.,-.--.-..-. -~;-~i~ -

]EZ., E C’]’]T,i]29-ZC
5"T,P-~’[’G]’[

SIJ]L~PLY

EL IECI"RONIC
----- swrrcH

J.IH_tvJ~

"- " ~;EL Et:’l’t.~
NINITORINg
Ph/~TEL /k’q~

I’t~lI~,rINl Fh/’,/B1

---_@
---"’-"VAC-ION

EO-~
5"I~Y EL5

]]~I~J~I01t
~7~1

StIR ~ ET FTr. TEll.

91



This view includes some observable indicators, some
replaceable units, and two modules for which there is
more detail. Selecting the Circuit Breaker Panel, A17, in
the upper right comer, produces this more detailed view:

(~ SA

OXYGEN PWR SUPPLY
A2A1 AgA1

OFF ON

This is the most detailed view of this branch of the
hierarchy, a view that happens to provide a control that
the learner can operate. From here the learner may move
upward and explore other sections of the system. As
learners navigate through the system representation they
see the indications, both normal and abnormal,
corresponding to the current fault condition. The learner
may change the controls at any time and may select test
equipment to probe any of the test points. As the learner
works, DIAG maintains a record of the symptoms that
were displayed and the modes under which those
observations were made. At any time, the learner may:
¯ explore the functional view of the system;
¯ replace any of the system units;
¯ call on DIAG for guidance;
¯ claim that the modeled system is now operational, or
¯ . give up on the current exercise;

The next section will describe the diagnostic guidance
DIAG provides when requested.

Diagnostic Guidance
When the learner clicks on
following dialog box appears:

the Consult button, the

The Help button provides guidance in using DIAG’s
consultation features. The remaining buttons provide the
following types of consultations:

Discuss Replaceable Units. The learner is prompted to
select a unit of interest, then DIAG generates an analysis
of the symptoms that have been observed, relative to the
unit. The following is an example (the learner has selected
PC card A12A4):

PC card A12A4 is one of the stronger suspects,
however some indications you have seen contradict that

theory.
Here are some of them:
Vent Fan 132 sound was NOT_RUNNING in Radiate mode.

This is an abnormal symptom (normal is RUNNING)
which never results when this unit fails.

Here, the the selected unit was still high in the suspicion
rankings, but one symptom conflicted with the theory that
PC card A12A4 was faulty. If more disproving indications
had been seen, DIAG would list several of them, and it
would indicate that the unit is not likely failed. If the
symptoms were consistent with a failure in the unit under

92



discussion, DIAG lists the indications that most strongly
point to that unit.

See Problem Report. DIAG displays the problem report
again, for review.

Discuss Indication. The learner is prompted to select an
indicator of interest, then DIAG discusses the implications
of that indicator’s current status relative to the units that
should be most suspected considering the symptoms that
have been seen. Here the learner has selected the PC Card
Interlock Indicator.

The PC Card Interlock Indicator is off which is
normal in this Radiate mode.

Ventilating Fan B2 has no affect on this test.
Optical Fan Sensors A3 and A14 has no affect on this test.
T3 has no affect on this test.
PC card A12A47 has no affect on this test.
PC card A12A36 sometimes

allows this normal indication even when it fails.

The first sentence simply identifies the state of the
indicator and whether that is a normal state in the current
mode. Then, the current indication is discussed in relation
to the units that should be most suspected at this stage of
the problem. In this example, the indication was normal,
which happens not to provide significant new information.
If the learner thought that this normal indication confirms
that T3 is functioning correctly, this consultation would
correct that misconception.

At times, this discussion may reveal more to the learner
than we might wish. In a future version of DIAG, the
learner may also be asked to indicate the units of interest,
so that true suspicion levels are not revealed by this
consultation.

Review Suspicions. When prompted, the learner selects
those units that he or she most suspects. DIAG attempts to
comment on those suspicions without revealing too much,
as shown here.

The symptoms you have seen so far do not justify your
suspicions of 3 of the units you indicated.
These symptoms implicate 6 other units that you should also
suspect.

While the discussion purposely avoids mentioning
particular replaceable units, it is based upon DIAG’s
ongoing maintenance of suspicion levels for the individual
replaceable units. This process initially ranks the
replaceable units according to their relative reliabilities
(least reliable units are ranked highest) then moves units
down in the ranking when symptom information is shown
that conflicts with the hypothesis that the unit has failed.

The amount by which a unit is moved down in the ranking
depends upon the degree of the conflict, as expressed in
the qualitative symptom descriptors. Thus, if failures in a
particular unit could never produce the symptom seen, its
suspicion is reduced greatly.

What to Do Now. If a learner reaches an impasse, or
simply wonders what an expert would do at the current
point in an exercise, he or she may call for this
consultation type. First, DIAG reviews the learner’s
suspicions, as outlined above. If the learner’s suspicions
are seriously flawed, then the remediation provided by the
suspicion review may resolve the impasse. If not, DIAG
will suggest a good test to make next. The analysis yields
that indicator and mode most likely to provide new useful
information, essentially the measure used in IMTS
(Towne and Johnson 1987) but now working with
qualitative data.

A good action now is to check Vent Fan B2 sound in Radiate J
mode. I

When this consultation is presented, DIAG also displays
the scene containing the indicator to be checked and
displays a gmphicai pointer to it. Currently DIAG does
not explain why the recommended test is a good one,
although it has the capacity to do so (by outlining the
inferences that could be drawn from each possible
outcome).

Discuss Previous Exercise. At the completion of an
exercise, the learner may request a review of the previous
problem. DIAG steps through each significant indication
that was displayed, stating whether that indication was
normal or abnormal, and listing the most significant
inferences that could be drawn from the indication. The
following is the analysis of one indication.

Channel 2 Arc indicator was on in Radiate mode,
which was abnormal (normal is off).

The most suspected units are now:
T6
Traveling Wave Tube V2
Vac-ion Power Supply A15
PC card A12A48
PC card A12A39
PC card A12A37
PC card A12A4

As each indication is discussed DIAG displays that
indication graphically and points to it.

Expert Approach. Following an exercise the learner may
ask to see how an expert would have performed the same
problem. DIAG inserts the fault into the system model
again, then it performs and explains a very good

93



diagnostic sequence. At each step DIAG points to the
indicator or test point that it is checking, and it produces a
verbal explanation of the significance of the indication
seen. The following is the explanation of one test.

We check A1 Standby Button in Radiate mode.
It is green which is abnormal.

(Normal is off).
The most suspected units are now:
PC card A12A48
PC card A12A41
PC card A12A39
PC card A12A37
T6
PC card A12A32

It is very interesting to observe the suspicion rankings as
the expert demonstration proceeds. In easy problems, the
true fault moves to the head of the list after just a few
tests. In contrast, a very difficult fault might never reach
the top of the suspicion ranking, since its symptoms do
not identify it clearly. Thus, even the expert within DIAG
may make incorrect replacements on some problems, just
as human experts sometimes do. This is not a flaw in the
instructional system or in the expert diagnostic reasoning.
It is a fact of life that faults in the real world can present
symptoms that disguise their true identity.

See Fault Recap. This function simply redisplays the
fault recap for the just completed exercise.

Problem Termination
The learner declares an exercise completed by clicking on
a Stop button and indicating via the following dialog box
what result has been achieved.

Records of Individual Performance

The records that DIAG maintains about each individual
reflect the exercises successfully completed, the times
taken to completion, serious errors committed, and the
extent to which the individual relied upon DIAG
consultations. These records are sufficient to select
problems adaptively, and they provide measures of
progress and proficiency that can be used by the instructor
to address areas of difficulty or to modify the course plan.

Conclusions

Briefly, the prototype application of DIAG leads to the
following conclusions:

.
Combining an interactive graphical device model with
a bank of qualitative symptom data yields a very robust
tutoring system, in which all context-dependent tutoring
presentations can be generated automatically.

.
The process of developing the interactive graphical

device model requires considerable training and
computer literacy.

.
The process of providing domain-specific qualitative
symptom information is one that can be done
successfully by a knowledgeable technician, regardless
of his or her computer skills.

° DIAG’s tutoring power is relatively wide ranging and
supportive. It returns very high tutoring value for the
development effort invested, but it cannot generate the
same technical verbiage that can be loaded into an
expert system.

5. Under some tutoring conditions, DIAG may reveal
more about an ongoing exercise than is desirable.

If the learner incorrectly claims to have fixed the problem
DIAG so states, and the problem continues. Such
erroneous claims are recorded in the individual’s
performance records and are considered serious errors.
Ultimately, exercises are only terminated with correct
system restoration or by giving up. After terminating a
problem, the learner may end the DIAG session.

94



References

Johnson, W. B.; Norton, J. E.; Duncan, P. E.; and Hunt,
R. M. 1988. Development and Demonstration of an
Intelligent Tutoring System for Technical Training
(MITr), Technical Report AFHRL-TP-88-8, Brooks AFB,
TX: The Air Force Human Resources Laboratory.

Lesgold, A.; Eggan, G.; Katz, S.; and Rat, G. 1992.
Possibilities for Assessment Using Computer-based
Apprenticeship Environments. In J. Regian & V. Shute
(Eds.), Cognitive Approaches to Automated Instruction
(pp 49-80). Hillsdale, NJ: Erlbaum.

Munro, A.; Johnson, M. C.; Surmon, D. S.; and Wogulis,
J. L. 1993. Attribute-centered Simulation Authoring for
Instruction. In Proceedings of AI-ED ’93 World
Conference on Artificial Intelligence in Education.

Towne, D. M. and Johnson, M. C. 1987. Research on
Computer-aided Design for Maintainability, Technical
Report, 109, Behavioral Technology Laboratories,
University of Southern California.

Towne, D. M.; Munro, A., Pizzini, Q. A.; Surmon, D. S.;
and Wogulis, J. L. 1990. Intelligent Maintenance Training
Technology, Technical Report, 110, Behavioral
Technology Laboratories, University of Southern
California.

Towne, D. M. and Munro, A. The Intelligent Maintenance
Training System. In Psotka, J.; Massey, L. D.; and Mutter,
S. A. eds. 1988. Intelligent Tutoring Systems: Lessons
Learned (479-530). Hillsdale, NJ: Erlbaum.

Towne, D. M. Model-based simulations for instruction
and learning. Proceedings, Delta ’94 Conference:
Telematics for education and training. Dusseldorf,
Germany, Nov. 1994.

Towne, D. M. DIAG: Diagnostic Instruction and
Guidance, Application Guide. Los Angeles: Behavioral
Technology Laboratories, University of Southern
California, 1996

Zadeh, L. & Kacprzyk, J. Fuzzy logic for the management
of uncertainty (Eds.). New York: John Wiley & Sons, Inc.
1992.

95




