
Abstract
Some work on modelling boundedly rational agents in
organisations is described. It is then argued that social
intelligence is not merely intelligence plus interaction but
should allow for individual relationships to develop between
agents. This means that, at least, agents must be able to
distinguish, identify, model and address other agents, either
individually or in groups; in other words that purely
heterogeneous interaction is insufficient. Two example
models are described, the second in detail where agents act
and communicate socially, where this is determined by the
evolution of their mental models. Finally some problems that
arise in the interpretation of such simulations is discussed.

Modelling Agents
At the Centre for Policy Modelling (CPM) we are
interested in modelling real agents, which can be people or
other institutional units (such as firms or departments). We
do this by modelling these as intelligent software agents.
This perspective means we have slightly different concerns
than those concerned with designing agents or robots to
meet particular goals. In particular we seek veracity over
efficiency.

Thus we do not model using reactive agents, since a
principal concern of ours is how the nature and
development of the agents’ internal models as they interact
with other agents and its environment (see also the reasons
in the section entitled Social Intelligence and Complexity).
We take the strategy of explicitly representing the agents
internal models in a specified language - usually of a
quasi-logical or functional variety. This explicit
representation makes it possible to limit, examine and
analyse the agents models.

The agents we model have distinct limitations of
resources - they are boundedly rational in several respects.
They have limited memory, a limit on searches for
improved models and a limit of their ability to make
inferences from their models. Following what is known

about real agents we ensure that their search for new
models is incremental, rather than global in nature. The
current memory, especially the agent’s stock of current
models, encodes a sharp path-dependency. The nature and
framework of this is described in (Edmonds and Moss
1996; Moss and Edmonds forthcoming).

One particular technique we use is an adaption of the
genetic programming (GP) paradigm (Koza 1992). Here the
internal models belonging to the agents are held as a set of
tree-based expressions. The selection among these is based
upon their past predictive success or some
endorsement-based mechanism. However, unlike standard
GP, we do not always use the cross-over operator to
introduce variation as this is irrelevantly global in
operation, but prefer other operators such as generalisation
and specialisation (Edmonds and Moss 1997).

Modelling Organisations
One of our chief concerns in modelling agents is to capture
some aspects of organisational behaviour. We do this by
modelling them as populations of interacting agents in a
given structure. We do not necessarily do this down to the
level of individual persons but sometimes stay at the level
of departments or even whole firms (if they are themselves
interacting). Here a theme we are investigating is the
contrast between the official (usually hierarchical) structure
of the firm and the unofficial structures that emerge as the
individuals are frustrated by the formal structure.

In order to study such organisational models, we have
developed a modelling language called, SDML – a Strictly
Declarative Modelling Language (Edmonds, Moss and
Wallis 1996; Wallis, Edmonds and Moss, 1995). This
allows the flexible and theory-free modelling of composite
agents in a declarative framework with object-orientated
features. In particular this is particularly suited for
modelling organisations built up in many levels in a
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composite manner - it allows for more better structured
organisational models involving more complex cognitive
agents, than some other systems (Moss et al. 1996).

Modelling Social Interaction
Communication is a special case of action and perception,
and in many organisational models the communication is
very rudimentary. However communication is so important
in social situations and potentially so computationally
onerous that effectively it becomes a separate
consideration.

One concern, in this regard is the passivity of the
communication in most models of interaction. One gets the
impression that in many models agents tend to make
requests for information and sometimes issue orders but
will not, for instance, volunteer unrequested information.
Thus most models of communication correspond to a
mutual (or merely unidirectional)pull of information rather
than using a mix ofpush andpull modes.

Social Intelligence and Complexity
Social intelligence implies more than mere interaction with
other agents plus intelligence. For example, agents might
apply their intelligence to trading with other agents without
any intelligence being applied to theprocess of relating to
the others. Such an intelligence might be without the means
of recognising and referring to other agents as individuals
(or groups). In such a case its internal models of its social
environment would be entirely generic and thus it could not
form any social relationships with other agents (other than
with the population as a whole). Such a lack of social
intelligence has advantages, such as the ability to analyse
and predict their behaviour in computational communities.
However if we are to model many key behaviours in
organisations, we need a greater social sophistication.

Thus in denoting the presence of a social intelligence, I
would want to be able to identify at least some of the
following:

• a relative sophistication of communicative
mechanisms;

• the ability to represent aspects of other agents
(individually or grouped), in order to anticipate their
actions (though this need not involve theexplicit
representation of the other’s beliefs, goals etc.);

• the ability to distinguish between and refer to
different agents, such that different aspects may be
captured for each one (or each group), e.g. their
individual reliability as an information source;

• the presence of purely communicative (social)
sub-goals (or even top goals).

In addition to these I think there is another aspect to social
intelligence - that of dealing with the great complexity that
social systems typically produce (which seems to grow
exponentially with size, Carneiro 1987). In fact it seems to
be a hallmark of social systems that such complexity arises
due to the variety of individual specialisations and hence
relationships that can develop. A society consisting only of
heterogeneous agents will not have the same
characteristics.

Luhman has argued that one of our social institutions’
primary functions is tofilter out the complexity of the
external social world (as summarised in Bednarz 1984).
This perspective highlights some other important aspects of
social intelligence, including:

• the intelligent but restrictive selection of information
sources;

• the development of rules to structure social
interaction - either formally or informally (e.g.
emergent social norms);

• the development of binding long-term relationships
(contracts, friendships, etc.).

A socially intelligent agent may thus seek to use institutions
which deal with the complexity of social reality by
preforming considerable selection, and modelling for it and
also by regulating and hence simplifying the social
structure within. Such an institution may itself embed itself
within a further institution.

Example 1 - A Model of Emerging Markets
A three-sector model of emerging market economies has
been developed where the component firms leant how to
behave in a newly emerging market economy (and in
particular how to respond to the debt crisis). Firms
communicate and trade with other firms and build
rule-based models of their environment and other firms.
Known qualitative behaviour characteristic of such
economies (e.g. Belarus) was only reproduced when the
model was adapted so that firmsonly copied the observable
behaviour of other successful firms they interacted with.
Here the ability to distinguish, identify, and select other
firms was critical on the overall behaviour. A report on an
early version of this model can be found in (Moss and
Kuznetsova 1996).

Of course, this model only starts to address the concerns
I listed above about social intelligence, but it does show
how the inclusion of some elements of social intelligence
can critically effect the emergent properties of the whole
system.



Example 2 - the El Farol Bar Problem

Description
I have extended Brian Arthur’s El Farol Bar model (Arthur
1994) to include model-based learning and communication.
In this example a population of agents has to decide
whether to go to El Farol’s each thursday night. It is
generally desirable to go but not if it is too crowded. I have
extended this by adding a social structure. A randomised
“acquaintance” structure is imposed upon the agents,
limiting who they talk to. Agents have a chance to
communicate with acquaintances before making their
decision. Agents have a population of models of their
environment which is composed of a pair of expressions:
one to determine the action (whether to go or not) and a
second to determine their communication with other agents.
Either of action or communication can be dependent upon
communications received, which includes the identity of
the agent the communications were received from. These
internal models are developed using feedback from their
experiences resulting from their decisions. Although the
beliefs and goals of other named agents is not explicitly
represented, they emerge implicitly in the agents’ models.

The agent modelling approach broadly follows
(Edmonds and Moss 1997). Thus each agent has a
population of mental models, which broadly correspond to
alternative models of its world. This population develops in
a slow evolutionary manner based either on the past
accuracy of the models predictions or some measure of
what its past success at gaining utility might be. The agent
structure is shown in figure 1.

Each notional week, the new population of models is
produced as in a genetic programming manner (Koza
1992) using some tree crossover but with a high degree
of propagation and also some new random genes
introduced each time. Then the best model is selected and
used to determine first its communicative action and
subsequently whether to go to El Farol’s or not. Thus the
evolution of mental models is a rough representation of
learning. The cross-over operation is very realistic but
does as a first approximation, for a critique of cross-over
for these purposes, see (Edmonds and Moss 1997).

Each model is composed of two parts: one determines
what it says and the other what it decides. These parts are
expressions from a two-typed language set at the start. A
simple but real example model is shown in figure 2
below. Translated this means: that it will tell its ‘friends’
that it will go to El Farol’s if the trend predicted over
observed number going over two weeks is greater than
5/3 (the total population was 5 in this example); but it
will actually go if it said it would goor if barGoer-3 said
it will go.

Figure 2: A simple example model

talk: [greaterThan [trendOverLast [2]]
[divide [5] [3]]]

action: [OR [saidBy ['barGoer-3']]
[ISaid]]

Figure 1: Basic structure of an agent
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The agent gains utility by going to the El Farol Bar when it
is not too crowded. Thus each agent is competitively
developing its models of what the other agents are going to
do.

A Case study from the results
Graphs of the results do not show anything surprising. The
average fitness of the agents models fluctuate wildly at the
beginning with a big difference between agents but as the
simulation progresses they all settle down to around the
same value. The deviance between different models of the
same agent also reduces. When you look at the pattern of
who goes and who does not, some of the agents settle for a
fixed strategy but some are more dynamic and constantly
swap between different strategies and elaborate old ones.

What is perhaps more revealing is the detail of what is
going on, so I will exhibit here a case study of the agents at
the end of a simulation.

Here I have chosen a 5-agent simulation at date 100. Inn
this simulation the agents judge their internal models the
utility they would have resulted in over the past 5 time
periods. This utility function that agents get is 0.4 if they go
when it is two crowded, 0.5 if they stay at home and 0.6 if
they go when it is not too crowded (where too crowded
means greater than 60% of the total population). This is
supplemented with an extra 0.1 of utility for every one of
their friends that go if they do.

The friendship structure is chosen at random at the
beginning, and in this case is as show in figure 4 below.

Figure 4: Friendship structure

The best (and hence active) genes of each agent are
summarised above in figure 3. I have simplified each so as
to indicate islogical effect only. The actual genes contain
much logically redundant material which may put in an
appearance in later populations due to the activity of
cross-over in producing later variations.

The effect of the genes is tricky to analyse even in its
simplified form. For example agent-1 will tell its friends it
will go to El Farol’s if the average attendance over a
previous number of time periods equal to the number who
went last time is greater than the predicted number
indicated by the trend estimated over the same number of
time periods but evaluated as from the previous week!
However its rule for whether it goes is simpler - it goes if it
went last week.

You can see that for only one agent does what it says
indicated what it does in a positive way (agent 4) and one
which will do the exactly the opposite of what it says (agent
2). It may seem that agents 1 and 3 are both static but this is
not so because figure 3 only shows the fittest genes for each
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talk-1: averageOverLast(numWentLast) > previous(trendOverLast(numWentLast))

talk-2: trendOverLast(numWentLast) - 2 * numWentLag(2) > numWentLag(numWentLast)

action-1: wentLastTime

action-2: NOT Isaid

talk-3: randomNumberUpTo(8) < 8/3
action-3: True

talk-4: averageOverLast(4)/averageOverLast(5) < numWentLag(15)
action-4: (Isaid AND randomDecision) OR (saidBy 2)

talk-5: trandOverLast(20) < numWentLag(2) - averageOverLast(numWentLast)
action-5: randomDecision OR (saidBy 4)

Figure 3: Simplified talk and action genes for the five agents at date 100



agent at the moment in terms of the utility they would have
gained in previous weeks. During the next week another
gene may be selected as the best.

The interactions are summarised in figure 5, which
shows the five agents as numbered circles. It has simple
arrows to indicate a positive influence (i.e. if agent 2 says
she is going this makes it more likely that agent 4 would
go) and crossed arrows for negative influences (e.g. if agent
2 says she will go this makes it less likely she will go). The
circles with an “R” represent a random input.

Figure 5: Talk to action causation

It is not obvious from the above, but agent-2 has developed
its action gene so as to gradually increase the number of
‘NOT’s. By date 100 it had accumulated 9 such ‘NOT’s (so
that it actually readNOT [NOT [... NOT [Isaid]...]]). In
this way it appears that it has been able to ‘fool’ agent-4 by
sometimes lying and sometimes not.

Issues and Interpretations
There are some very interesting problems that arise when
we try to interpret what occurred. Even given that we can
look inside the agents’ heads one comes across some of the
same problems that philosophers, psychologists and social
scientists encounter in trying to account for human
communication. The web of cause and effect can be very
complex and so impede a straightforward analysis just as if
the human case.

One issue in particular is the question of the “meaning”
of the agent’s utterances to each other. Their utterances do
have a meaning to each other otherwise they would quickly
select out action genes that included “saidBy” clauses.
However, these meanings are not obvious. They are not
completely determined by their own model structures, but
can involve a number of language games whose ultimate
grounding is to the practice of such communication in
relation to actual decisions. Thus, in this particular example
it seems that the pragmatics of the situation are the most
important for determining meaning, followed by a
semantics grounded in the effects of their actions, leaving
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the syntax to merely distinguish between the two possible
messages. thus this case seems to illustrate Peter
Gärdenfors observation about human language (Gärdenfors
1997):

“Action is primary, pragmatics consists of the rules
for linguistic actions, semantics is conventionalised
pragmatics and syntax adds markers to help
disambiguation (when context does not suffice).”

Conclusion
Although many of the suggestions about what a socially
intelligent agent might involve where not included in the
implemented examples, they show that even if we equip our
agents with some of the tools necessary for truly social
behaviour many aspects of real social behaviour can
emerge.

When such social behaviour does occur we may well find
ourselves with many of the same difficulties that other
social scientists have, namely the tracing of very complex
chains of causation if one works in detail and the problem
of the meaning and use of our descriptive terms if we
attempt a macroscopic approach.
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