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Abstract

This paper proposes a neural architecture for a
robot to learn how to imitate a sequence of move-
ments performed by another robot or by a hu-
man. The main idea is that the imitation pro-
cess does not need to be given to the system but
can emerge from a mis-interpretation of the per-
ceived situation at the level of a simple sensori-
motor system. We discuss the central position
of imitation processes for the understanding of
our high level cognitive habilities linked to self-
recognition and to the recognition of the other
as something similar to me. Another interesting
aspect of this work is that the neural network
used for sequences learning is directly inspired
from a brain structure called the hippocampus
and mainly involved in our memorization capa-
bilities (Banquet & Gaussier 1997).

Introduction

Nowadays, robots are mainly directly programmed to
solve particular tasks. In our laboratory, we are work-
ing on how a robot can program itself according to a
little number of internal drives. Our neural network ar-
chitecture (PerAc: Perception-Action (Gaussier & Zre-
hen 1995)), inspired from neurobiology, allows shape
categorization and learning of sensory-motor associa-
tions. Using this architecture, a robot can learn from a
teacher to isolate a particular “object” in a visual scene
and to associate it with a motor behavior: reaching,
avoiding by the left or the right...(conditioning mecha-
nism (Joulain, Gaussier, & Revel 1997)). In the same
way, for navigation in an open environment, we have
shown that a robot can learn how to reach any position
with high precision just by using the landmarks it finds
in the visual scene (Gaussier et al. 1996). However,
“discovery” of interesting locations or “discovery” of
the correct set of sensory-motor associations for a par-
ticular task is an NP-complete problem. The learning
time becomes quickly too large when the size of the
problem increases.

Therefore imitation of already learned behaviors or
subparts of a behavior not completely discovered is cer-
tainly the only way to allow a population of robots to
learn and to find solutions by themselves. Imitation is
also a good starting point to allow human-robot inter-
actions. The autonomy of the robot requires that there
is no intrusion in the robot brain during learning. The
robot must be able to choose what to store. Hence,
the problem becomes how to initiate the communica-
tion mechanism between the robot and the teacher. In
this paper, after a brief summary of our previous works
on robot population for clustering tasks, we propose
a neural architecture for visual imitation and we show
how to use it to teach the robot to perform a particular
sequence of movements (to round in circles or to make a
8 trajectory...). By contrast to other works in this area
(Berthouze, Bakker, & Kuniyoshi 1996; Matari¢ 1995;
Hayes & Demiris 1994), our main concern is to allow
an on-line and unsupervised learning. The long term
goal is to realize a neural network controller inspired
by biological and psychological findings about humans
and animal development. We hope to validate those
models and/or to make counter propositions.

Collective behavior

Several years ago (Gaussier & Zrehen 1994), we have
realized a robotic experiment inspired by Deneubourg’s
work on sorting and clustering tasks performed by ants
(Denebourg et al. 1990). As in Deneubourg’s model,
our robots did not take into account the interactions
between the agents. All the robots acted as if they
were alone. Nevertheless, because in our application
building a cluster of pieces of wood created obstacles,
the environment was divided in areas separating the
robots. The robots then became specialized in the clus-
tering of a particular area. The most interesting point
in this work is certainly not the behavior group since
with more than three or four robots the achievement
of the task was longer than with two robots! These
robots did not have a program that explicitly allowed

49



them to build large clusters. Indeed, the only robot
instructions were to avoid obstacles like Braittenberg
vehicles, to take an object if it was not already moving
another object and to leave an object above the other
object in the opposite case. With this kind of instruc-
tions the robot can build stacks of 2 objects but there
is no reason to build stacks with more than 2 objects.
Indeed there is the same probability to take an object
from a stack or to put it in another stack. In average
the size of the stacks would not change. However in
the real experiment stacks are created which implies a
bias in the probabilities of taking and setting down an
object. That bias is linked to a perception problem.
To separate obstacles from objects, a decision on the
number of Infra Red sensors saturated on our Khep-
era robots was used. The consequence of putting an
object nearby another object is that they appear as an
obstacle and not as two objects. Their significance for
the robot has changed. The intrusion of this Gestaltist
effect (shape theory - the whole is bigger than the sum
of its parts) has questioned us about how robots can
learn by themselves to take into account those emer-
gent properties of the robot/environment interactions
and how to use them in learning by imitation.

Figure 1: Overview of ’ant-like’ clustering and sorting ex-
periment.

Frame of our imitation process

For the imitation behavior, we start with the same kind
of assumption than for the clustering problem: imita-
tion is triggered by a perception error. For instance,
an imitation behavior between two robotic arms con-
trolled by vision could be explained as follows: A robot
arm learns the visuo-motor coordination between its
camera and its hand. It creates a correspondence be-
tween a given hand position in the visual scene and the
angular positions of the different joins. Then, if that
robot looks somewhere else and sees in its visual field
another arm, it will perform the same movement as the
second arm because it will try to reduce the differences
between the representations it supposes to have of its
arm (visual and motor representations). Finally, if the

50

arm movements allows to reduce an internal drive (as-
sociated to the refueling of the energy for instance),
a positive reinforcement is triggered. The movement
sequence will be stored and associated to the internal
drive. Later, if the value associated to the internal
drive changes too much from its optimal value, the se-
quence of movements will be triggered.

Robot following mechanism

Now, if we return to our mobile robot imitation prob-
lem, it is complex to imagine a program that allows
a tobot to learn to visualize what another robot is
doing !. But, it is simple to allow the robot just to

follow another robot as a way to avoid a difference be-
tween perception and action (reduce the difference of
speed between the information of the visual flow and
information about the motor wheel speed - homeostasy
principle).

Figure 2: Overview of following sequence. On the left, the
teacher robot (a MIT handy-board base), on the right, the
learner robot (KOALA)

During a first learning phase, the robot could learn
to go backwards when it perceives an expansion of the
optical flow and to go forward in the opposite case
(contraction of the optical flow). In the same way,
when an expansion central point appears on the left,
the robot must learn to turn right. This behavior can
be learned and frozen and afterwards considered as a
reflex action mechanism for the learning of more com-
plex tasks. In our system, it is hardwired.

The extraction of optical flow is performed by the
visual block (VI) of our architecture. We compute a
image sequence, using a “retinal-like” model, by tem-
poral integration of few (5 in our experiment) images
from the CCD camera.

'Tt is something that primates and perhaps other mam-
mals succeed to do, but in a first time, we would like to see
what kind of imitation mechanism could be performed on
a robot that cannot have a complex internal representation
of the world.



Figure 3: a) An image used by our robot in its following
mechanism. b) the diffence between two time integrated
images gives informations about where is the moving ob-
ject.
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Figure 4: The result of the movement image is subsampled
and the center of the maximum activity area is used to
control the robot movement. MI is the Movement Input

group.

A “movement image” is directly computed by
thresholding the difference between 2 time integrated
images of the above sequence (figure 3). The infor-
mation for the robot following behavior are directly
extracted from this image by keeping the same kind
of egocentric coordinates. The movement direction is
the value on the x axis of the neuron centered on the
most activated area of movement. The speed is de-
duced according to the projection of the same neuron
on the y axes. If the movement is just near the robot
(in the lower part of the movement image) then the
robot speed will be negative and the robot will try to
avoid the collision as shown fig. 5. This pre-cabled
mechanism allows to maintain the same distance be-
tween both robots. In our PerAc architecture (see fig.
6, it is represented by an unconditional connection be-
tween two neural maps representing the proposal of
robot movement (Movement Input - MI) and the effec-
tive robot movement, a Winner Take All (WTA) group
of neurons called Motor Output (MO).

Learning of a temporal sequence

Our neural network for motor sequence learning is in-
spired by the study of two brain structures involved
in memory and time learning: the cerebellum and the
hippocampus (the hippocampus is involved in the short
term to medium term storage of procedural events
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Figure 5: The reflex mechanism allows at the same time
to follow a moving object or to avoid collision according
to the type of optical flow (dilatation/contraction) and to
apparent distance of the moving target.

(Banquet & Gaussier 1997) and the cerebellum learns
motor skills like ballistic trajectories (Bullock, Fiala,
& Grossberg 1994)).

Our robot does not learn directly to imitate the other
robot (a home-made simple robot - see fig. 2). It just
learns to reproduce its own sequences of actions pri-
marily induced by the follow-up reflex behavior. As
a result, it also learns to predict its own next move-
ment and can use that information to detect novelty
(Denham & Boitano 1996) (situations in which its pre-
dictions are wrong).
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Figure 6: Overview of the PerAc architecture for robot
following and sequence of movement learning.

CCD - CCD camera, MI - Movement Input, MO - Motor
Output, TD - Time Derivator, TB - time battery, PO -
Prediction Output

The movement changes characterized by OFF-ON
transitions (Time Derivative TD group) of MO neurons
are used as input information for a bank of time spec-
trum battery-cells (Bullock, Fiala, & Grossberg 1994)
(TB in figure 6). Time battery (TB) of granular cells
act as delay neurons endowed with different time con-
stants. They also perform a spectral decomposition of
the signal that will allow the neurons in the Predic-
tion Output group (PO) to register transition patterns



between two events in the sequence. An input to a by the presence of a direct input from TD), the sum-

specific battery of TB granules performs both a reset mation of the associated spectral activities provides a
of any eventual residual activity in this battery, and maximum of activity that predicts the time and type
an initialization of the spectral timing activity within of the next event.

the group of cells of the battery.
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The size of the TB battery in our application is 15.
Time activity of 5 batteries of cells is presented in fig-
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where j is associated to the choise of a particular Bl
time constant and ! to the label of the recognized input 2
pattern. m; is the value of the time constant and o;

its associated standart deviation. - ) time
The PO group receiving information from TD [secondes]
through both by the direct and indirect pathways (fig. Figure 9: The potential variation for a PO cell through
6) learns the intervals between two events of the se- time. Symbols 1, 2, 3 represent the apparition time of
quence in the strength of the connections between TB these events.
and PB (proximal dendrites). More importantly, PO
also encodes transition patterns between successive or At last, the PO group is linked to the MO group
separated events in the sequence. via a one-to-all link. Hence, after a first sequence of
In the proposed model, the direct input provides first actions, a motor neuron will be activated by the reflex
a temporal information necessary to learn the temporal input and will also receive information from the transi-
interval at the proximal synapses of the PO neurons. tion prediction group (PO). A simple conditioning rule
Second, it provides spatial information which help to then allows the activated neuron to react the next time
encode the pattern of the registered activity at PO. Af- the action is predicted even if the reflex does not pro-
ter learning, the links between TB and PO (triggered vide information. Moreover, performing that action
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provides information to the event prediction mecha-
nism that will reinforce the sequence. Thus replay-
ing the sequence allows it to be maintained in mem-
ory. The learning mechanism needs the presentation of
only one or two complete sequences of movements to
learn to predict the change of movement (the system
learns the timing) and to reply the correct sequence. If
the sequence of movements induces a positive reward
then the past predicted transitions and their associated
movements are reinforced. This way, the robot learns
to imitate the behavior of the other robot. It suc-
ceeds in reproducing learned sequences of movements
according to the activated motivation. The detailed
connectivity of the prediction part of the network is
presented in fig. 10.

Figure 10: Detailed connectivity of the event prediction
network. The circle size in TB is associated to the tme
constants of the neurons.

Dynamic of the sequence learning

We now describe step by step the activation and learn-
ing of the different components of the system when the
teacher performs a square trajectory.

For the sake of clarity, suppose that TD receives the
sequence of patterns 1, 2, 1, 2, ... at variable intervals
that could correspond to “go ahead” and “turn right”
(to make a square for instance). While pattern 1 of
activation is maintained in the MO register, the TD
corresponding unit performs a time derivative of this
pattern, and simultaneously forwards to TB and PO
downstream systems an activation pattern.

There is no significant learning related to pattern 1
direct input to PO, due to the absence of any signif-
icant previous pattern through the indirect TB path-
way. Conversely, the TD input to TB resets any resid-
ual activity in the selected battery of TB neurons. At
the same time it triggers an activation of the different
components of the battery. This activation unfolds at
different paces for the different components of the bat-
tery. Thus this battery will keep a count of time until
the first reoccurrence of pattern 1.
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This way, a subset of the PO neurons, represented in
fig. 10 by a row of the matrix, reflects the TB temporal
pattern 1 of activation in a subthreshold, latent activa-
tion of PO proximal dendrites. Nevertheless, this sole
TB input is not enough to trigger by itself learning at
the PO level. Learning will only result from the con-
Jjunction of this TB input with a phasic transient signal
from TD. In our case this direct input will now be pat-
tern 2 of the sequence. Indeed, there is no significant
learning related to pattern 1 direct input due to the
absence of any significant previous pattern.

After the end of the first presentation of the se-
quence, when event 1 is presented again, besides the
recognition of an event repetition, different transitions
will be learned. Most importantly the transition from
2 to 1, but also from 1 to 1 (an event repetition). At
this point of the repetition of the sequence the PO
predictive capacity will become operational. As the
presentation of events 1 and 2 permitted the latent
learning of the 1-2 transition, similarly, the presenta-
tion of a new event “3” could provide for the learning
of the 2-3 transition, and also the 1-3 transition.
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Figure 11: experimental trajectories

In the robotic experiment, the same behavior is re-
trieved. In fact the main problem is to filter the move-
ment “noise” linked to the variability of the movement
perception and to the limitations of the possible move-
ments. “Noise” is also due to the fact that the learner
tries to cut the trajectory of the teacher and does not
provide a clear transition from one orientation to the
other (the set of successive rotations to follow the other
robot is not repetitible). Hence, there is a need to in-
tegrate throw time the orientation of the teacher and
to consider there is an orientation change only if the
variation of the integrated absolute orientation of the
robot is high enough. In the robotic experiment, we
have added a magnetic compass to measure the real



robot orientation (a measure of the orientation by the
robot odometry can also be used) and all the learned
information come from that value (values integrated
through time). It allows the robot to perform a 90 de-
gree rotation at approximatly the correct time whereas
during learning it had begun to turn slowly (10 or 20
degrees per step) a long time before the good time
(because the teacher was beginning to turn). The time
needed to integrate the orientation information allows
to learn to predict an instant very accuratelyt. (see fig
11).

Conclusion

This work is just at its very beginning. Tools to allow
learning by imitation seem to be able to solve a wide
variety of problems. Nevertheless, a lot of fundamen-
tal problems must be further investigated. First, how
to decide the moving object is “like” the robot and so
must be imitated? In our approach, everything could
be imitated and after a while, if no reinforcement sig-
nal is received, the robot should learn the object is not
interesting and must not be imitated (because its vi-
sual shape will be associated to an avoidance of the
imitation process). The presence of more than a single
moving object in the learner’s visual field also sup-
poses the existence of an attentional mechanism able
to discriminate the visual moving objects in order to
determine who is the teacher.

This approach could explain how a robot can learn
to recognize somebody as its sort (congener) (Dauten-
hahn 1995) and perhaps we will be able to generalize
that to the learning of the consciousness of the robot
itself (Dennett 1991). This is my arm because I can
predict what it will do (reward). My internal schemes
involving my arm remain stable.

In our case, the robot does not know it is imitating.
Do we need to realize robots that really understand
they are imitating? What does it mean as modification
in the proposed robot architecture? Learning social re-
lationship needs to add the possibility of learning “to-
gether” and not only one from an other. Techniques
to manage this kind of problems seems to be avail-
able but excepted few experimentations (Dautenhahn
1995), real size applications managed in a bottom-up
approach have to be imagined.

References

Berthouze, L., Bakker, P., and Kuniyoshi, Y. 1996.
Learning of oculo-motor control: a prelude to robotic
imitation. IROS, Osaka, Japan.

Bullock, D., Fiala, J., and Grossberg, S. 1994. A neu-
ral model of time reponse learning in the cerebellum.
Neural Networks 7(6/7):1101-1114.

54

Dautenhahn, K. 1995. Getting to know each other
- artificial social intelligence for autonomous robots.
Robotics and Autonomous System 16(2-4):333-356.

Denebourg, J., Goss, S., Franks, N., Sendova-Franks,
A., Detrain, C., and Chrétien, L. 1990. The dynam-
ics of collective sorting: Robot-like ants and ant-like
robots. In Meyer, J., and Wilson, S., eds., Confer-
ence on Simulation of Adaptive Behavior. Cambridge:
MIT Press.

Denham, M., and Boitano, J. 1996. A model of the
interaction between prefrontal cortex, septum and the
hippocampal system in the learning and recal of goal-
directed sensory-motor behaviours. Technical Report
NRG-96-01, University of Plymouth - School of com-
puting.

Dennett, D. 1991. Consciousness Ezplained. Boston,
Massachusetts: Brown.

Banquet, J., Gaussier, P., and J.C. Dreher, C.
Joulain, and A. Revel 1997. Cognitive Science
Perspectives on Personality and Emotion  Chap-
ter Space-Time, Order and Hierarchy in Fronto-
Hippocampal System: A Neural Basis of Personality
newblock Elsevier Science BV Amsterdam

Gaussier, P., and Zrehen, S. 1994. Avoiding the world
model trap: An acting robot does not need to be so
smart! Journal of Robotics and Computer-Integrated
Manufacturing 11(4):279-286.

Gaussier, P., and Zrehen, S. 1995. Perac: A neural
architecture to control artificial animals. Robotics and
Autonomous Systems 16(2-4):291-320.

Gaussier, P.; Joulain, C.; Revel, A.; and Banquet, J.
1996. Are shaping techniques the correct answer for
the control of an autonomous robot ? In UKACC
International Conference on Control’96, 1248-1253.
University of Exeter: IEEE.

Hayes, G., and Demiris, J. 1994. A robot controller
using learning by imitation. In Proceedings of the Znd
International Symposium on Intelligent Robotic Sys-
tems, 198-204.

Joulain, C., Gaussier, P., and Revel, A. 1997. Learn-
ing to build visual categories from perception-action
associations. In accepted to IROS’97.

Matarié, M. 1995. Issues and approaches in the de-
sign of collective autonomous agents. Robotics and
Autonomous System 16(2-4):321-331.

Note: The link between our N.N. and an hippocampal
model can be easily obtained if one considers that TD is as-
sociated to the enthorinal cortex, TB to the Dentate Gyrus
and PO to the CAS region (for more details see (Banquet
& Gaussier 1997)).





