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Abstract

This work focuses on scalability of multi-agent-
systems {(MAS) and on the development of methods
to allow systems to configure themselves to any appli-
cation scale and nature. I address this issue by refer-
ring to the assumption that social behavior of artificial
agents cannot be achieved by simply designing a so-
cial agent architecture alone; social behavior needs so-
cial control mechanisms for agent groups or societies.
Here, I shall outline such a mechanism, give an ap-
plication example and put this work into relation to
other fields of research.

Introduction

Whenever large scale societies of agents (artificial as
well as natural) are brought together to achieve a cer-
tain goal, new aspects come into play. In large groups
of humans (e.g., in companies) or animals (in particular
insects) often social dynamic or emerging functionality
effects occur. Such phenomena cannot be explained by
observing group members independently.

In the world of artificial agents, increasing the num-
ber of members of a society may lead to serious prob-
lems: a system running efficiently in a small environ-
ment may fail in a large one if the system’s algorithm
is exponential in terms of environment size.

So, focus for programming in the large has to be put
on two aspects: First, how to suppress negative prop-
erties of large scale artificial agent groups; second, how
to achieve positive phenomena occuring in large nat-
ural societies, such as social dynamics. These aspects
reflect the central problem: How can a multi-agent so-
ciety be organized to make it flexible enough to cope
with applications of any scale? Organizing such a soci-
ety includes specifying the society structure, communi-
cation forms and agent architecture aspects. Further-
more, not only the sheer size of an application has to
be taken into account, but also other properties char-
acterizing its nature. Hence, the goal of this work is
to provide a mechanism which adjusts a MAS to any
environment.
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An Adaptation Mechanism

I regard the task to organize a society of artificial
agents as an optimization problem by characterizing a
search space and an objective function to be optimized.
The objective function has to denote the system’s per-
formance while a multi-dimensional search space must
describe the system’s set of possible configurations.

The objective function has to be defined for each ap-
plication from scratch since it depends on several fac-
tors the application designer has to combine, such as
operating time, quality of the result, etc.

Each modifiable property of the system reflects one
dimension of the search space. The search space di-
mensions can be derived from scalable parameters of a
multi-agent application on three levels: on the agent
society structure level, parameters are for instance
number of agents and organizational form of the so-
ciety. On the agent architecture level, e.g., explicit
resource distribution to the various modules are re-
garded as scalable parameters (see (Gerber & Jung
1997) for a unified approach based on resource dis-
tribution management). Finally, on the level of agent
communication/cooperation, issues such as complexity
of the communication process can be regarded as scal-
able parameters (for details see (Fischer et al. 1997)).

Figure 1 shows a simple, two-dimensional exam-
ple: here performance depends only on the number of
agents and the usage of a sophisticated knowledge rep-
resentation {KR) component. The number of agents
is represented by a discrete dimension, whose domain
ranges from 0 to possibly infinity. KR usage is modeled
as a continuous dimension, its domain ranging from
0 to 1. A number between those extremes indicates
what percentage of an agent’s computational time can
be used in the KR component.

In many cases, multi-agent applications are intended
to work ad infinitum. A system which was originally
adjusted to work at a very high performance level, has
to react dynamically to new inputs so that it might lose
its performance over time as the environment changes.
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Figure 1: Example of a System Performance Relation

Maintenance of high performance is therefore another
main issue. By applying optimality conditions to a cur-
rent situation the system shall be able to detect sub-
optimalities. In the following, I present a mechanism
for achieving and maintaining high performance dur-
ing the complete run of an application. As global opti-
mality can hardly be achieved in a reasonable amount
of time, but may be lost very easily, this mechanism
bases on the steepest ascent method (Zoutendjk 1976)
for finding local optima. The mechanism is enabled to
include an expert’s intuitive understanding on how to
model an organization.

Method

1. The application designer produces an initial model
of the application by instantiating scalable param-
eters at the agent society structure, communica-
tion/cooperation and on the agent architecture levels.

2. The system detects sub-optimalities in this layout by
applying optimality conditions. The system modifies
the layout in order to remove them. This step may
be performed in interaction with a human expert.

3. The second step is repeated until the application is
terminated.

In the above example! a starting point may be z3. A
maximal performance gain will be achieved by adding
more resources to the KR component: x4 may be
achieved. By increasing the number of agents to five,
the optimal configuration z2 will be found.

For the realization of this algorithm two issues must
be addressed: How to retrieve optimality conditions
mentioned in step 2 and How to monitor the structure.

(Local) optimality conditions may be retrieved
through a theoretical examination of scalability quanti-
ties (e.g., through bottleneck analysis (Sie 1996)) prior

1For the sake of clarity, I assume for this example that
during the optimization process neither the search space
changes, nor does the dependence of the performance func-
tion to scalable or non-scalable quantities. Of course, this
assumption does not hold in general. However, the above
search procedure can still be applied for the general case.
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to the run of the system, but also through on-line per-
formance measuring based on a trial-and-error method.
In addition, examination of related fields of research
may lead to further insights: organizational forms de-
fined in organization theory can be used to model sub-
structures of the layout; heuristics about the perfect
size of a group may be taken from psychology, etc.

Secondly, the structure has to be controlled or mon-
itored in order to detect and remove sub-optimalities.
It may not be reasonable to introduce only one such
optimization procedure as too many scaling dimen-
sions may occur. It therefore might be wiser to intro-
duce one optimization process for scaling dimensions
which characterize general system properties, several
processes for dimensions characterizing smaller groups
of agents and a process for each agent, addressing di-
mensions on the agent architecture level.

The latter control structure can be integrated into
the agent architecture. One approach to construct
the other control mechanisms is to commission certain
agents to control optimality conditions. Such monitor
agents can be society members or additional agents
whose sole functionality is to monitor. They monitor
optimality conditions by applying them in a feedback
loop, or by controlling them in a daemon-like fashion.

An Application Example

The MAS simulation environment SIF (Social Interac-
tion Framework (Funk et al. 1997)) is currently being
developed for' the study of social interaction between
artificial agents. Here, the environment is populated
by agents that have some sort of “life energy”, rang-
ing from O (the agent is dead) up to 100 (the agent
is perfectly healthy). Any activity an agent performs
results in energy loss. The agents’ main goal is to keep
their life energy as high as possible. Increasing energy
is achieved by consuming food which has be produced
by processing various types of raw material. Coopera-
tion between agents is reasonable because the process
of producing food can hardly be achieved solitary.

Overall goal of the system is to derive an agent soci-
ety as strong as possible, i.e., that consists of as many
members as possible. A centralized control of agent ac-
tivity may easily become intractable once the society
has reached a certain size. Therefore, I incorporate a
more decentralized and scalable approach: "agents are
enabled to found, join, or leave groups. In contrast
to other group formation approaches (e.g., (Ketchpel
1993)), once evolved, agent groups are ezplicitly repre-
sented by a monitor agent equipped with the function-
ality described in the previous section. Agents groups
again can cluster to larger units which again are rep-
resented explicitly.



The main goal of a group (i.e., the objective func-
tion of the corresponding monitor agent) is to gain as
much control over food as possible in order to enable
the survival of group members. Agent individuals have
unique skills to perform certain jobs. Hence, the mon-
itor agent representing a group must determine how
many agents, what type of agents, what patterns of
command in the group, etc., are needed to optimize its
objective function. All these parameters reflect search
space dimensions in the optimization problem the mon-
itor agent has to solve.

Agents, on the other hand, have to optimize their
life energy. They have to reason whether or not to
join or leave a certain group. So, not only group for-
mation evolves naturally from goal optimization, but
also agent characteristics such as selfishness, social be-
havior or solitary behavior, concepts well studied but
mostly represented in an explicite manner.

Related Fields

This work addresses problems somewhere in the inter-
section of a wide range of research areas, mainly in
the area of cognitive science, allowing to incorporate
research results found in other fields. Furthermore,
there is also the chance that this work will be useful
for these disciplines, for instance, for simulating behav-
ior of large human groups. Important points of contact
to other fields are described below:

Psychology Group formation and development is
one issue that social psychologists work on. Much re-
search is carried out to find the optimal size of a cer-
tain group (see e.g., (Nasser 1988)). Furthermore, the
strongly relevant question why people form or join cer-
tain groups is investigated. ((Tuckman & Jenson 1977)
shows some aspects.)

Biology The examination of the sociology of animal
societies, in particular of phenomena such as emerging
functionality in insect societies, is important to how
a society goal is split into subgoals, and then, how
they are achieved. Furthermore, feedback loops reg-
ulating the size and structure of insect societies (see
(Free 1987) as an example) are worth looking at.

Management Theory In business organization,
consultants have the-tough job of deciding how to
structure very large companies. Thus, business ad-
ministration has developed basic organizational forms
for companies and rules designed for building company
structures. (A survey can be found in (W&he 1981).)
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Summary

In this paper I have presented an adaptation mecha-
nism which enables multi-agent systems to configure
themselves to any application scale and nature. This
goal is motivated by the necessity to guarantee high
performance of MAS of any scale and thus, to achieve
scalability. Furthermore, I have sketched an applica-
tion example to demonstrate the feasibility and practi-
cal relevance of the approach. Here, I have shown how
social phenomena such as the degree of social behavior
or group formation can evolve. Finally, related fields
of research were addressed.
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