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Particle swarm theory suggests that minds and cultures are both
eifects of local social interaction. This paper compares two social
a japtation algorithms and proposes a view of intelligence or cog-
mtive adaptation as immerging from culture, which emerges from
social interaction. A framework for the depiction of mental states
< oresented, and the optimizing effect of social interaction is
1emonstrated in a parallel constraint satisfaction paradigm.

My argument in this paper will be that cultures and minds
are global and local aspects of a process which can be de-
scribed in terms of social interaction. I intend to draw a
link between the emergence of norms and culture from lo-
cal interaction on one hand, and the immergence of intelli-
gence from culture on the other.

Social Influence

A very large amount of social-psychological research dem-
onstrates that people are influenced by the people around
them, in their attitudes, their beliefs, their behaviors, and
other aspects of the way they process information. People
who interact more frequently come to have more in com-
n:on, and converge on cognitive patterns which distinguish
thzm. While we tend to think of conformity as a negative
t-ait, social influence is a constant presence. For instance,
we all speak the language of our communities, though infi-
nitely many possible languages exist, and a great many
actual languages do exist. We don’t choose a language, we
«onform to our social group.

A salient example of beneficial social influence is seen
. Kuhn’s (1970) description of the process of science.
Kuhn shifted the locus of scientific discovery away from
the individual, emphasizing the emergence of “normal sci-
ence” and “paradigms” comprising numbers of scholars
working within a shared theoretical and methodological
framework. Kuhn’s insight suggests that conformity, social
influence, and group processes are powerful media for the
development of innovation, insight, and wisdom — social
influence is not just the vanity of teenagers’ fussing over
the latest fashions, though the social-psychological mecha-
nism may be the same.

The truth of a statement can be determined by two
kinds of criteria: empirical observation and deductive cer-
tainty. Yet it is widely recognized that neither of these
criteria can generally be satisfied in the real world; except
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under rare and rigorous laboratory conditions we are usu-
ally not privileged to witness the unconfounded working of
one variable upon another, and only in the rarefied context
of mathematics is deduction infallible. Therefore we social
beings rely on a less rigorous criterion for establishing the
truth of statements: agreement. If others around us believe
something to be true, especially when they appear knowl-
edgeable, then the statement can attain the status of verac-
ity. The current paper will suggest that the method of
agreement is a highly effective method for discovering
truths in complex situations.

Intelligence and Minds

Sternberg (1988) wrote, “Intelligence is essentially a cul-
tural invention to account for the fact that some people are
able to succeed in their environment better than others” (p.
71). 1 have further argued (Kennedy, 1996) that intelli-
gence is simply a term that stands for qualities of a “good
mind.” As such, the concept is fundamentally a judgment,
and, because we consider ourselves to be good people,
qualities attributed to intelligence are likely to be autobio-
graphical in nature. In studying real minds and creating
artificial ones, our definitions of intelligence as “good
mind” are bound to be influenced by our ideals about our-
selves and our culture’s norms, as well as by the task that
the mind is concerned with. We would like for our crea-
tions to do what we would want ourselves to do. »

Attribution theory is a social-psychological approach to -
the study of how people assign causality to events, espe-
cially events involving persons (cf. Kelley, 1973). This
perspective generally focuses on individuals’ inferences
that behaviors have internal versus external, as well as sta-
ble versus unstable, causes. We may infer that a person did
something because of a more-or-less permanent personality
disposition, because of a temporary mood or physical state,
or because the situation required it. _

The recurrent finding of attribution theorists is a pro-
pensity to exaggerate our autonomy as individuals. In so-
cial psychology, the “fundamental attribution error” (Ross,
1977) is the tendency to assign greater causal responsibility
for events to persons rather than to situations. We underes-
timate the causal power of situations and overestimate the
power of people — we are more likely to say, ‘“He acted that -
way because that’s the kind of person he is,” than, “The



situation forced him to act that way.” As a result, when we
consider how to make computers intelligent — that is, how
to make them act like ourselves — we tend to start with the
assumption that intelligence is a trait of the individual; we
~emmit the fundamental attribution error. The result is a
fucus on “autonomous” agents, even though we ourselves
are hardly autonomous at all!

[ suggest that an aspect of the fundamental attribution
error is the belief that minds exist inside persons, and that
information processing occurs entirely in private. One
needs only to consider feral humans (Lane, 1976), indi-
viduals who have grown up without social interaction, to
see that without social interaction a person would not have
anything that could be called a mind. We think by inter-
acting with others, “actual, imagined, or implied” (Allport,
1985); the communicative aspect of language is inseparable
from its representational aspect. Our minds may be experi-
enced phenomenologically as isolated entities inside her-
metically sealed cognitive chambers, but this is an illusion
~ a disconnected mind would be no mind at all.

If we as scientists are trying to elicit intelligent behavior
fr-m a computer, and if intelligence can be (as I am taking
the liberty) defined as an idealized self-portrait, then we
v ould do well to program the computer to do what we do —
and what we do more than anything else is interact with one
arther. Interacting, we become more alike, we conform.
.aud conforming, we converge on good ways to behave: we
"»=come intelligent.

Social Adaptation of Knowledge

The exposition of the social model of mind starts with the
articulation of two assumptions that are implicit in any the-
ory of thinking. First, a model assumes that the state of a
mind can be depicted in some way. For instance, a (crisp-
or fuzzy-) logical depiction of a mind might contain a list
of statements and the relations among them; a constraint-
satisfaction depiction might be a graph with nodes repre-
senting beliefs, and connections representing constraints; a
neural network depiction might show a mind as a set of
connection weights. There is no “correct” or even best
method for depicting all minds at all points in time.
“...even within European-American culture, theory-of-
mind content is not as consistent as the literature might lead
one to expect. What is held forth in academics as the the-
ory of mind is actually a European-American formulation,
one that resonates with scientifically-minded academics”
(Lillard, 1997, p. 268). On the other hand, a depiction of
the relevant qualities of the state of a particular mind at a
natticular time, seen from a particular theoretical per-
srective, is entirely possible — these depictions are useful
and even common.

The second assumption is that the state of a mind can
be evaluated. A logical mind can be evaluated in terms of
the certainty of its conclusions; a constraint-satisfaction
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mind can be evaluated in terms of how well the constraints
are satisfied, and so on. When we talk about “states” of
mind, we presume that minds change over time; the meas-
urement of the goodness of a state of mind is not a judg-
ment of character, but rather an assessment of the goodness
of the selected qualities of a mind at a given moment.
Every theory of scientific or folk psychology has a way of
evaluating the goodness of a mind; a mind’s intelligence
then can be defined within that framework as the goodness
of its states averaged over a number of critical measure-
ments.

The state of a mind can be represented by some vector
of numbers x;. As above, these numbers might be neural
net weights, attitudes, set memberships, beliefs, activation
values, etc. Further, every vector x can be evaluated by
some goodness function G(x), which is determined by a
theoretical model.

The problem with an individual mind as a vector x, is
that it is all alone. An adaptive mind has to have something
to adapt fo; previous models have presumed that the mind
adapts to details of the problem at hand, while the present
social-psychological view presumes that minds adapt to
other minds. The reasonable thing is to propose a society
of minds: x;4; minds of individuals i on dimensions d.! Now -
we have a number of individuals coexisting in a cognitive
state space, each depicted as a vector of numbers, and each
being an element in a vector of minds.

Change in Mental State

Development, learning, emotions, forgetting, thinking, and
attitude change are some of the ways that minds change
more or less constantly. The kinds of change that will be

depicted in an x;4 model depend of course on what repre- - -

sentation was chosen (and vice versa), what dimensions are
represented by the x;;’s.

Changes of mental state are continuous in time, in the
sense that one state follows from another. Discontinuous
series of mental states such as sudden disruptions of belief
or mood are symptomatic of mental illness or indicative of
an undetected pattern within which the new state does fol-
low from its precedent, i.e., bad specification of the system.
If the relevant variables are identified, then normal change,
whatever its form, is understood to be continuous.

That is not to say that changes of mental state are pre-
dictable. The variables that affect behavior are complex,
they interact in unforeseeable ways, and are introduced into
the computational model as randomness. Though mental
change is continuous, it is not predictable; it is continuous
but random.

Continuous change in x;, is seen as:

xig() = xiq(t-1)+ Axiq

! Note the contrast between a “society of mind” existing
inside a skull and the present view of a society of minds.



leaving us with the task of explaining how Ax;; operates.
Psychological findings suggest two major effects on Ax;y.

The Law of Effect

Thorndike’s (1911) Law of Effect, which became the basis
of subsequent reinforcement theories, stated that a response
which is associated with a reward becomes more likely to
recur in the future. The present sociocognitive perspective
cheerfully intends to violate the behavioristic ethos by im-
puting mental dynamics, so in this case the “response” can
be an attitude, behavior, or cognition. An individual’s se-
ries of x;q iterated over some time-steps will have found a
position p;, that resulted in the best evaluation so far, and
toward which i will tend to return, according to the Law o
Effect. ;

In a multivariate model such as the present one, the
attraction of a previously rewarding behavior can be imple-
1 ented as the vector of differences between an individual’s
current position and the previous best position p;;. Each
term will be weighted by a positive random number ¢,
whose upper limit will be a parameter of the system,
though in the following examples it will retain the limit of
2.9, so that the mean weight = 1.0. Thus, the Law of Effect
is defined as an attraction by the individual toward a point
Pp..» Where the attraction is proportional to @-(p;; - x;), with
a new random number ¢ generated each time it occurs.

Social Interaction

Sherif (1936) studied the formation of norms using the
“autokinetic effect.” A point of light projected on the wall
of a perfectly dark room appears to move because of adap-
tive movements of the subject’s eyes. If a subject is asked,
for instance once every minute, to report how far the light
has traveled, he or she will give relatively consistent an-
swers. Subjects typically report the light moving approxi-
mately six inches per minute.

If subjects give their reports simultaneously with some-
one else who initially reports movements of several feet or
more, however, the reported distances begin to shift, until
the subjects report approximately the same amount of
movement of the light as reported by the other person.
Sherif’s early research demonstrated the formation of
norms; subsequent studies of numerous judgments and be-
haviors have supported the finding that individuals tend to
converge in their responses to many tasks (cf. Petty and
Cacioppo, 1981).

Latané and his colleagues (cf. Nowak, Szamrej, and
Latané, 1990) have shown the correlation of arbitrary mul-
tiple attitudes as a function of highly persuasive individu-
als. The current view, however, considers attitudes and
other cognitive elements to be inherently correlated, as
their combination determines the goodness of a mental
state. Certain patterns of thought “go together” sensibly
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and comfortably (as measured by G(x)), and people seek to
find those patterns, though finding them is often difficult.
It is suggested here that people succeed at this cognitive
optimization through collaboration.

An individual communicates repeatedly with some
number of selected individuals in a neighborhood, which is
arbitrarily defined by position in the array of individuals.
In a typical particle swarm experiment, individual i exists
in a neighborhood with i-7 and i+/. Individual i will be
influenced by the member of the neighborhood who has
attained the best goodness measure so far: the variable g
takes on the value of the index of that “best” neighbor, so
that p,, indicates the best position attained so far by any
member of the neighborhood.

It is then a simple matter to attract / toward the neigh-
borhood best position by a term similar to that used for the
Law of Effect. The complete formula will have two terms:
first, the Law of Effect term given above, and second the
social influence term just described, weighted by a positive
random number as before:

(P'(Pgd - Xig)

Thus, if xj4(t) = x;4(z-1)+ Ax;;, then we theorize that
Axigis a function of (@(py - x;4) + @(Pgq - Xig))- The
order of the function is not clear however. In the following
passages, the phrase “adaptation vector” will refer to:

O(Pig - X;9) + O (Pgd- Xia)
where a new random weight ¢ is generated each time it
occurs, that is, for each of the two terms within every id.
This vector represents the difference between the individ-
ual’s position in hyperspace and that individual’s previous
best position, plus the difference between the individual’s
current position and the neighborhood best. ]

In the following sections, two social adaptation models
are tested and compared, using a cognition-like problem —
random parallel constraint satisfaction networks. Drawing
from Kauffman's (1995) NK landscapes, networks were
randomly generated which contained twenty nodes, with
each node having k connections from other nodes. Net-
works with k=2, k=4, k=10, and k=15 were tested. Connec-
tions between nodes were assigned random weights ‘in [-
1.0, +1.0], and connections were asymmetrical, that is, w;;
# Wji. The objective function was a global one which is

i
widely applied to Hopfield networks:

G=ZZwijaiaj
i

where g; is the activation level of node i, limited by a lo-
gistic function to [0.0, 1.0], and wij is the strength of the
weight connecting node j to node i.” The object is to maxi-
mize the output of this function (though the present imple-
mentation minimized its negative). Optimal vectors of -
nodes maximize the sum of the products of connécting
nodes and their weights, so that two things which go to-
gether and have a positive weight between them should
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both be active simultaneously, while negatively connected
nodes should turn one another off.

Increasing the numbers of connections to each node
increases the complexity of the network by introducing
conflicting constraints, increasing epistasis in the network.
Because the networks are random, the optima are not
known, of course. Each version was run twenty times, and
the first column of numbers presented below indicates the
mean numbers of iterations required for some member of
the population to attain the best score found. The system
was allowed to run for 300 iterations with k<10, and 500
derations with k>10, in order to make sure that further pro-
11 28S was not going to occur. The second column indicates
ti:> last iteration where any member of the population had a
vaiue less than the population best — measured in floating-
point precision, this is a very strict standard. The final col-
umn gives the mean optimal or best G. As k increases, we
expect G to decrease.

First-order Adaptation: Change of Position

The first experiments tested a model with the adaptation
vector @(p;4 - X;q) + ‘P(Pgd x;4) simply added to the indi-
vidual’s position. That is, in this model:

For i= 1 to number of individuals

For d =1 to number of weights in a network
Xig =Xid + ¢ (Pig - Xid) + ¢ (Pgd - Xic)
Next d

Next i
(Note: for-next loops will be assumed in succeeding exam-
ples.) Further, if a term in the adaptation vector exceeded
+ 4.0, then that value was cut off to +VMAX=4.0, i.e., xjz
= xjq + VMAX,.

This model was run for 20 trials at each level of k. As
seen in Table 1, a mean of 224.50 trials were required to
attain the optimum when k=2, and after 239.70 iterations
the entire population had attained the optimum. Interest-
ngiy, the numbers of iterations required did not increase
monotonically with k, though the optimal goodness G de-
creased as expected.

Table 1. First-order adaptation. “First optimum” refers
to the mean number of iterations required for a member of
the population to attain the optimum or best score. “Last

suboptimum” denotes the last iteration in which any mem-
ber of the population performed at a level lower than the
best. G is the mean goodness of the networks, for each
value of k.
First

Last
© suboptimum

oplimum S
0.1574

224.5 239.70
250.55 274.70 0.1071
=3 2553 270.00 0.0725
" 15 4 25345 259.35 0.0516
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Each individual in the first-order implementation of the.
adaptation vector searches within a hyperrectangle (for lack
of a better term: a multidimensional volume with perpen-
dicular corners and unequal sides) with one corner at Xig
and the diagonal corner at:

Xig + Uim(Q)((piq - xig) + lim(Q)-(pgy - x;4)), OF

x;g + VMAX;,, whichever has a smaller absolute value.
The random numbers ¢ throw the particle somewhere into
the box defined by those corners.

Convergence of the population was seen in these trials,
as individuals gradually approached the optima, and neigh-
bors tended to produce similar solution vectors to one an-
other. Phenomenologically this model simulates a popula-
tion of individuals who move directly to compromises be-
tween their own good solutions and their neighbors’,
sometimes moving to more extreme positions than the tar-
get. Upon detecting a discrepancy between their current
positions and their previous bests, as well as their neigh-
bors’ previous bests, individuals change to approximate
those relatively good positions in the problem space.

Second-order Adaptation: Change of Change

Next a program was written wherein individuals adapted
their rate of change, as compared to their position, to the
adaptation vector. That is:

A(Axiy) = @(piy - x;9) + @ (Pgd Xig)
or in other words:

Xig (1) = Xiaft-1) + Axigft-1)+ Q(Pig - Xig) + 9Py x,d)

In this second-order adaptation algorithm, individuals-
adapt by changing the rate of their changing. In this ver-
sion an individual’s trajectory continues its course, with
adjustments. Ax;; was limited, as before, to the range [-4.0,
+4.0].

As seen in Table 2, optima which were comparable to
those found in the first-order model were found in less than
half the time. A multivariate analysis of variance was per-
formed, with three dependent variables: First Optimum,
Last Suboptimum, and G, and two independent variables k
and Order (first- versus second-order adaptation), plus their
interaction. The MANOVA (using Wilks’ Lambda) was
significant for Order, F(3, 150) = 505.4720, p<0.0001, and
for k, F(9, 365.21) = 18.2465, p<0.0001, but not for their
interaction. Univariate main effects of & were significant

for First Optimum, F(3, 152)=6.55, p<0.0003, for. Last . .

Suboptimum, F(3, 152)=6.76, p<0.0003, and for G, F(3,
152)=66.61, p<0.0001. Main effects for Order were sig--
nificant for First Optimum, F(1,152)=940.87, p<0.0001, .
and for Last Suboptimum, F(1,152)=661.06, p<0.0001, but
not for G, that is, solutions were found faster and con-
verged faster, but were not significantly better in the sec-
ond-order version. No interactions were significant, sug-
gesting that the effect of & was the same for first- and sec-
ond-order algorithms.



Finally, the number of iterations between the first dis-
covery of an optimum and the last suboptimal score dif-
1ered  significantly between Orders, F(1, 152)=164.18,
»<0.0001, but not by k or the interaction; it took signifi-
cantly longer for the second-order algorithm to converge
once the optimum was found, as particles’ trajectories re-
turned toward the best positions by a more gradual route.

Table 2. Performance of second-order adaptation algo-
rithm.

First
oplimum

- - Last
" suboplimum

0.1560

104.25 128.90

114.55 143.45 0.1105
121.45 149.95 0.0762
115.10 145.20 0.0614

In this second-order implementation, the particle
searches a hyperrectangle with corners at:

X (t-1) + Ax; {1-1)
and
Xig (-1) + Ax; ft-1) + Lim(Q)((p;y - X;4) + lim((p)-(pgd )
or

x4 (t-1) + VMAX;4
whichever absolute value was smaller.

In this version the hyperrectangle may contain the par-
“icle’s current position. As the particle moves ahead on the
trajectory established at the previous time step before
making an adjustment back toward the best points, the at-
traction tends to be roundabout, with particles looping past
optima and returning to them.

In these models individuals are attracted toward their
own previous successes, and toward the previous successes
of their neighbors. The difference between the first- and
second-order models lies in perseverance (Ross, Lepper,
and Hubbard, 1975). In first-order adaptation, individuals
abandon their previous trajectories when they or their
neighbors discover a newer, better pattern of elements. In
the second-order algorithm, individuals continue on their
current trajectories, modifying these on the basis of new
findings. The first case is as if a scientist, upon finding
some new research results, gave up his or her previous
goals to begin studying the new phenomenon. In second-
order adaptation, the scientist continues his or her research
program, but takes the new findings into account. Second-
order adaptation appears to correspond well with current
sucial psychological findings.

The Emergence of Culture

Tic second-order algorithm above, called particle swarm
adaptation, can be implemented using any kind of cognitive
theoretical model or intelligent agent architecture. For
instance, it appears that performance of the particle swarm
on feedforward neural nets is approximately equal to back-

propagation of error, and anecdotal reports have it outper-
forming backprop in some cases. The method has also
been shown to perform well on Hopfield networks, quanti-
tative balance theory models, and fuzzy cognitive maps, as
well as on symbolic representations such as graph-search
problems.

After some number of iterations the system is seen to
have converged on one or more optima. In cases where
multiple global optima are discovered by the population,
series of topological neighbors tend to cluster in the same
optimal regions of the search space. These series extend
beyond hard-coded neighborhoods. An individual which
has found an optimal combination of elements draws its
adjacent neighbors toward itself; if the region is superior,
then the neighbors’ evaluations will improve as well, and
they will attract their neighbors, and so on. If another sub-
set of the population is attracted to a different but equally
good position, then a natural separation of groups is seen to
emerge, each with its own pattern of coordinates which

_may easily be thought of as norms or cultures. When one

solution is better than another, it usually ends up swallow-
ing the lesser pattern, though in some cases individuals on
the borders of groups (who generally perform poorly them-
selves) prevent the spreading of better solutions through
the population.

Table 3. An example of culture in a particle swarm trial.
Individuals’ activation vectors (rows in the table) resemble
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The polarization of these artificial populations into
separate cultures appears very similar to the convergence
of human populations on diverse norms of attitude, behav-
ior, and cognition. Human interaction results in conformity -
or convergence on patterns which are similar for proximal
individuals and different between groups.

The “Immergence” of Intelligence

Local interactions in complex systems result in emergent
global behavior which is not predictable from the local
behavior. The formation of cultures in particle swarm trials
is not specified in the computer programs and is not-pre- -

dictable from the definitions of interactions in the pro- -

grams.



Culture emerges from local interaction — but that in
itself is not especially interesting for a scholar seeking to
understand intelligence. A second feature of the behavior
of a particle swarm system, or of a human society, is the
immergence of cognitive adaptation as a result of the top-
down effect of emergent culture.

The cultural convergence of individuals in the search
space results in intensive exploration of optimal regions.
Relatively good combinations of elements, which in human
suciety may be beliefs, behaviors, problem-solving steps,
opinions, etc., receive relatively focused attention. As a
result, the performances of individuals are improved. Cul-
ture, the result of emergent bottom-up processes, is the
cause of immergent mental phenomena, optimizing the
cognitive processes of individuals. Culture allows intelli-
gent behavior of individuals.

Minds and Cultures

‘The present paper attempts to begin to develop a theory of
minds in a field containing other minds, some data, and
some formula for processing data— a cognitive model,
which might vary from case to case.

In this simplified model, all individuals input the same
data; of course in nature each individual perceives each
event uniquely, with input data determined not only by
physical position in the environment but by previous
learning. The treatment of environmental data is not ad-
dressed at all in the present model, though it is clear that
ditferences between data sets can explain a lot of the ob-
served differences between individuals.

The present implementation simulates instead the proc-
essing of a single set of data by a population of individuals.
It is seen that individuals’ conformity to the influence of
their neighbors can result in optimal information patterns.
Cultural patterns emerge from local interactions, and in
turn influence the intelligent behaviors of individuals lo-
cally.

Intelligence is a label to describe the qualities of a good
mind, as judged by the person using the term. No universal
definition of the concept is likely to be invented, as the
judgment depends on the person making it. The qualities
of a mind, further, are hypothesized to immerge from the
culture within which it functions.  The pursuit of
“intelligent” computer programs should focus on the social
interactions which result in the emergence of culture and
the immergence of cognitive adaptation. A versatile
framework for the depiction of mental states was presented,
and the optimizing effect of social interaction was demon-
strated in a parallel constraint satisfaction paradigm.

A social-psychological insight is that a great amount of
social interaction consists, not especially in the commu-
nication of facts, but in the communication of methods for
processing the information. Through approximation of
others’ relatively successful cognitive methods, individuals

are able to behave intelligently; the result of local interac-
tion is culture, and the result of culture is intelligent per-
formance by individuals.
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