From: AAAI Technical Report FS-97-03. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Using Diagrams to Understand Diagrams:
A Case-Based Approach to Diagrammatic Reasoning

Dale E. Fish and Robert McCartney

Department of Computer Science and Engineering
University of Connecticut
Storrs, CT 06269-3155

fish@eng2.uconn.edu

Abstract

We are exploring the possibility of using case-based
reasoning as an approach to diagrammatic reasoning. This
paper describes a work in progress on a system that
‘understands’ a diagram of a problem situation by finding
correspondences between it and similar diagrams in its case
memory. The input to the system is a diagram of the
problem situation consisting of some number of simple
elements such as circles and lines. The goal of the system is
to determine the significance of the diagram and its
constituent elements by recognizing the structure of the
diagram and structures within it. The approach is to use high
level perception (recognition of instances of categories and
relations) to build a representation of the problem situation
(a diagram), and infer additional information by finding
correspondences between this representation and stored
cases. The output is the problem situation diagram annotated
with descriptions of the elements and relationships between
them and any inferences the system may be able to- make
along with their justifications.

Introduction

There are a number of problem domains where information
is more easily and naturally represented using diagrams.
While humans are adept at using diagrams, automated
reasoning systems typically use pre-distilled codified
representations. This means that in domains where
diagrammatic representations are the norm, the diagrams
must first be interpreted by humans, which (in extreme
cases) results in either simplified representations where
determinations of relevancy and saliency have already been
made, or representations that (attempt to) include all the
information present in the original diagrams. The former
reduces the system’s reasoning to a form of unification and
the latter can be very difficult if not impossible given the
density and complexity of information inherent even in
simple diagrams. An automated system that reasons
directly from diagrams both precludes the necessity of
spoon feeding the system interpreted representations and
retains the original information-rich diagrams. Using the
actual diagrams in reasoning is especially important when
there is limited domain knowledge (i.e. the first principles
of a domain are unknown) or flexibility is required, both of
which are characteristics of learning systems.

There has been considerable interest in the area of

robert@eng2.uconn.edu

diagrammatic reasoning (DR) but little work using case-
based reasoning (CBR) as an approach to DR. We think
this may be a natural fit, reasoning with diagrams about
diagrams. This work explores the possible advantages of
using a store of case diagrams to interpret new diagrams.

This paper describes a work in progress on a system that
‘understands’ a diagram of a problem situation by finding
correspondences between it and similar diagrams in its case
memory. The input to the system is a diagram of the
problem situation consisting of some number of simple
elements such as circles and lines. The goal of the system is
to determine the significance of the diagram and its
constituent elements by recognizing the structure of the
diagram and structures within it. The approach is to use
high level perception (recognition of instances of
categories and relations) to build a representation of the
problem situation (a diagram), and infer additional
information by finding correspondences between this
representation and stored cases. The output is the problem
situation diagram (or just problem diagram) annotated with
descriptions of the elements and relationships between
them and any inferences the system may be able to make
along with their justifications.

In the next section, we state the problem we are
addressing with this work and follow that with a discussion
of the approach we are taking. The following section
elaborates on the approach by providing an example. We
then discuss some other work related to our approach, some
problems to be addressed and possible extensions to our
work, and we conclude with a brief discussion of the
contribution we believe this work provides.

Problem Statement

We are interested in looking at the utility of using diagrams
we know and understand to reason about new diagrams. In
general terms, the question we are dealing with is can
diagrams be useful in understanding other diagrams. For
humans working in domains where information is routinely
represented diagrammatically, the answer seems to be an
obvious yes. Architects represent plans with diagrams and
understand these representations because of their
experience in working with them. The military uses
diagrams to represent tactical scenarios, sports teams use
diagrams to represent plays, and directors and actors use



diagrams to represent sets and stage movement. The
usefulness of diagrammatic representations in these and
other domains is the efficiency with which they convey
information, and the efficiency with which the people
involved understand the diagrams is due in large part to
their experience in working with them.

We would like to develop a CBR system that uses
diagrams of situations as cases and reasons from these
cases about new diagrammatically represented problem
situations. We are assuming that a problem situation can be
represented using some number of simple pictorial
elements such as basic geometric figures, and that the
identity of these elements along with their location and
orientation is given, sidestepping the issue of low level
recognition. (What this really means is that the system is
given instructions on how to draw the problem situation as
opposed to giving it a bit map.) What these elements
represent at some basic level may also be known given
some domain, but the roles the individual elements play in
a particular diagram must be inferred by recognizing the
structures and relationships inherent in the diagram.

This seems to be a difficult problem. Take a simple
relationship like grouping: if an element can be in at most
one group, the number of possible groupings is given by
the size of the power set of the elements. Even with a small
number of elements, a small number of relationships
between elements and/or groups, and a small number of
possible categories to assign to the elements, the problem
space gets large in a hurry. One role of the cases then is to
focus attention, sort of like saying look for something like
this around here. The structures discovered in the problem
diagram may be mapped to the structures in the case or
cases that prompted their discovery along with the
corresponding elements, allowing inferences to be formed
about the elements in the problem diagram (i.e. if this maps
to that, then this is like that).

The domain we have chosen is the game of football
which is a domain where diagrams are routinely used to
represent plans called plays. These play diagrams show the
initial locations of the players and their assignments during
the play. Figure 1 shows an example of a play diagram.
This domain can be quite complicated although the
diagrams themselves are very simple, using a small set of
symbols, mostly easily recognizable geometric shapes. The
simplicity of these diagrams makes it a good domain for
initial investigation (since we are more interested in a
conceptual analysis of a diagram rather than low level
recognition of complex elements within a diagram) while
the complexity inherent in the domain should provide
fertile ground for interesting extensions. We are of course
very interested in proving claims of generality by using this
approach on other domains.

For the present we are ignoring the action part of the
diagrams (the lines showing player movement during the
play) and concentrating on the initial positioning, or
alignment, of the players. This is the problem situation the
system is to understand. The perspective is that of the
defense trying to recognize a novel offensive alignment in

terms of offensive plays with which it is familiar. Figure 2
shows a diagram of a problem situation as it would be
presented to the system. The diagram consists of 11 circles
representing where the players on offense line up relative
to one another for the given play.

S

Figure 1: Sample play diagram showing player alignment
and routes of receivers.

O 080
OO0.00 O

Figure 2: A problem situation.

What we would like to do is take a diagram such as this
and make useful inferences to achieve some goal. The goal
may be something as nebulous as ‘understand the picture’
or something as specific as ‘identify the primary receiver’.
For now, our concern is to be able to make good judgments
about similarity between the problem situation and cases
and find reasonable correspondences, or mappings,
between the elements of two similar diagrams. We believe
that this is useful since missing information about an
element in the problem diagram may be inferred from the
information known about its corresponding element in a
similar case. The desired output of the system is the
problem diagram annotated with labels identifying the
types of the player elements and the discovered structures
and relationships; the mappings are included as
justifications for the inferences made and to indicate which
groups in the problem diagram are inferred to share roles
with which groups in the case diagram. In other words, the
system’s goal is to flesh out the diagram.



Approach

High Level Description

We are taking a CBR approach to DR. We see this as an
interesting extension of the CBR paradigm, where cases
and problem situations are represented diagrammatically,
and as a natural approach to the tough DR problem. The
basic goal of this work is to develop a general approach for
automated diagram understanding. By ‘general’ we do not
mean to preclude the need for domain knowledge,
especially since we are using CBR, but instead that the
approach itself is not wedded to a particular domain.

In any CBR system, cases are used to encapsulate
specific information. This information may be specific in
terms of a given domain, such as recipes in CHEF
(Hammond, 1986) or in terms of more abstract goals, such
as case adaptation in DIAL (Leake et al., 1997). The
utilization of specific knowledge (experiences in human
terms) is a strength of CBR. In a real sense, the ability to
reason from cases means that a system’s domain
knowledge requirement is simplified; the system does not
need knowledge of first principles which are at best
difficult to apprehend and at worst lacking consensus. The
other advantage of CBR is that it is naturally a machine
learning paradigm; new cases are acquired and reasoning
(hopefully) improves as the likelihood of having cases that
more closely resemble the problem diagram increases.

Understanding the problem diagram involves finding a
consistent set of reasonable structures. (We will use
‘structures’ as a generic term to refer to descriptions,
relationships, and mappings: basically any type of
additional information the system attaches to play
diagrams.) Consistent simply means that their are no two
contradictory structures. For example, an element cannot
have two player type descriptions attached to it, or an
element in the problem diagram cannot be mapped to more
than one element in a particular case. Reasonable is more
difficult. For our approach, reasonableness is a measure of
the quality of the mappings between structures in the
problem diagram and structures in a case (i.e. how much
conceptual slippage is required to make a mapping fit). For
example, mapping a group of two WIDE-RECEIVER
elements to a group of two WIDE-RECEIVER elements is
better than mapping a group of two WIDE-RECEIVER
elements to a group of five LINEMAN elements.

Our system uses three types of knowledge: general
knowledge, general domain knowledge, and specific
domain experience. The first two are represented in the
system’s conceptual network which includes general
concepts (e.g. spatial relationships such as BEHIND and
NEXT-TO) and domain concepts (e.g. player types such as
QUARTERBACK and WIDE-RECEIVER). A network
representation is used to encode associations among
concepts. These associations enable the system to focus
more on structural similarity (structures involving related

concepts) and avoid the restricting specificity of superficial
similarity by allowing near concepts to map to one another.
Specific domain experience is represented as a collection of
cases in the case memory where cases are annotated
diagrams. The conceptual network and case memory are
discussed in more detail later.

An important aspect of the way our approach works is
that the various types of processing are interleaved. This
means that all types of structure building (describing
elements, identifying relations between them, and mapping
structures in the problem diagram to structures in the cases)
go on simultaneously. There are no separate phases. The
rationale behind this (mentioned in the problem statement)
is that it is impractical and (we believe) unnecessary to
completely describe a situation in order to make useful
inferences about it. Better to take a quick look, see what
types of things you find, look for more of the sorts of
things you are successful at finding, and use the cases to
help focus the attention on the problem diagram
extensionally (i.e. does the problem diagram have
something like this over in that area?). Another advantage

“of this approach is scaling: in domains with more concepts,

more complex relations, and complicated diagrams, finding
a complete consistent description of the problem diagram
would be inefficient. This interleaving of recognition
processes is an idea borrowed from Tabletop (French,
1995; Hofstadter, 1995) which is discussed briefly in the
section on related work.

This interleaving is accomplished by encoding each type
of recognition and structure building as a separate chunk,
or method, which is added to a code queue. These methods
may cause other methods to be added to the queue, either
because they were successful (in which case similar
methods would be added) or because they require some
preprocessing (in which case a different kind of method
would be added). These methods are chosen to run based
on priority, where priority is a function of dynamic factors,
most important of which are the activation levels of the
particular concepts involved. All recognition methods
involve concepts and when instances of concepts are
recognized in the problem diagram, the corresponding
nodes in the conceptual network receive some activation
which also spreads to neighboring nodes. Methods in the
code queue that recognize more activated concepts are
chosen over methods whose corresponding nodes are less
activated. To begin, the code queue is primed with several
methods reflecting domain predispositions. .

The system first applies general domain knowledge to
the problem diagram in order to begin building descriptions
of the elements of the diagram. This involves recognizing
elements in terms of the concepts they represent and
recognizing relationships between elements or other
structures. The problem diagram is annotated with the
structures as they are recognized and the concept nodes in
the conceptual network representing the types of structures
that have been recognized are activated. This activation has
two effects: the system tries to recognize more of the
activated types of structures (by giving priority to related



methods in the code queue), and cases containing instances
of the same (or similar) structures are activated.

This phase of the process does not actually finish since
there may be any number of possible structures, few of
which would actually be correct and or useful. Instead, the
system begins to consider cases that share similarity with
the problem diagram in terms of the descriptions and
structures as soon as any similarities are identified. The
system tries to recognize correspondences between cases
and the problem diagram. A correspondence is a structure
that indicates a mapping between elements or structures.
Each case that is considered will have its own set of
correspondences with the problem diagram and for each
case, there will be a maximal consistent set of
correspondences where maximal is in terms of the quality
of the mappings and the extent of the structures involved.

Recognizing new elements of the problem diagram
brings new cases to the foreground and causes new
structures to be built. Forming correspondences causes the
system to look for other elements or structures in order to
form similar correspondences.

Cases are ranked on the basis of their maximal consistent
sets of correspondences with the problem diagram. These
sets change as new structures and correspondences are
formed which means cases come in and out of favor. At
some point, the system becomes more stable; fewer new
structures are found and the ranking of the cases remains
the same. When this stability reaches some threshold, the
system stops. The ‘answer’ is the current description of the
problem diagram and its correspondences with the highest
rated case. )

The Conceptual Network

The conceptual network consists of nodes which represent
the ‘center’ of particular concepts connected to one another
via directional links which represent the relationships
between concepts. There are two main types of links: the
ISA and HAS-MEMBER links which represent hierarchical
class relationships, and LABELED links which represent
relationships described by other concepts in the conceptual
network. For example, the TIGHT -END node representing a
specific class of player is connected to the ELIGIBLE-
RECEIVER node representing a more general class of
player by an ISA link, and there is a HAS-MEMBER link
connecting the ELIGIBLE-RECEIVER node to the TIGHT-
END node; the nodes for the concepts ON-LEFT and ON-
RIGHT are connected by a LABELED link where the label is
the OPPOSITE node. In this way, a particular concept is
represented by the node for that concept and to a lesser
extent its neighboring nodes.

The conceptual network serves multiple purposes. The
first purpose it serves is providing the methods for
recognizing structures in the problem diagram. Each
concept node contains a method or methods for recognizing
an instance of the concept it represents. These methods
may be entirely self contained or may involve the
recognition methods of other concepts. The recognition
methods for general knowledge concepts are often self

contained. For example, the spatial relation concept NEXT-
TO has a method for recognizing if two elements are
adjacent. Domain knowledge concepts always involve
other concepts. For example, recognizing the
QUARTERBACK requires recognizing the player element
BEHIND the CENTER, where BEHIND and CENTER are
concept nodes with their own recognition methods
(BEHIND is a spatial relation and CENTER is a player type)
. If the system tries to identify the QUARTERBACK, it
scans the descriptions of the player objects to see if the
CENTER has been identified, meaning that a player element
description has been augmented by the system identifying
it as the CENTER. If the CENTER has been recognized, then
the method for recognizing the BEHIND relationship is used
to identify the QUARTERBACK. If the CENTER has not
been identified, then the method for recognizing it is added
to the code queue along with another copy of the method
for recognizing the QUARTERBACK. This is one way that
concepts make use of other concepts.

Given a network sort of representation, with related
concepts as neighbors, we find a spreading activation
approach can be used for a number of purposes. As
mentioned in the high level description, nodes are activated
by successful recognition methods. The links between
nodes provide a measure of the conceptual distance
between concepts, the shorter the distance the more similar
the concepts. Activation ‘flows’ along these links so that
near nodes receive some fraction of the activation level of
the source node. The amount of activation that spreads is a
function of the distance between the nodes. For example, if
a GROUP structure of THREE elements is recognized, some
activation is added to the GROUP concept and THREE
concept nodes, and this activation will spread to the TWO
and FOUR concept nodes, and so on. Activation levels are
an indication of the importance of specific concepts in the
problem diagram in terms of what has been discovered up
to that point. When the activation level of a node rises
above some threshold, a recognition method for that
concept is added to the code queue. In this way the
spreading activation causes recognition methods similar to
successful recognition methods to be added to the code
queue. Since we are interested in similar things and not just
specific things, spreading activation is used so that similar
concepts are included.

The next purpose the conceptual network serves is that
of a kind of index into case memory. This also takes
advantage of the spreading activation. Each concept node is
connected to occurrences of itself in the individual cases in
case memory. Activating concept nodes results in
activating cases. The activation level of a particular
concept node is in a sense an indication of the relevancy of
that concept to the problem diagram. Cases that involve
activated concepts are relevant to the problem diagram.

The conceptual network also provides a basis for
mapping similar concepts onto one another. When looking
for similar cases or forming correspondences between
situations, we do not want to restrict the indexing or
mapping to exact matches; this would put too much



emphasis on superficial similarity. Instead, we would like
to allow for slippage, allowing a particular concept to
‘remind’ the system of similar concepts and similar
concepts to map to each other. Of course, everything else
being equal, it seems logical to prefer correspondences
involving more similar concepts over less similar concepts.
The conceptual distance between concepts provides a
mechanism for preferring correspondences between closer
matches.

Case Memory

Case memory consists of a number of situations from the
problem domain. A case includes a diagram (location and
orientation of each player element) and whatever additional
structures the system may have formed or discovered
during the same process of understanding that the problem
diagram is subjected to. These descriptions are not assumed
to be complete because the system does not attempt to
discover all possible information or form all possible
structures when analyzing a situation. Figure 3 shows a
sample case diagram of a passing play. The player elements
are annotated with labels for the types of players they
represent (football is a game of specialization). For
example, the element that represents the QUARTERBACK
is annotated with the label QB. These labels come from the
corresponding concepts in the conceptual network. There
are also 4 group structures shown in the case diagram.
These are the rectangles marked G1-G4. The primary
receiver for this particular play is the SPLIT-END (the
element marked SE) and this is indicated by the bold circle.
There would be other structures as well, such as the spatial
relationships between the groups and between some
elements as well as additional information describing group
compositions. These are omitted from the figure for
simplicity.

1

C)
C?@@

G3

©®

Figure 3: An annotated case diagram.

In considering a case, the system opens a window
showing the problem diagram (upper half of the window)
and the particular case (lower half of the window). The
system chooses structures in the case and adds recognition
methods for that type of structure to the code queue. These
methods may include an argument for a specific area of the
problem diagram. For example, if there is a GROUP
structure in the lower right of the case (e.g. G4 in Figure 3),
the system may add a method to the code queue for
recognizing a group in the lower right of the problem
diagram. The system maps elements and structures it finds

10

in the problem diagram to elements and structures in the
case. The same element or structure cannot participate in
more than one correspondence, but for any element or
structure, there may be several reasonable mappings, so
there must be a means for preferring one correspondence
over another. The quality of correspondences are evaluated
according to certain predispositions (e.g. preferring to map
groups similar in number and element composition). These
mappings work with the conceptual network as a focusing
mechanism for the system. The system looks for instances
of highly activated concepts and structures involving
highly activated relational concepts in the problem
diagram. Concept nodes receive additional activation when
their concepts participate in correspondences between cases
and the problem diagram, so attention on the problem
diagram is in a sense directed by its relations to cases.

Cases are scored in order to make a determination as to
which cases are most relevant to the problem diagram. The
score of a case is a function of the activation levels of the
concepts in the case. Activated concepts that participate in
structures within a case (as opposed to concepts that occur
in isolation) are weighted in order to reflect the system’s
preference for structural similarity versus superficial
similarity.

A Sample Problem

Given a problem situation described by the diagram in
Figure 2, the system first attempts to recognize what
concepts are represented by the elements of the diagram.
The rules of the game of football and certain
standardizations regarding the way the game is played are
used to identify the classes of players represented by the
circles in the problem diagram by recognizing certain
spatial relationships between the elements in the diagram.
For example, recognizing which circle represents the
QUARTERBACK involves identifying which circle stands
in the relation BEHIND to the circle representing the
CENTER, which in turn is recognized by identifying which
circle stands in the relation BEHIND to the element
representing the BALL which is recognized by its unique
shape, location, etc. in the diagram. As the system
recognizes elements, it builds descriptions of them using
concepts from the conceptual network. This in turn
activates the corresponding concept nodes in the network
which has the effect of activating cases in case memory
containing occurrences of the activated concepts. The
spreading activation in the conceptual network means that
cases containing similar concepts will also be activated.

At the same time, the system identifies higher level
structures in the problem diagram. These structures consist
of groups of elements and relationships between elements
and other structures. The system may try a number of
different structures, some of which may be inconsistent
with one another. For example, in forming groups, the
system is predisposed to favor groups containing similar
elements (i.e. elements sharing a superclass) and groups
containing neighboring elements. Since elements are not



allowed to be in more than one group (unless one group is a
proper subset of the other), including one grouping in the
description of the problem diagram may prevent the
inclusion of another. The system tries to find a consistent
set of structures, favoring the set that has the most structure
involving the concepts with the most activation.

As the system proceeds with building a description of
the problem diagram, it begins to consider cases, preferring
cases with similar structures found in the problem diagram.
Considering cases means finding correspondences between
structures or elements in the case and the problem diagram.
These processes are interleaved. This means that in
considering a certain case, if a number of good
correspondences have been identified but some structure in
the case has no corresponding structure in the problem
diagram, the system will look for such a structure. The idea
is to avoid trying to completely describing the problem
diagram and instead let partial mappings with similar cases
indicate what to look for.

Figures 4 and 5 are possible results of the system,
showing correspondences between the problem diagram
(the upper half of each figure) and two cases. For each of
the two cases, other correspondences are possible but these
may be preferred by the system for a variety of reasons. For
example, in Figure 4 the correspondences marked M4 and
MS5 suggest a degree of diagonal symmetry between the
diagrams. The system prefers this mapping over the mirror
symmetry mapping (G1 to G3 and G4 to G4) because the
correspondences as shown involve more similar groups in
terms of the number of elements.

Gl N
@ % G3 G4
PPRLOGL®
\\ J M4
1 Mz\m
B Za BN
{ \ 4 G4

: IS
® ®

Figure 4: Correspondences between a case and the problem
diagram.

As mentioned, building descriptions and structures in the
problem diagram is interleaved with forming
correspondences with similar cases. The correspondences
help focus the system’s attention by suggesting where to
look and what to look for in the problem diagram. For
example, if the grouping G1 in the problem diagram in

11

Figure 4 had not been recognized (and therefore
correspondence M5 had not been found), the existence of
the unmapped group G4 in the case prompts the system to
look for a group of two elements of type SLOT-BACK and
WIDE-RECEIVER. Similarly, the correspondence marked
M4 prompts the system to look for such a group on the
opposite side of the formation by activating the
DIAGONAL-SYMMETRY concept which is a particular type
of mapping. The group G1 is then formed since it has the
right number of elements, the types share a superclass with
the elements of group G4 in the case, and it is where it
should be. The correspondence M5 can then be recognized.

The system considers multiple cases simultaneously,
concentrating on the most promising cases. Rating a case
involves scoring the structures within the case and its
correspondences with the problem diagram. Structures
involving more concepts with more activation are scored
higher than structures with fewer concepts having less
activation, and correspondences involving structures with
higher scores are scored higher than correspondences
involving structures with lower scores or correspondences
between isolated elements. Also, concepts participating in
structures and correspondences receive additional
activation. This helps bias the system toward structural
similarity as opposed to superficial similarity.

2

G

@ {0B) G3 G4
CERLEG @
o [
i 9l M5
¥V 2

2]
>

Y o8B S 4
@@@@@@@@

Figure 5: Correspondences between another case and the
: problem diagram.

The mapping in Figure 4 scores higher than the one in
Figure 5. All the groups mapped to each other in Figure 4
have the same number and type of elements. Also there are
five elements in the problem diagram that are recognized as
representing concepts that are subclasses of the ELIGIBLE-
RECEIVER concept. Thus the node for this concept is
highly activated which contributes to the high score for the
case in Figure 4 since it contains five instances of concepts
with ISA relationships to ELIGIBLE-RECEIVER.

Eventually the system begins to stabilize. This means



that fewer new descriptions, relationships, and
correspondences are found, the maximal consistent set of
descriptions in the problem diagram remains the same, and
the ordering of the cases remains the same. When this
stabilization reaches some threshold (or activity falls below
some threshold) the system is done. The ‘answer’ is the
annotated diagram of the problem diagram and the
correspondences with the highest rated case. The
descriptions for the problem diagram may include
inferences drawn from its correspondences with the best
case. For example, the case in Figure 4 may include a
description of the play as a PASS-PLAY (versus a
RUNNING-PLAY) so the problem diagram would likewise
be inferred to represent a PASS-PLAY. Similarly, the
element in the case in Figure 4 marked SE (SPLIT-END)

may include in its description the designation PRIMARY - -

RECEIVER, meaning the QUARTERBACK will look to
throw the pass first to him, so the element in the problem
diagram mapping to the SPLIT-END (also marked SE) is
inferred to be the PRIMARY-RECEIVER in the problem
diagram.

Related Work

Tabletop

Tabletop is a system developed by French (French, 1995)
that models analogical reasoning. It is presented with a
source and a target and attempts to identify analogous
structures between them. Tabletop’s problem is a table set
(sometimes haphazardly) for two; an object on one side of
the table is ‘touched’ and Tabletop must decide what the
analogous object on the other side of the table would be. It
is included here mainly because we borrowed some
important aspects of it for our approach, namely using a
conceptual network to model associations and focus system
resources on activated concepts, and the idea of
interleaving building representations and forming
correspondences. It is also included here because, although
it is not purported to be a diagrammatic reasoning system,
it could easily be one, and it is a motivation for our work.
We originally thought of our work as an attempt to use
CBR to do the sort of high-level perception that Tabletop
does, but it soon became obvious that what we were doing
was DR. Tabletop’s knowledge is represented in its
conceptual network or ‘slipnet’ and it makes no use of a
case memory.

Case-Based Reasoning with Diagrams

POLYA (McDougal & Hammond, 1995) is a CBR system
that constructs proofs for high school geometry problems.
The diagram of the problem POLYA is to solve is used to
provide features which are used as indices to plans in case
memory. POLYA interleaves the execution of two types of
plans: plans that extract more features from the diagram
(search plans) and plans that actually write the proof. This
is a very interesting piece of work and shares a lot of

12

similarities with our approach, especially the idea that
features discovered in the problem diagram are used to
prompt the activation of methods to look for certain other
features, instead of trying to describe the diagram
completely. An important difference is that the search plans
are not diagrams. They are methods for finding more
features based on the features that have already been
identified. Using actual diagrams similar to the problem
diagrams to guide processing may make our approach
better suited to weak theory domains and it may be more
general. But another important difference is that POLYA is
working, so we will have to wait to see if these claims are
valid.

Anderson (Anderson & McCartney, 1996) describes an
efficient use of stored diagrams applicable to a number of
domains. A syntax and semantics of inter-diagrammatic
reasoning is developed along with operators that allow
retrieval of cases using diagrammatic matching. Our
approach is different in that retrieval is based on similarity
of concepts and structures identified in the diagrams (i.e.
what the diagrams represent) as opposed to similarity of
planar tessellations.

COACH

COACH (Collins, 1989) is a CBR system that works in the
football domain. The emphasis of the work is plan creation.
COACH generates new plays by recognizing the bug in a
failed play and applying abstract strategies for modifying
plans which are indexed by generalized descriptions of plan
failures. Cases in COACH are primarily a starting point;
planning from scratch is expensive and difficult in weak-
theory domains. The differences between COACH and our
approach are the system goals (planning versus
recognition) and COACH does not use diagrams.

Future Work

We are in the process of implementing a system using the
approach described in this paper that applies this approach
to limited aspects of the football domain. We have
implemented small test versions of the main components of
the system but have not yet put the pieces together. The
conceptual network consists of a player type hierarchy and
several relational concepts. A handful of the recognition
methods are implemented and limited annotating of the
problem diagram works. The case memory consists of only
a few test cases with relatively little similarity between
them.

We expect that there are a number of problems that will
have to be addressed if our approach is to work. First is
how to choose initially which cases to apply to the problem
diagram. The problem here is that all football play
diagrams share substantial superficial similarity, and the
main reason behind using cases for recognition was to
avoid the difficulty of trying to analyze the deeper structure
of the problem diagram without the focus cases provide.



This problem will be exacerbated with a large case base.
One approach is to use abstractions of the top level
structures in the cases and retrieve cases based on what
types of similar structures are found in the problem
diagram. Another approach might be that it may not matter
that much which cases are initially applied if cases are
indexed by the specific structures they contain. For
example, a group may be found in response to some case
be activated; as the internal description of that group is
fleshed out, a case or cases with a similarly described
group may be activated.

It will still be difficult to determine exactly how to prefer
certain cases over others. There are competing factors such
as the number of structures mapped, the quality of the
individual mappings, and inter-structure relationships (e.g.
symmetry). How we do this will depend on actual results,
giving us a better idea of which set of metrics are useful
and how they should be weighted.

Another difficulty is knowing when to stop looking.
How do you know when the best set of correspondences
you have at some point is as good as it is going to get, or
that further recognizing and mapping will not yield any
significant improvements. One way to handle this may be
to think of the approach as an anytime algorithm and the
answer is the case-to-problem diagram mappings in order
of ranking. This of course is inadequate if the goal is
something specific like ‘identify the primary receiver’
since the primary receiver elements in the various cases
being considered may yet to mapped to any element in the
problem diagram. The approach we have in mind is to have
the system to quit when activity falls below some threshold
(e.g. when the frequency of finding new structures drops
off) and the rankings have stabilized. When we get some
results we will be able to judge how effective this approach
is.

There is also the problem of context. Each case that is
considered will involve different concepts or similar
concepts to different degrees. For example, considering one
case may prompt activation of the DIAGONAL-
SYMMETRY concept while another may prompt activation
of the MIRROR-SYMMETRY concept. We would like to be
able to switch contexts without any adverse influence. One
approach might be for each case to have its own private
concept activation levels. However, it seems that it would
still be desirable to be able to have cases respond in some
degree to global activation levels so that successes may be
repeated. This is a very interesting problem. Note for
example that this context switching can occur with a single
case: the elements of a group in the problem diagram may
map diagonally to the elements of the corresponding group
in the case, while the rest of the diagram maps straight on.

An interesting extension to our work would be to
consider the dynamic aspects represented in the case
diagrams. Since real play diagrams (e.g. Figure 1) represent
plans and imply movement of the elements, it would be
interesting to consider this movement in matching cases to
the problem diagram. For example, differences in the
alignment of the players may mean that the route

13

assignment of a player in the case does not transfer well to
its corresponding player in the problem diagram, which
may mean that the rating of that correspondence should
suffer.

The evaluation of the effectiveness of our approach will
require that we also test other domains. One interesting
extension that would broaden the range of applicable
domains would be to consider sequences of diagrams
representing movement as the problem situation. Cases
would also be sequences where each case represents an
episode. The problem would be to use the cases to predict
subsequent diagrams in the problem sequence and modify
predictions dynamically.

Conclusions

This paper describes an approach to diagrammatic
reasoning that uses high level perception to recognize
concepts and relationships in diagrams and make
inferences by recognizing correspondences with similar
diagrams. This work is largely unimplemented at present.
Evaluation of the effectiveness of our approach will follow
an analysis of the performance of the working system. An
assessment of its utility will require application of our
approach to a variety of domains.

References

Anderson, M. & McCartney, R. (1996). Diagrammatic
Reasoning and Cases. 13th National Conference on
Artificial Intelligence, August, 1996, Portland, Oregon.
AAAL

Anderson, M. & McCartney, R. (1995). Inter-
Diagrammatic Reasoning. 14th International Joint
Conference on Artificial Intelligence, August, 1995,
Montreal, Canada. Morgan Kaufmann Publishers, Inc.
878-884.

A. F. C Association. (1995). Football Coaching Strategies,
Human Kinetics. Champaign, Illinois

Chandrasekaran, B., Glasgow, J. & Narayanan, N. H. eds.
(1995). Diagrammatic Reasoning: Cognitive and
Computational Perspectives, AAAI Press. Menlo Park,
California.

Chandrasekaran, B., Narayanan, N. H. & Iwasaki, Y.
(1993). Reasoning With Diagrammatic Representations—
A Report on the Spring Symposium. In Al Magazine, Vol.
14, pp. 49-56.

Collins, G. C. (1989). Plan Creation. In Inside Case-Based
Reasoning, eds. C. K. Riesbeck & R. C. Schank, Lawrence
Erlbaum Associates, Publishers. Hillsdale, N.J., pp. 249-
290.



Dreayer, B. (1994). Teach Me Sports—Football. General
Publishing Group, Inc., Santa Monica, California.

Estes, W. K. (1994). Classification and Cognition. Oxford
University Press, New York, New York.

French, R. M. (1995). The Subtlety of Sameness—A Theory
and Computer Model of Analogy-Making. MIT Press,
Cambridge, Massachusetts.

Gentner, D. & Stevens, A. L. eds. (1983). Mental Models.
Lawrence Erlbaum Associates, Inc. Hillsdale, New Jersey.

Goel, V. (1996). Sketches of Thought. MIT Press,
Cambridge, Massachusetts.

Hammond, K. J. (1986). CHEF: A Model of Case-Based
Planning. Proceedings of AAAI-86. AAAI Press/MIT
Press.

Hawkes, D. D. (1995). Football’s Best Offensive Playbook,
Human Kinetics. Champaign, Illinois.

Hofstadter, D. (1995). Fluid Concepts & Creative
Analogies—Computer Models of the Fundamental
Mechanisms of Thought. BasicBooks, New York, New
York.

Kolodner, J. (1993). Case-Based Reasoning. Morgan
Kaufmann Publishers, Inc., San Mateo, California.

Kolodner, J. L. (1984). Retrieval and Organizational
Strategies in Conceptual Memory: A Computer Model.
Lawrence Erlbaum Associates, Limited, Hillsdale, New
Jersey.

Kolodner, J. L. & Riesbeck, C. K. eds. (1986). Experience,
Memory, and Reasoning. Lawrence Erlbaum Associates,
Limited. Hillsdale, New Jersey.

Leake, D. B., Kinley, A. & Wilson, D. (1997). Case-Based
Similarity Assessment: Estimating Adaptability from
Experience. Proceedings of the Fourteenth National
Conference on Artificial Intelligence, July 1997,
Providence, R.I. AAAI Press/MIT Press. 674—679.

Lockhead, G. R. (1992). On Identifying Things: A Case for
Context. In Percepts, Concepts and Categories: The
Representation and Processing of Information, ed. B.
Burns, Elsevier Science Publishers B. V. Amsterdam, The
Netherlands, pp. 381-410.

McCartney, R. (1993). Episodic Cases and Real-time
Performance in a Case-Based Planning System. Expert
Systems with Applications, 6, pp. 9-22.

McDougal, T. F. & Hammond, K. J. (1995). Using
Diagrammatic Features to Index Plans for Geometry

Theorem-Proving. In Diagrammatic Reasoning: Cognitive
and Computational Perspectives, eds. B. Chandrasekaran,
J. Glasgow & N. H. Narayanan, AAAI Press. Menlo Park,
California, pp. 691-709.

Millikan, R. G. (1984). Language, Thought, and Other
Biological Catégories. MIT Press, Cambridge,

 Massachusetts.

14

Mitchell, M. (1993). Analogy-Making as Perception: A
Computer Model. MIT Press, Cambridge, Massachusetts.

Nahinsky, 1. D. (1992). Episodic Components of Concept
Learning and Representation. In Percepts, Concepts and
Categories: The Representation and Processing of

Information, ed. B. Burns, Elsevier Science Publishers B.
V. Amsterdam, The Netherlands, pp. 381-410.

Novick, L. R. (1988). Analogical transfer: Processes and
Individual Differences. In Analogical Reasoning:
Perspectives of Artificial Intelligence, Cognitive Science,
and Philosophy, ed. D. H. Helman, Kluwer Academic
Publishers. Dordrecht, The Netherlands, pp. 125-145.





