From: AAAI Technical Report FS-97-03. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Diagrammatic transformation processes on relational maps

Christoph Schlieder

University of Freiburg, Institute of Computer Science and Social Research,
Center for Cognitive Science, Friedrichstrasse 50, 79098 Freiburg, Germany
E-mail: cs@cognition.iig.uni-freiburg.de

Abstract

Psychological evidence indicates that human rea-

soners solve spatial relational inferences by con-
structing and inspecting mental models in visuo-
spatial working memory. From a computational
point of view, this reasoning strategy seems to
combine relational representations comparable to
those described in the Al literature on qualitative
spatial reasoning with the type of local spatial
transformations that are characteristic of diagram-
matic reasoning. However, applying local transfor-
mations to arbitrary relational representations
involves solving the computationally intractable
subgraph isomorphism problem. This paper
describes a class of representations, relational
maps, for which the problem becomes tractable
and, as a consequence, for which diagrammatic
inference is implementable by efficient local trans-
formations.

1 Introduction

Two rather different Al research approaches on dia-
grammatic reasoning can be taken. For the purpose of
discussion, we call them the inferentialist and the com-
putationalist perspective. The primary interest of the
inferentialists consists in giving an adequate logical
description of the use of diagrammatic representations
in valid reasoning. Barwise and Etchemendy (1990),
the originators of this line of research, stress that
“visual forms of representation can be important, not
just as heuristics and pedagogical tools, but as legiti-
mate elements of mathematical proofs.” Inferentialists
look for a notion of valid inference which is not tied toa
specific (sentential) representational format. However,
they are typically not concemed with finding valid
inferences, i.e., with automating theorem proving in a
hybrid reasoning system. In contrast, the computation-
alist approach focuses on the procedural aspects of dia-
grammatic inference. For computationalists, valid
inference is not the only concern, since they consider
the heuristic use of diagrams valuable. As a conse-
quence, the issues of representational format and com-
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putational costs become important. An example for an
analysis from this perspective is the seminal work of
Larkin and Simon (1987).

This paper adopts the computationalist point of
view to describe diagrammatic transformation pro-
cesses on relational maps — a class of representations
yet to be defined. There are two reasons why this per-
spective is more adequate for the task at hand. First, the
paper explores an algorithmic idea that originated from
our empirical investigations in the psychology of rea-
soning. As described in section 2, which summarizes
the relevant findings, procedural aspects (premise order
effects) were found to have an important influence on
the reasoning result, whereas there is no evidence that
human reasoners are committed to valid inference (veri-
fication bias). Second, the objective of this paper is to
provide a generic and efficient computational frame-
work to implement diagrammatic transformations.
While the aspect of generality could have been handled
within the inferentialist approach, efficiency is an issue
only the computationalist approach deals with. Section
3 shows how to generalize the notion of local operator
on a digital image to arbitrary relational data structures.
However, applying the resulting abstract diagrammatic
operators involves solving the computationally intracta-
ble subgraph isomorphism problem (section 4). A solu-
tion is provided by defining a sufficiently general class
of representations, namely relational maps, for which
efficient diagrammatic transformations exist.

2 The cognitive approach to spatial
relational infernece

Spatial relational inference has been studied by cog-
nitive psychologists for almost twenty years now. A
typical spatial reasoning task is the three-term series
which consists of two premises, X r; Yand Y r, Z, and a
conclusion X r3 Z (X, ¥, Z denote spatial objects, ry, 7o,
r3 denote binary spatial relations; the conclusion has to
be generated or verified). The rich body of empirical
evidence currently available asks for a unifying explan-
atory framework. The theory of mental model reasoning
proposed by Johnson-Laird and Byme (1991) has
proven to be very successful in this respect.
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Fig. 1: Variation of mental models during spatial relational inference

Reasoning with mental models

Underlying the mental model account of inference
is the general assumption of premise integration. Men-
tal model theory assumes that the information conveyed
by the premises of a reasoning task is integrated into a
unified representation in working memory, the mental
model. Formally, mental models play a role in reason-
ing that is comparable to models in logic: they represent
structures in which the premises are valid (under an
appropriate interpretation). According to Johnson-Laird
and Byme (1991) spatial relational inference is a three
stage process consisting of a model construction phase
which integrates the premises into a model, a model
inspection phase which produces a conclusion valid in
that model, and, finally, an optional search for alterna-
tive models (model variation). Fig. 1 illustrates this pro-
cess for a simple inference about a linear ordering. Two
mental models are constructed before it is found that the
premises do not entail the conclusion. Unfortunately,
there is very little empirical evidence about model vari-
ation. It remains a major research topic to find how
many and which models reasoners construct.

Evidence for model preference

Experiments with reasoning tasks constructed from
the system of interval relations introduced by Allen
(1983) produced two essential findings (Knauff, Rauh
& Schlieder, 1995; Rauh & Schlieder, in print). First,
the existence of preferred mental models, and second,
the presence of order effects. We will discuss model
preference using the task illustrated in Fig. 2. Subjects
are asked to generate a conclusion which is consistent
with the premises. For this specific task there are three
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correct answers, each corresponding to a different
model. From a logical point of view, none of the models
of an Allen three-term series is more preferable than the
others. However, it was found that subjects agree con-
siderably in their choice of a model, which we therefore
call preferred model.

We can learn about model construction by looking
at the general dependency between three-term series
tasks due to symmetry. The relevant group of symmetry
transformations is generated by two transformations,
reorientation and transposition. It turns out that the
number of violations of transposition symmetry is much
higher than the number of violations of reorientation
symmetry. This is called the order effect since violation
of transposition symmetry means that the result of pro-
cessing a premise depends upon which other premise
has previously been processed.

A overlaps B from the left
B overlaps C from the left
How could A lie with respect to C?

T

A touches C
from the left

A lies to the
left of C

A overlaps C
from the left

Fig. 2: Mental models of the premises of an
Allen three-term series

A computer simulation has been described by
Schlieder (1996) that accounts for both, model prefer-
ence and order effect. Although the computer simula-
tion represents the mental model by a relational data



structure rather than by a digital image, it behaves dia-
grammatically in several respects. The interval relations
are represented implicitly in terms of the linear ordering
of the interval’s startpoint and endpoint, which means
that the mental model has to be inspected to retrieve the
relations. It is possible to implement both model con-
struction and model inspection by means of local com-
putation steps (shifts of a spatial focus). The same
would hold for the transformation that generate alterna-
tive models during the model variation phase if empiri-
cal evidence indicated that those transformations are
restricted to neighboring elements in the point ordering.
Schlieder (1996) introduced the term abstract imagery
form this type of spatially local processing of relational
representations.

3 Implicit representation of spatial
relations

We will now study abstract imagery, i.c., diagram-
matic reasoning with relational representations, from an
algorithmic perspective. It turns out that outside the
one-dimensional world of interval relations, the local
transformations used in diagrammatic inferences are
computationally very expensive. Finding a way to
resolve this complexity issue is a prerequisite to apply-
ing abstract imagery to engineering problems. However,
it does not imply that the solution also reflects cognitive
processes involved in spatial relational inference. Note
that our primary objective is to use an intuition about
cognition to provide a generic and efficient computa-
tional framework for abstract imagery. cognitive ade-
quacy is not claimed (nor is it denied).

Relational description

A syntactically simple type of relational description,
which is nevertheless sufficiently expressive for many
applications of qualitative spatial reasoning (QSR), rep-
resents the position of points in the plane by means of
binary spatial relations. We restrict our analysis to this
type of description. Two kinds of symbols are needed to
formulate a description, point symbols py, ... , p, and
binary relations symbols ry, ... , r,. Using infix notation
we write a relational expression as p; r; pi- A relational
description is simply a finite set of relational expres-
sions.

Many examples of binary spatial relations between
points can be found in the QSR literature. Probably the
most common among the relations encoding ordinal
information are the cardinal directions (e.g. p; north-of
Pi» see Frank, 1991, and others). Their geometrical
meaning is determined by two lines through p; delimit-
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ing a sector within which p; has to lie such that the rela-
tion holds. An example for relations encoding metrical
information is the system of qualitative distances (e.g.
p; close-to p;) described by Hermndndez, Clementini, and
Di Felice (1995). It uses concentric circles around p; to
delimit the region where p, must be located for a certain
qualitative distance relation.

The examples illustrate a standard way of specifying
the geometrical meaning of spatial relations that is
adopted by many QSR approaches. Rather than axioma-
tizing the relations, one describes their interpretation in
some intended structure. In the examples, the intended
structures are arbitrary configurations of points in the
Euclidean plane. Sometimes it is useful to consider
more restricted point sets, e.g., only points on a triangu-
lar, rectangular, or hexagonal grid. Even more complex
structures may be needed. To define a relation such as p;
visible-from p, some additional point sets are distin-
guished in the plane and serve as opaque obstacles.
Similarly complex structures are needed to interpret the
incidence relations which we will use as our running
example. Intuitively, these relations describe the order
in which the points are incident with a line.

Let us consider a concrete case, relational descrip-
tions with point symbols p; ... , p14 and incidence rela-
tion symbols ry, ..., r4 (see Fig. 3). The structure for
interpreting these relational descriptions is constructed
as follows. Four lines [y, ..., I; are arranged in such a
manner that no three lines have a point in common. The
6 intersection points partition the lines into segments.
On each of the 8 unbounded segments an arbitrary point
is chosen. The resulting configuration of 14 points has 6
+ 8 = 14 points. Every configuration of 14 points that is
related to an armrangement of 4 lines in the way
described above is considered an intended structure.

A description is given an interpretation by specify-
ing a one-to-one mapping 3 of the point symbols onto
points of an intended structure. The relational expres-
sion p; r; py is true under the interpretation iff 3(p;) and
S(pp) are neighboring points on the line, such as D and
F on I;. Once intended structures are specified, a notion
of entailment restricted to these structures may be
defined. Although this way of proceeding is close to
how designers of relational representations think of
their semantics, it should be mentioned that the use of
intended structures makes an analysis of logical proper-
ties of relational descriptions rather difficult.

Diagrammatic inference procedures

A fundamental idea of diagrammatic reasoning con-
sists in using the topology of the spatial representation
(diagram) to guide the flow of control during the rea-
soning process and thus to avoid the combinatorial
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Fig. 3: Incidence relations induced by an arrangement of four lines

explosion from which classical inference procedures
suffer. This intuition is already present in Sloman
(1975) — one of the first papers published on the sub-
ject — where it is claimed that a spatial “indexing
scheme” provides “ways of controlling the order in
which assertions or inference steps are tried.” In the
meantime, different models of local computation have
been proposed to formalize this intuition, for example
the graphical search and replace operators of Fumas
(1991) and the activation spreading in depictions of
Habel (1987), Khekhar (1990) and Pribbenow (1992).
A common feature of all these diagrammatic inference
procedures is that in each computation step they process
only information from a spatial neighborhood (see
Fig. 4).

The diagrammatic transformations illustrated in
Fig. 4 are intended to simulate very simple physical
behavior: the movement of a set of objects falling from
and gliding along obstacles. Furnas (1991) showed that
such transformations of digital images can be imple-
mented by graphical search and replace operations.
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Computational costs are generally not an issue with
such transformations. Of course, there is the question of
whether the operator allows for parallel application; but
the step of applying the operator once, i.e., the graphical
search and replace process, does not constifute a com-
putationally hard problem. The search part dominates
the replace part. For a sequential operator (which is the
worst case) defined by a mask of size m and an image of
size n > m it takes a maximum of mxn = 8 (n?) pixel
comparisons to decide where the operator is applicable
in the image.

Local operators on relational descriptions

As a first step towards defining local transforma-
tions of relational descriptions, let us show how graphi-
cal search and replace operations on a digital image can
be interpreted as transformations of a specific type of
relational description. The positional information of the
pixels of the image in Fig. § is easily encoded by a sys-
tem of four relations ry, ...

, s, with the following

local operators t=0

Fig. 4: Local operators acting on a digital image (adapted from Furnas, 1992)



semantics: ry holds between 4-adjacent pixels of the fig-
ure (grey pixels); r4 holds between 4-adjacent pixels of
the background (white pixels); r, holds between a back-
ground pixel and a 4-adjacent figure pixel; r; holds
between a figure pixel and a 4-adjacent background
pixel.

ry e
- rp

o)

r4 —

Fig. 5: Relational description of a digital image

Note that any relational description can be seen as a
directed edge-colored graph (one color for each rela-
tion). Therefore, digital images correspond to a specific
class of 4-connected graphs. The graphical search and
replace operators which are specified by a left-hand side
image and a right-hand side image correspond to sub-
graph substitution rules.

4 Relational description and their local
transformations

The graph theoretical formulation of the diagram-
matic operators on digital images lends itself to general-
ization. On arbitrary relational descriptions one could
consider implementing local operators by subgraph
substitution rules. Whereas the graphical search
involved in the application of a local image operator can
be efficiently implemented by shifting the correspond-
ing left-hand side mask once over the image, the situa-
tion changes considerably if we consider operators on
arbitrary relational descriptions. No efficient algorithm
is known to exist for the search part, that is, for finding
a subgraph of the relational description which is iso-
morphic to the left-hand side of the substitution rule.
Furthermore, it is very improbable that an efficient

algorithm will be found since the subgraph isomor-

phism problem is known to be NP-complete (e.g. Garey
& Johnson, 1979).

Subgraph isomorphism for embedded graphs

Usually, computationally intractable problems are
approached either by approximating the solution or by
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modifying the problem slightly in order to obtain a trac-
table problem. We will follow the latter route. But first
we need to summarize some relevant algorithmic
results. The graph isomorphism problem (not to be con-
fused with the subgraph isomorphism problem) has so
far resisted all attempts to prove its NP-completeness.
Nevertheless, no polynomial algorithm has been found.
It is believed to belong to a class of problems of inter-
mediate complexity (Kébler, Schoning & Toran, 1993).
However, it has been known for a long time that the
graph isomorphism problem is solvable in polynomial
time for planar graphs (Hopcraft & Wong, 1974).

A graph is embedded into the plane by mapping
each of its vertices onto a point. Edges are mapped onto
straight line segments joining points which are images
of adjacent vertices. We call this a geometrical embed-
ding. A graph is planar iff it has a geometrical embed-
ding without crossing edges. Planarity is a purely
combinatorial property of a graph which can be deter-
mined very efficiently in time proportional to the num-
ber of vertices (different linear time planarity testing
algorithms are discussed in Nishiseki and Chiba, 1988)

Planar graphs possess more structure than general
graphs, a fact that can be exploited to devise efficient
algorithms. However, the subgraph isomorphism prob-
lem does not become tractable when restricted to planar
graphs — it is even NP-complete if the graph is a tree
and the subgraph a forest! An algorithmic intuition
related to planarity proves nevertheless valuable: many
of the efficient algorithms rely on the fact that an impor-
tant subclass, namely the triply connected planar
graphs, possess an unique combinatorial embedding in
the sphere. A combinatorial embedding of a graph is
specified by the circular ordering in which the edges
appear around vertices in a geometrical embedding. The
combinatorial embedding abstracts from the metrical
information contained in the geometrical embedding
retaining only ordinal information.

If graph and subgraph are given together with a
combinatorial embedding, then the subgraph isomor-
phism problem (relative to the embedding) becomes
tractable. Fig. 6 illustrates why this is the case. Note
that for both, the graph I" and the (sub)graph X, not only
the incidences between vertices and edges, but also the
counterclockwise ordering of the edges around the ver-
tices is known. The combinatorial embeddings put
strong constraints on the mapping of edges of X onto
edges of I'. If for example the edge xu of I is tentatively
mapped onto the edge HK of T, then each edge incident
with x has to be mapped onto the edge incident with H
that has the corresponding position in the circular edge
ordering: xy onto HI, xz onto HF, xr onto HG. The pro-
cess can be iterated yielding a mapping of all edges of ©
if a structure preserving mapping exists (see appendix).



Fig. 6: Using the combinatorial embedding to find a subgraph isomorphic to £ in I'

In other words, any mapping of a single edge of T onto
an edge of I can be extended to a complete mapping of
all edges without backtracking over edge assignments
— a simple implementation of this procedure by a
depth-first traversal of the subgraph is described in the
appendix. The NP-completeness of the subgraph iso-
morphism problem suggests that backtracking cannot
be avoided if £ and I' are arbitrary graphs.

Reasoning with relational maps

We are now in a position to define efficient diagram-
matic reasoning operators on a specific type of rela-
tional descriptions. A relational map is a relational
description together with a combinatorial embedding.
Subgraph substitution rules whose left-hand side and
right-hand side are specified by relational maps are
called diagrammatic map transformations. Looking for
examples of diagrammatic map transformations, we
first note that all graphical search and replace operators
on digital images satisfy the definition, because the grid
has a canonical combinatorial embedding in the plane.
An example for a diagrammatic map transformation of
a more relational character is found among the algorith-
mic paradigms studied in computational geometry: the
movement of a sweep line over an arrangement of lines
(see Fig. 7). Sweeping a simple (= no three lines have a
common point) arrangement of four lines can be imple-
mented by the diagrammatic map transformation
shown. The geometrical reason for this is that the sweep
line will always form a triangle with the two lines
whose intersection point it is going to pass next. At each
step of the process the relational map is searched for
subgraphs to which the map transformation is applica-
ble. Judging from the example, it seems that diagram-
matic map transformations are sufficiently expressive to
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describe quite complex geometrical operations. Since
they encompass local operators on digital images, we
may consider them interesting candidates form formu-
lating diagrammatic inferences.

Appendix: Extending a vertex mapping

L and I" are relatinal maps, ey is an edge of £ and e-
an edge of I'. The procedure match extends a given ver-
tex mapping / from the vertices of I to the vertices of "
in such a way that the induced edge mapping maps ey
onto er. Initially, the procedure is called with empty 1.
For convenience, directed edges are used in the descrip-
tion of the procedure. A directed edge e is incident with
two vertices, origin(e) and destination(e). Redirecting
the edge e, ie., exchanging origin and destination,
yields the edge converse(e).

Before the procedure starts, the statuts of all vertices
and edges of I is unvisited. The procedure returns a par-
tial mapping of the vertices of £ onto the vertices of I".
If this vertex mapping is not complete (i.e. not defined
for all vertices of I) then no isomorphism mapping ey
onto er- exists. Otherwise, the the isomorphism is spec-
ified by the vertex mapping returned.

match(e:, er, 1)

vy = destination(ey);
vr := destination(er);

Distinguish three cases according to the status
of vy and the status of converse(ey):



vy unvisited:
ey’ = successor(eg,vy);
er’ := successor(er,vr)
add (vg,vp) to the vertex mapping I;

vy visited and converse(ey) unvisited:
ey’ := converse(ey);
er’ := converse(ep);

vg visited and converse(ey) visited:
if successor(eg,vs) visited
then return vertex mapping /,
ey’ = successor(eg,vs);
er’ := successor(er,vp)

mark ey and, if necessary vy as visited;
return match(ey’, er’, )
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