From: AAAI Technical Report FS-97-03. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Interpreting the Engineer’s Sketch:
A Picture is Worth a Thousand Constraints

Thomas F. Stahovich*
CMU Mechanical Engineering Department
415 Scaife Hall
Pittsburgh, PA 15213
stahov@andrew.cmu.edu

Abstract

We describe a program called SKETCHIT that
transforms a single sketch of a mechanical device
into multiple families of new designs. To “inter-
pret” a sketch the program first determines how
the sketched device should have worked, then de-
rives constraints on the geometry to ensure it
works that way. The program is based on qual-
itative configuration space (qc-space), a novel
representation that captures mechanical behav-
ior while abstracting away the particular geom-
etry used to depict this behavior. The program
employs a paradigm of abstraction and resynthe-
sis: it abstracts the initial sketch into gc-space
then maps from qc-space to new geometries.

Introduction

Drawings have always been an important tool for en-
gineers, with the sketch on a napkin an important and
traditional means of thought and communication. Yet
to date CAD software has been at best a drafting tool,
producing carefully drawn pictures, but neither under-
standing them the way people do, nor capable of ac-
cepting as input an informal sketch of the sort engi-
neers commonly create.

We are working to change that by developing a pro-
gram that can read, understand, and use sketches of
mechanical devices of the sort shown in Figure 1. Our
program, called SKETCHIT, is capable of taking a sin-
gle stylized sketch of a mechanical device and general-
izing it to produce multiple new designs.!

Engineering sketches, by their very nature, are inac-
curate descriptions of a device. Taken literally, the ge-
ometry in Figure 1, for example, may not actually pro-
duce the desired behavior. Nevertheless, a skilled en-
gineer is able to see how a roughly sketched device was
supposed to work and hence what the geometry should
have been. In effect, achieving the correct behavior

*Support for this project was provided by the Advanced
Research Projects Agency of the Department of Defense
under Office of Naval Research contract N00014-91-J-4038.

IThis paper reports on work previously published in
[14].

31

\ pushrod

7,
fi

%
xed surface

lever

2, hook

Figure 1: A sketch of a circuit breaker.

places constraints on the device’s geometry. Therefore,
to “interpret” the geometry of a sketch, our program
first identifies what behaviors the parts should provide,
then derives constraints on the geometry to ensure it
produces these behaviors.

To identify the behaviors of the individual parts of a
device the program transforms the sketch into a novel
representation we call qualitative configuration space
(qe-space). Qc-space captures the behavior of the orig-
inal design while abstracting away the particular ge-
ometry used to suggest that behavior. If the sketch as
drawn does not produce the desired behavior, the pro-
gram adjusts the gc-space until it does. The program
then uses a library of geometric interactions to trans-
form each identified behavior into new geometry with
constraints ensuring that behavior. The constraints
define a family of geometries that all produce a partic-
ular kind of behavior. Thus, as the program transforms
the qc-space back into geometry, it transforms the ini-
tial sketch into a family of designs. Because the library
may contain multiple implementations for a particular
kind of behavior, the program is capable of generating
multiple families of new designs. The program repre-
sents each new family with what we call a behavior
ensuring parametric model (“BEP-Model”): a para-
metric model augmented with constraints that ensure
the geometry produces the desired behavior.?

2A parametric model is a geometric model in which the

actuator

f6 f7 18
] e»'mmn
0 \J 3 engagement pairs:

N f1 -6 (push-pair)
LN f2 - {5 (cam-follower)
t f3 - f4 (lever-stop)

§ f7 - 18 (pushrod-stop)

Figure 2: Sketch as actually input to program. En-
gagement faces are in bold. The actuator represents
the reset motion imparted by the user.

We use the design of a circuit breaker (Figure 1) to
illustrate the program in operation. In normal use, cur-
rent flows from the lever to the hook; current overload
causes the bimetallic hook to heat and bend, releasing
the lever and interrupting the current flow. After the
hook cools, pressing and releasing the pushrod resets
the device.

SKETCHIT takes as input a stylized sketch of a de-
vice and a state transition diagram describing the de-
sired overall behavior of the device. The later provides
guidance in identifying what behaviors the individual
parts of the device should provide.

The designer describes the circuit breaker to
SKETCHIT with the stylized sketch shown in Figure 2,
using line segments for part faces and icons for springs,
joints, and actuators. SKETCHIT is concerned only
with the functional geometry, i.e., the faces where parts
meet and through which force and motion are trans-
mitted (lines f1-f8). The designer’s task is thus to
indicate which pairs of faces are intended to engage
each other. Consideration of the connective geometry
(the surfaces that connect the functional geometry to
make complete solids) is put off until later in the design
process.

The designer describes the desired overall behavior
of the circuit breaker with the state transition diagram
in Figure 3. Each node in the diagram is a list of the
pairs of faces that are engaged and the springs that are
relaxed. The arcs are the external inputs that drive
the device. This particular state transition diagram
describes how the circuit breaker should behave in the
face of heating and cooling the hook and pressing the
reset pushrod.

Figure 4 shows a portion of one of the BEP-models
that SKETCHIT derives in this case. The top of the fig-
ure shows the parameters that define the sloped face
on the lever (f2) and the sloped face on the hook (f5).
The bottom shows the constraints that ensure this
pair of faces plays its role in achieving the overall de-
sired behavior: i.e., moving the lever clockwise pushes

shapes are controlled by a set of parameters.

32

Figure 3: The desired behavior of the circuit breaker.
(a) Physical interpretation. (b) State transition dia-
gram. In each of the three states, the hook is either at
its hot or cold neutral position.

the hook down until the lever moves past the point
of the hook, whereupon the hook springs back to its
rest position. As one example of how the constraints
enforce the desired behavior, the ninth equation, 0
> R14/TAN(PSI17) + H2_12/SIN(PSI17), constrains
the geometry so that the contact point on face f2 never
moves tangent to face f5. This in turn ensures that
when the two faces are engaged, clockwise rotation of
the lever always increases the deflection of the hook.

The parameter values shown in the top of Figure 4
are solutions to the constraints of the BEP-Model,
hence this particular geometry provides the desired
behavior. These specific values were computed by a
program called DesignView, a commercial parametric
modeler based on variational geometry. Using Design-
View, we can easily explore the family of designs de-
fined by this BEP-Model. Figure 5, for example, shows
another solution to this BEP-Model. Because these pa-
rameter values satisfy the BEP-Model, even this rather
unusual geometry provides the desired behavior. As
this example illustrates, the family of designs defined
by a BEP-Model includes a wide range of design so-
lutions, many of which would not be obtained with
conventional design approaches.

Figures 4 and 5 show members of just one of the
families of designs that the program produces for the
circuit breaker. SKETCHIT produces other families of
designs (i.e., other BEP-Models) by selecting differ-
ent implementations for the pairs of interacting faces
and different motion types (rotation or translation) for
the components. Figure 6 shows an example of se-
lecting different implementations for the pairs of in-
teracting faces: In the original implementation of the
cam-follower engagement pair, the motion of face f2
is roughly perpendicular to the motion of face f5; in
the new design of Figure 6, the motions are parallel.
Figure 7 shows a design obtained by selecting a new
motion type for the lever: in the original design the
lever rotates, here it translates.

Representation: QC-Space

SKETCHIT’s approach to its task is use a representa-
tion that captures the behavior suggested by the sketch
while abstracting away the particular geometry used to
depict this behavior. This allows the program to gen-

TA

S$13 2.728
L15 0.142
N PHI16 135.013

f2

PSI17 134.782

r—- H1_110.101

j¢—— H2_12 0.041

Hi_11 > 0 H2_12 > 0 S13 > Hi_11
Lis > 0 PHI16 > 90 PHI16 < 180
PSI17 > 90 PSI17 < 180

0 > R14/TAN(PSI17) + H2_12/SIN(PSIi7)
Ri4 = SQRT(S13"2 + L15°2 - 2*S13*L15+COS(PHI16))

Figure 4: Output from the program (a BEP-Model).
Top: the parametric model; the decimal number next
to each parameter is the current value of that param-
eter. Bottom: the constraints on the parameters. For
clarity, only the parameters and constraints for faces
f2 and f5 are shown.

Figure 5: Another solution to the BEP-Model of Fig-
ure 4. Shading indicates how the faces might be con-
nected to flesh out the components. This solution
shows that neither the pair of faces at the end of the
lever nor the pair of faces at the end of the hook need
be contiguous.

eralize the initial design by selecting new geometries
that provide the same behaviors.

For the class of devices that SKETCHIT is concerned
with, the overall behavior is achieved through a se-
quence of interactions between pairs of engagement
faces. Hence the behavior that our representation must
capture is the behavior of interacting faces.

Our search for a representation began with config-
uration space (c-space), which is commonly used to
represent this kind of behavior. Although c-space is
capable of representing the behaviors we are interested
in, it does not adequately abstract away their geomet-
ric implementations. We discovered that abstracting
c-space into a qualitative form produces the desired
effect; hence we call SKETCHIT’s behavioral represen-
tation “qualitative configuration space” (qc-space).

33

} pushrod-stop

pushrod

} push-pair
lever

lever-stop { 5
}cam-follower
5

hook

Figure 6: A design variant obtained by using different
implementations for the engagement faces. In the po-
sition shown, the pushrod is pressed so that the hook
is just on the verge of latching the lever.

=] |

pushrod

|ji

hook

Figure 7: A design variant obtained by replacing the
rotating lever with a translating part.

This section begins with a brief description of c-
space, then describes how we abstract c-space to pro-
duce gc-space.

C-Space

Consider the rotor and slider in Figure 8. If the angle
of the rotor Ug and the position of the slider Ug are as
shown, the faces on the two bodies will touch. These
values of Ur and Us are termed a configuration of the
bodies in which the faces touch, and can be represented
as a point in the plane, called a configuration space
plane (cs-plane).

If we determine all of the configurations of the bod-
ies in which the faces touch and plot the corresponding
points in the cs-plane (Figure 8), we get a curve, called
a configuration space curve (cs-curve). The shaded re-
gion “behind” the curve indicates blocked space, con-
figurations in which one body would penetrate the
other. The unshaded region “in front” of the curve
represents free space, conﬁguratlons in which the faces
do not touch.

The axes of a c-space are the position parameters
of the bodies; the dimension of the c-space for a set
of bodies is the number of degrees of freedom of the
set. To simplify geometric reasoning in c-space, we
assume that devices are fixed-axis. That is, we assume
that each body either translates along a fixed axis or
rotates about a fixed axis. Hence in our world the c-
space for a pair of bodies will always be a plane (a

Figure 8: Left: A rotor and slider. The slider translates
horizontally. The interacting faces are shown with bold
lines. Right: The c-space. The inset figures show the
configuration of the rotor and slider for selected points
on the cs-curve.

cs-plane) and the boundary between blocked and free
space will always be a curve (a cs-curve).3 However,
even in this world, a device may be composed of many
fixed-axis bodies, hence the c-space for the device as
a whole can be of dimension greater than two. The
individual cs-planes are orthogonal projections of the
multi-dimensional c-space of the overall device.

Abstracting to QC-Space

C-space is already an abstraction of the original geom-
etry. For example, any pair of faces that produces the
cs-curve in Figure 8 will produce the same behavior
(i-e., the same dynamics) as the original pair of faces.
Thus, each cs-curve represents a family of interacting
faces that all produce the same behavior.

We can, however, identify a much larger family of
faces that produce the same behavior by abstracting
the numerical cs-curves to obtain a qualitative c-space.
In qualitative c-space (qc-space) we represent cs-curves
by their qualitative slopes and the locations of the
curves relative to one another. By qualitative slope we
mean the obvious notion of labeling monotonic curves
as diagonal (with positive or negative slope), vertical,
or horizontal; by relative location we mean relative lo-
cation of the curve end points.*

To see how qualitative slope captures something es-
sential about the behavior, we return to the rotor and
slider. The essential behavior of this device is that the
slider can push the rotor: positive displacement of the
slider causes positive displacement of the rotor. If the
motions of the rotor and slider are to be related in this
fashion, their cs-curve must be a diagonal curve with
positive slope. Conversely, any geometry that maps to

3The c-space for a pair of fixed-axis bodies will always
be 2-dimensional. However, it is possible for the c-space
to be a cylinder or torus rather than a plane. See Section
“Selecting Motion Type” for details.

4We restrict qcs-curves to be monotonic to facilitate
qualitative simulation of a qc-space.

34

a diagonal curve with positive slope will produce the
same kind of pushing behavior as the original design.

Their are eight types of qualitative cs-curves, shown
in Figure 11. Diagonal curves always correspond to
pushing behavior; vertical and horizontal curves corre-
spond to what we call “stop behavior,” in which the
extent of motion of one part is limited by the position
of another.

The key, more general, insight here is that for mono-
tonic cs-curves, the qualitative slopes and the relative
locations completely determine the first order dynam-
ics of the device. By first order dynamics we mean
the dynamic behavior obtained when the motion is as-
sumed to be inertia-free and the.collisions are assumed
to be inelastic and frictionless.® The consequence of
this general insight is that qc-space captures all of the
relevant physics of the overall device, and hence serves
as a design space for behavior. It is a particularly con-
venient design space because it has only two properties:
qualitative slope and relative location.

Another important feature of qc-space is that it

is constructed from a very small number of building

blocks, viz., the different types of qcs-curves in Fig-
ure 11. As a consequence we can easily map from qc-
space back to geometric implementation using precom-
puted implementations for each of the building blocks.
We show how to do this in Section “Selecting Geome-
tries.”

The SKETCHIT System

Figure 9 shows a flow chart of the SKETCHIT system
with its two main processes: “Behavior Extraction”
and “Constraint & Geometry Synthesis.”

QC-Space

Sketch
& Desired
Behavior

Figure 9: Overview of SKETCHIT system.

5 “Inertia-free” refers to the circumstance in which the
inertia terms in the equations of motion are negligible com-
pared to the other terms. One important property of
inertia-free motion is that there are no oscillations. This
set of physical assumptions is also called quasi-statics.

Hook Pushrod
Position Position 2
A 3z §
: : 8
! i i hook=cold motion limit 2
sl
5 2i
& 7! e
Q
5!
— i hook=hot
pushrod-spring
—— BE > t } f >
A B C D teverAngle A E D ever Angle

Figure 10: Candidate qc-space for the circuit breaker.

Behavior Extraction Process

SKETCHIT uses generate and test to abstract the ini-
tial design into one or more working gec-spaces, i.e., qc-
spaces that provide the behavior specified in the state
transition diagram.

The generator produces multiple candidate qc-
spaces from the sketch, each of which is a possible
interpretation of the sketch. The simulator computes
each candidate’s overall behavior (i.e., the aggregate
behavior of all of the individual interactions), which
the tester then compares to the desired behavior.

The generator begins by computing the numerical
c-space of the sketch, then abstracts each numerical
cs-curve into a qes-curve, i.e., a curve with qualitative
slope and relative location.

As with any abstraction process, moving from spe-
cific numerical curves to qualitative curves can intro-
duce ambiguities. For example, in the candidate qc-
space in Figure 10 there is ambiguity in the relative lo-
cation of the abscissa value (E) for the intersection be-
tween the push-pair curve and the pushrod-stop curve.
This value is not ordered with respect to B and C, the
abscissa values of the end points of the lever-stop and
cam-follower curves in the hook-lever qcs-plane: E may
be less than B, greater than C, or between B and C.°

Physically, point E is the configuration in which the
lever is against the pushrod and the pushrod is against
its stop; the ambiguity is whether in this particular
configuration the lever is (a) to the left of the hook
(i.e., E < B) (b) contacting the hook (i.e., B < E < C},
or (c) to the right of the hook (i.e., C < E). When the
generator encounters this kind of ambiguity, it enumer-
ates all possible interpretations, passing each of them
to the simulator.

The relative locations of these points are not am-
biguous in the original, numerical c-space. Neverthe-
less, SKETCHIT computes all possible relative loca-
tions, rather than taking the actual locations directly
from the numerical c-space. One reason for this is that
it offers one means of generalizing the design: The orig-

5We do not consider the case where E= B or E = C.

35

inal locations may be just one of the possible working
designs; the program may be able to find others by
enumerating and testing all the possible relative loca-
tions.

A second reason the program enumerates and tests
all possible relative locations is because this enables it
to compensate for flaws in the original sketch. These
flaws arise from interactions that are individually cor-
rect, but whose global arrangement is incorrect. For
example, in Figure 2 the interaction between the lever
and hook, the interaction between the pushrod and
the lever, and the interaction between the pushrod
and its stop may all be individually correct, but the
pushrod-stop may be sketched too far to the left, so
that the lever always remains to the left of the hook
(i.e., the global arrangement of these three interactions
prevents the lever from actually interacting with the
hook.) By enumerating possible locations for the inter-
section between the pushrod-stop and push-pair qcs-
curves, SKETCHIT will correct this flaw in the original
sketch.

Currently, the candidate gc-spaces the generator
produces are possible interpretations of ambiguities in-
herent in the abstraction. The simulator and tester
identify which of these interpretations produce the de-
sired behavior. We are also working on repairing more
serious flaws in the original sketch, as we describe in
the Future Work section.

SKETCHIT employs an innovative qualitative simu-
lator designed to minimize branching of the simulation.
See [13] and [15] for a detailed presentation of the simu-
lator. The simulator computes the motion of the parts
of a device as a trajectory through qc-space.”

Constraint & Geometry Synthesis

In the synthesis process, the program turns each of the
working qc-spaces into multiple families of new designs.
Each family is represented by a BEP-Model.

Qc-space abstracts away both the motion type of
each part and the geometry of each pair of interact-
ing faces. Hence there are two steps to the synthesis
process: selecting a motion type for each part and se-
lecting a geometry for each pair of engagement faces.

Selecting Motion Type SKETCHIT is free to se-
lect a new motion type for each part because qc-space
abstracts away this property. More precisely, qc-space
abstracts away the motion type of parts that translate
and parts that rotate less than a full revolution.?

"This process is itself a diagrammatic reasoning task.

8Qc-space cannot abstract away the motion type of
parts that rotate more than a full revolution because the
topology of the qc-space for such parts is different: If one of
a pair of parts rotates through full revolutions, its motion
will be 27 periodic, and what was a plane in qc-space will
become a cylinder. (If both of the bodies rotate through
full revolutions the gc-space becomes a torus.) Hence, if
a pairwise qc-space is a cylinder or torus, the design must

Changing translating parts to rotating ones, and vice
versa, permits SKETCHIT to generate a rich assort-
ment of new designs.

Selecting Geometries The general task of translat-
ing from c-space to geometry is intractable [1]. How-
ever, gc-space is carefully designed to be constructed
from a small number of basic building blocks, 40 in all.
The origin of 32 of these can be seen by examining Fig-
ure 11: there are four choices of qualitative slope; for
each qualitative slope there are two choices for blocked
space; and the qc-space axes q; and g2 can represent
either rotation or translation. The other 8 building
blocks represent interactions of rotating or translating
bodies with stationary bodies.

h

y

X

Figure 12: The two faces are shown as thick lines. The
rotating face rotates about the origin; the translating
face translates horizontally. 6 is the angle of the rotor
and z, measured positive to the left, is the position of
the slider.

Figure 11: For drawing convenience, diagonal qcs-
curves are shown as straight line segments; they can
have any shape as long as they are monotonic.

Because there are only a small number of basic build-
ing blocks, we were able to construct a library of im-
plementations for each building block. To translate
a qc-space to geometry, the program selects an entry
from the library for each of the qcs-curves.

Each library entry contains a pair of parameterized
faces and a set of constraints that ensure that the faces
implement a monotonic cs-curve of the desired slope,
with the desired choice of blocked space. Each library
entry also contains algebraic expressions for the end
point coordinates of the cs-curve.

For example, Figure 12 shows a library entry for
qcs-curve F in Figure 11, for the case in which q; is
rotation and g3 is translation. For the corresponding
qcs-curve to be monotonic, have the correct slope, and
have blocked space on the correct side, the following
ten constraints must be satisfied:

w>0 L>0 h>0
s<h r>h mf2<¢<m
P>0 Y < arcsin(h/r) + 7/2

arccos(h/r) + arccos(%) <7/2
r = (s* + L? — 2sLcos(¢))'/?
The end point coordinates of the cs-curve are:

—7 cos(61)
—7 cos(f2)

01 = arcsin(h/r) z =
02 = m — arcsin(h/r) z2=

Figure 13 shows a second way to generate qcs-curve
F, using the constraints:

employ rotating parts (one for a cylinder, two for a torus)
rather than translating ones.

36

Figure 13: The two faces are shown as thick lines. The
rotating face rotates about the origin; the translating
face translates horizontally. 6 is the angle of the rotor
and x, measured positive to the left, is the position of
the slider. '

h1>0 h2 >0
s> hy L>0
T2<d< T nf2<Pp<m
0> 7/tan(y) + ha/sin(y) 1= (s* + L? — 2sL cos(¢))*/?
The end point coordinates of this cs-curve are:
61 = — arcsin(ho /1)
z1 = —71cos(61) + ha/ tan(y))

02 = arcsin(hi/s) + arccos(sz;;zr_i2
z2 = —scos(arcsin(hi/s)) — hlftan(il))

In the first of these designs the motion of the slider
is approximately parallel to the motion of the rotor,
while in the second the motion of the slider is approxi-
mately perpendicular to the motion of the rotor.® The
two designs thus represent qualitatively different im-
plementations for the same qcs-curve.

To generate a BEP-Model for the sketch, we se-
lect from the library an implementation for each qcs-
curve. For each selection we create new instances of
the parameters and transform the coordinate systems
to match those used by the actual components. The
relative locations of the gcs-curves in the qc-space are
turned into constraints on the end points of the qcs-
curves. We assemble the parametric geometry frag-
ments and constraints of the library selections to pro-
duce the parametric geometry and constraints of the
BEP-Model.

9The first design is a cam with offset follower, the second
is a cam with centered follower.

Our library contains geometries that use flat faces,
although we have begun work on using circular faces.?
We have at least one library entry for each of the 40
kinds of interactions. We are continuing to generate
new entries.

SKETCHIT is able to produce different BEP-Models
(i.e., different families of designs) by selecting different
library entries for a given qcs-curve. For example, Fig-
ure 5 shows a solution to the BEP-Model SKETCHIT
generates by selecting the library entry in Figure 13
for the cam-follower qcs-curve. Figure 6 shows a so-
lution to a different BEP-Model SKETCHIT generates
by selecting the library entry in Figure 12 for the cam-
follower. As these examples illustrate, the program
can generate a wide variety of solutions by selecting
different library entries.

RELATED WORK

There is little previous work in sketch understanding.
Narayanan et al. [10] use a diagram of a device to rea-
son about its behavior, but they use a pre-parsed de-
scription of the behaviors of each component while we
reason directly from the geometry of the interacting
faces.

Faltings [5] suggests that a sketch is not a single
qualitative model but rather represents a family of pre-
cise models. He demonstrates that taking a sketch as
a qualitative metric diagram it is possible to compute
the “kinematic topology” (an abstraction of the “place
vocabulary” {3]). The kinematic topology may contain
ambiguities suggesting behaviors that may be obtained
by modifying the geometry. Methods for determining
which modifications will yield these other behaviors is
an open issue.

Our work is closely related to work in design au-
tomation. Our techniques can be viewed as a natural
complement to the bond graph techniques of the sort
developed in [18]. Our techniques are useful for com-
puting geometry that provides a specified behavior,
but because of the inertia-free assumption employed
by our simulator, our techniques are effectively blind
to energy flow. Bond graph techniques, on the other
hand, explicitly represent energy flow but are incapable
of representing geometry.

Our techniques focus on the geometry of devices
which have time varying engagements (i.e., variable
kinematic topology). Therefore, our techniques are
complementary to the well know design techniques for
fixed topology mechanisms, such as the gear train and
linkage design techniques in [2].

There has been a lot of recent interest in automat-
ing the design of fixed topology devices. A common
task is the synthesis of a device which transforms a
specified input motion to a specified output motion
((11], [17) [19]). For the most part, these techniques
synthesize a design using an abstract representation

Y0 Circular faces are used when rotors act as stops.

37

of behavior, then use library lookup to map to im-
plementation. However, because our library contains
interacting faces, while theirs contain complete compo-
nents, we can design interacting geometry, while they
cannot. Like SKETCHIT, these techniques produce de-
sign variants.

To construct new implementations (BEP-Models),
we map from qc-space to geometry. [8] and [1] have
also explored the problem of mapping between c-space
and geometry. They obtain a geometry that maps to
a desired c-space by using numerical techniques to di-
rectly modify the shapes of parts. However, we map
from qc-space to geometry using library lookup.

Our work is similar in spirit. to research exploring
the mapping from shape to behavior. [9] uses kine-
matic tolerance space (an extension of c-space) to ex-
amine how variations in the shapes of parts affect their
kinematic behavior. Their task is to determine how a
variation in shape affects behavior, ours is to determine
what constraints on shape are sufficient to ensured the
desired behavior. [4] examines how much a single geo-
metric parameter can change, all others held constant,
without changing the place vocabulary (topology of c-
space). Their task is to determine how much a given
parameter can change without altering the current be-
havior, ours is to determine the constraints on all the
parameters sufficient to obtain a desired behavior.

More similar to our task is the work in [6]. They de-
scribe an interactive design system that modifies user
selected parameters until there is a change in the place
vocabulary, and hence a change in behavior. Then,
just as we do, they use qualitative simulation to de-
termine if the resulting behavior matches the desired
behavior. They modify c-space by modifying geom-
etry, we modify qc-space directly. They do a form of
generalization by generating constraints capturing how
the current geometry implements the place vocabulary;
we generalize further by constructing constraints that
define new geometries. Finally, our tool is intended to
generate design variants while theirs is not.

Our work [15] builds upon the research in qualitative
simulation, particularly, the work in (3], [7], and [12].
Our techniques for computing motion are similar to
the constraint propagation techniques in [16].

FUTURE WORK

As Section “Behavior Extraction Process” described,
the current SKETCHIT system can repair a limited
range of flaws in the original sketch. We are contin-
uing to work on techniques for repairing more serious
kinds of flaws.

Because there are only two properties in qe-space
that matter — the relative locations and the qualita-
tive slopes of the qcs-curves, to repair a sketch, even
one with serious flaws, the task is to find the correct
relative locations and qualitative slopes for the qcs-
curves.

We can do this using the same generate and test

paradigm described earlier, but for realistic designs
this search space is still far too large. We are explor-
ing several ways to minimize search such as debugging
rules that examine why a particular qc-space fails to
produce the correct behavior, based on its topology.
The desired behavior of a mechanical device can be
described by a path through its qc-space, hence the
topology of the qc-space can have a strong influence on
whether the desired path (and the desired behavior) is
easy, or even possible. For example, the qc-space may
contain a funnel-like topology that “traps” the device,
preventing it from traversing the desired path. If we
can diagnose these kinds of failures, we may be able
to generate a new qc-space by judicious repair of the
current one.

We are also working to expand the class of devices
that SKETCHIT can handle. Currently, our techniques
are restricted to fixed-axis devices. Although this con-
stitutes a significant portion of the variable topology
devices used in actual practice (see [12]), we would
like extend our techniques to handle particular kinds
of non-fixed-axis devices. We are currently working
with a commonly occurring class of devices in which a
pair of parts has three degrees of freedom (rather than
two) but the qc-space is still tractable.

CONCLUSION

We have developed a computer program capable of
transforming a stylized sketch of a mechanical device
into multiple families of new designs. To “interpret”
a sketch, our program first identifies what behaviors
the parts should provide, then derives constraints on
the geometry to ensure it produces these behaviors.
In effect, the program uses physical reasoning to un-
derstand the geometry. We have used the program to
design a range of devices that includes a circuit breaker
and a yoke and rotor mechanism.

One reason this work is important is that sketches
are ubiquitous in design. They are a convenient and
efficient way to both capture and communicate de-
sign information. By working directly from a sketch,
SKETCHIT takes us one step closer to CAD tools that
speak the engineer’s natural language.

REFERENCES

{1} Caine, M. E., 1993, “The Design of Shape from Mo-
tion Constraints,” MIT Al Lab. TR 1425, September.
(2] Erdman, A. and Sandor, G., 1984, Mechanism De-
sign: Anelysis and Synthesis, Vol. 1, Prentice-Hall,
Inc., NJ.

(3] Faltings, B., 1990, “Qualitative Kinematics in
Mechanisms,” JAI Vol. 44, pp. 89-119.

[4} Faltings, B., 1992, “A Symbolic Approach to Qual-
itative Kinematics,” JAI, Vol. 56, pp. 139-170.

(6] Faltings, B., 1992, Qualitative Models in Concep-
tual Design: A Case Study, Reasoning with Diagram-
matic Representations, Papers from the 1992 Spring

38

Symposium, Technical Report $5-92-02, AAAI Press,
pp. 69-74.

(6] Faltings, B. and Sun, K., 1996, “FAMING: Support-
ing Innovative Mechanism Shape Design,” Computer-
Aided Design, 28, pp. 207-216.

[7] Forbus, K., Nielsen, P., and Faltings, B.,
1991, “Qualitative Spatial Reasoning: The CLOCK
Project,” Northwestern Univ., The Institute for the
Learning Sciences, TR #9.

[8] Joskowicz, L. and Addanki, S., 1988, “From Kine-
matics to Shape: An Approach to Innovative Design,”
Proceedings AAAI-88, pp. 347-352.

[9] Joskowicz, L., Sacks, E., and Srinivasan, V., 1995,
“Kinematic Tolerance Analysis,” 3rd ACM Symposium
on Solid Modeling and Applications, Utah.

[10] Narayanan, N. H., Suwa, M., and Motoda, H.,
1994, “How Things Appear to Work: Predicting Be-
haviors from Device Diagrams,” Proceedings AAAI-9,
Vol. 2, Aug., pp. 1161-1167.

[11] Kota, S. and Chiou, S., 1992, “Conceptual Design
of Mechanisms Based on Computational Synthesis and
Simulation of Kinematic Building Blocks,” Research in
Engineering Design, Vol. 4, #2, pp. 75-88.

[12] Sacks, E. and Joskowicz, L., 1993, “Automated
Modeling and Kinematic Simulation of Mechanisms,”
CAD, Vol. 25, #2, Feb., pp. 106-118.

[13] Stahovich, T., 1996, “SKETCHIT: a Sketch In-
terpretation Tool for Conceptual Mechanical Design,”
MIT AI Lab. TR 1573, March.

[14] Stahovich, T. F., Davis, R.., and Shrobe, H., 1996,
“Generating Multiple New Designs from a Sketch,”
Proceedings AAAI-96, pp. 1022-29.

[15] Stahovich, T. F., Davis, R., and Shrobe, H.,
1997, “Qualitative Rigid Body Mechanics,” Proceed-
ings AAAI-97, pp. 1038-44.

[16] Stallman, R. and Sussman, G., 1976, “Forward
Reasoning and Dependency-Directed Backtracking in
a System for Computer-Aided Circuit Analysis,” MIT
AT Lab. TR 380.

[17] Subramanian, D., and Wang, C., 1993, “Kinematic
Synthesis with Configuration Spaces,” The 7th In-
ternational Workshop on Qualitetive Reasoning about
Physical Systems, May, pp. 228-239.

[18] Ulrich, K, 1988, “Computation and Pre
parametric Design,” MIT AI Lab. TR-1043.

[19] Welch, R. V. and Dixon, J. R., 1994, “Guiding
Conceptual Design Through Behavioral Reasoning,”
Research in Engineering Design, Vol. 6, pp. 169-188.

