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Abstract

This paper describes our research into the way in
which diagrams convey mathematical meaning.
Through the development of an automated rea-
soning system, called &/GROVER, we have tried
to discover how a diagram can convey the mean-
ing of a proof. &/QROVER is a theorem proving
system that interprets diagrams as proof strate-
gies. The diagrams are similar to those that a
mathematician would draw informally when com-
municating the ideas of a proof. We have applied
&/QROVER to obtain automatic proofs of three
theorems that are beyond the reach of existing
theorem proving systems operating without such
guidance. In the process, we have discovered
some patterns in the way diagrams are used to
convey mathematical reasoning strategies. Those
patterns, and the ways in which &/GROVER takes
advantage of them to prove theorems, are the fo-
cus of this paper.

Key words: Mathematical diagrams, reasoning strate-
gies, visualization, proof, automated reasoning.

Introduction
Diagrams and visual images play an essential role in
both the comprehension and communication of math-
ematical proofs. We contend that this role is to make
the content of the proof "real" rather than formal. Di-
agrams are used to represent the objects and relations
to which a proof refers. When successfully used, the
validity of a proof can be "seen" in the diagram rather
than justified as a step-by-step application of formal
rules. We suggest that visualization distinguishes ’%l-
lowing" a proof from "seeing" it to be true. In the for-
mer case, the proof is not fully assimilated, and thus,
we might argue, not fully understood.
¯ What distinguishes the full comprehension of a proof

from just following the individual steps? The differ-
ence concerns the interpretation of the mathematical
language: whether it is understood as a purely formal
system of formulae, rules, and inferences, or whether
it points to something that, however abstract, is real
in the world of the mathematician.

Visualization, then, is a means by which mathe-
matics sheds its purely formal character and takes on
meaning. As such, it is a key aspect not just of math-
ematical learning but also of mathematical discovery.
Diagrams, in turn, are a vehicle for communicating the
visualized images. Far from being an expendable aid,
diagrams play an essential role in the communication
of mathematical meaning.

This paper summarizes our research into the way
in which diagrams convey mathematical meaning.
Through the development of an automated reasoning
system, called &/QROVP.R, we have tried to discover
how a diagram can convey the meaning of a proof.
&/QROVER is a theorem proving system that takes, as
its input, not only a theorem to be proved but also a di-
agram intended to represent the essence of the proof.
&/GROVER interprets the diagram as a strategy for
performing a detailed formal proof. The diagram fo-
cuses &/GROVER’S attention on the relevant facts at
each stage of the proof.

&/tROVER consists of two parts: GROV~.R the dia-
gram processor which is the subject of this paper, and
an underlying theorem prover, called &. The diagram
processor constructs a strategy on the basis of infor-
mation extracted from the diagram; & is then called
upon to prove the subgoals in this strategy.

GROVER is a prototype system. Our eventual aim is
to build a system capable of extracting from a diagram
the same information that a human can. Development
of GROV~.R has, conversely, yielded insights into the
kinds of reasoning involved when humans infer mean-
ing from a diagram.

Three non-trivial theorems which we have proved
fully automatically using the &/GROVER system are:

1. The Diamond Lemma, a theorem from the the-
ory of well-founded relations, described in (Barker-
Plummet & Bailin 1992), and which we briefly recap
here,

2. The Multiple Peaks Theorem, a generalization of the
Diamond Lemma, which we describe in this paper,

3. The Schrhder-Bernstein Theorem, a theorem from
the theory of functions, whose proof we also describe
here.
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We chose to study these theorems for the following
important reasons:

¯ Each of these theorems is non-trivial for automated
reasoning systems. Indeed, in each case we know
of no other automated reasoning system which is
capable of producing fully automated proofs of any
of them.

¯ Despite the power of the underlying & theorem
prover, that system alone is not able to prove the
theorem without the guidance that it obtains from
CROVER’s interpretation of the diagram. This indi-
cates that the diagram is playing a crucial role in
the derivation of the proof.

¯ Finally, when presented in tutorial mode, either in
a textbook or in a classroom setting, the theorems
are often explained using diagrams to motivate the
proof. In our experience, the diagrams which ac-
company such presentations are canonical -- they
vary little between independent presentations -- and
furthermore, when called upon to do so, we our-
selves remember the diagrams and then reconstruct
the proofs from them, rather than remembering the
proofs directly. We take this as indication that the
diagram is playing a key psychological role in the
proof.

In working with these theorems we have discovered
a number of heuristics that appear to play a significant
role in the interpretation of a mathematical diagram.
The heuristics concern the identification and ordering
of steps in the proof strategy, and the determination
of relevant facts to be used at each stage of the proof.1

How can a Proof be Seen?

We have used CROVE~ to test some hypotheses about
proof visualization, which we describe in this section.
The basic hypothesis is that visualizations are partial
models of the world to which a proof refers. They
are partial because mathematical worlds are typically
infinite (for example, the integers, the real numbers,
and the universe of sets) and mathematical theorems
typically quantify over all objects in such a world.

A visualization of such a theorem consists of exem-
plars of the patterns asserted to hold. When we prove
a universal statement of the form

Vx.A(z)

for example, we typically say something like "let c be
an arbitrary x," and then proceed to demonstrate A(c).
If A is an existential formula of the form

3u.B(x, y)
then we might construct a y for which B(c, y) holds,
or we might prove B(c, y) by assuming its negation,

1A more detailed description of the work presented here,
including more detail on all of the three proofs mentioned
above, can be found in (Barker-Plummer & Bailin 1997).

Vy.’-,B(c, y) and deriving a contradiction. This too will
typically involve instantiating y, at some point, to one
or more specific objects, from which a contradiction is
derived.

We hypothesize that the diagram illustrating such
a proof is a trail of the instantiations performed along
the way: the objects themselves, together with a repre-
sentation of the relevant facts about them. These facts
are mathematical assertions composed of primitive or
defined relations between the objects, and logical op-
erators such as conjunction, disjunction, negation, and
implication. The repertoire of relations depends on the
particular "world" or field of mathematics in which the
theorem is being proved.

In general, the logical operators are not explicitly
represented in a visualization. They may serve to in-
terpret the relationships between several images that
arise in the course of a proofi For example, a proof
by cases, which involves deriving the theorem from a
disjunction

AVB...VC
might involve separate visualizations of A, B, and C.
Implication is somewhat more complicated: the proof
of

A~B
might involve starting with a visualization of A and
elaborating it so that it becomes a visualization of B.
This is, in fact, our understanding of the relationship
between the hypotheses of a theorem and its conclusion
as they appear in a visualization of a proof.

We conjecture that the primary role of visualiza-
tions is to represent the relations between exemplar
objects. Depending on the particular field of mathe-
matics, there may be preferred representations of cer-
tain relations. For example, in set theory we typically
illustrate the subset relation by containment of one cir-
cle within another.

These observations lead us to the first major decision
in the design of QROVEm

A diagram represents a set of facts concerning
the properties of, and relations between, exemplar
objects that are identified in the course of a proof.

The interpretation of a diagram as a trail of the ex-
emplars invoked in the course of a proof is one of our
basic ideas, which we have validated against several
(very different) theorems. We develop this idea in the
next section.

Example of a Diagram-Based Proof:
The Diamond Lemma

The Diamond Lemma, a theorem in the theory of well-
founded relations, states that a well-founded relation
that is locally confluent is also globally confluent.

The definitions of these terms are as follows:
¯ The domain of a relation R is the set of all elements

that are related by/~ to some other element, that is,
all a such that for some b, either R(a, b) or R(b, a).
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* A relation R is well founded (WFR) if there are no in-
finite R-chains, that is, no infinite series of elements
a, b, c... such that R(a, b), R(b, c), ....

. A relation R is locally confluent (LCR) if and only if
for any three elements a, b, and c in the domain of
R, if R(a, b) and R(a, c), then there is an element d
such that R(b, d) and R(c, d).

¯ The transitive closure of R is the relation /~* such
that R° (a, c) if and only if there is an R-chain from 
to c, that is, a series bl, b~,...bn such that R(a, bl),
R(bl, b~), ... R(b,_l, b,), R(b,, 

¯ The relation R is globally confluent (GCR) if and
only if its transitive closure R* is locally confluent.

The standard proof of this theorem uses a diagram
that begins as the upper half of the diamond in Fig-
ure 1 and is elaborated in steps, eventually yielding
the element h. The proof begins by assuming that ar-
bitrary elements a, b, and c have been selected with
R’(a,b) and R’(a,c). Since R*(a,b), there is an R-
chain from a to b and therefore there is an element d
that is the first element of this chain. Similarly, there
is an e one step along an R-chain from a to c.

Now the local confluence of R is invoked to deduce
that there is an element f which completes the small
diamond shown in Figure 1.

The next step of the proof uses transfinite induction,
which is a technique for proving properties about the
domain of a well-founded relation. Transfinite induc-
tion states that, in order to prove a property P(a) for
all elements a in the domain of a well-founded relation
R, it suffices to show that the property "climbs up" R.
That is, it suffices to show:

For every x in the domain of R, P(x) holds if
it holds for every y that is "lower" than x

where y is "lower" than x if R(x, y).
Transfinite induction is applied by observing that e is

"lower" than a: we can, therefore, assume the theorem
to hold when e is the upper vertex of an R* diamond.
We now have the upper half of an R* diamond with
vertex e, the other elements being f and c. Although
e and f are illustrated as related by R, not R*, we can
see that there is an R-path from e to f with no inter-
mediate elements (the degenerate case), and therefore
R*(e, f) holds.

Applying the theorem to the half-diamond with ver-
tices e, f and c, we obtain an element g such that
R* (f, g) and R* (c, 

The next step is to observe that there is an R-path
from d to g, passing through f. Thus, R*(d,g) holds
even though it is not explicitly noted in the Figure 1.

The R-path from d to g provides another opportu-
nity to apply transfinite induction. This time we ob-
serve that d is "lower" than a and therefore that the
half-diamond with vertices d, b, and g can be com-
pleted with an element h as shown in Figure 1.

a

~ R*.

h

Figure 1: Completion of the proof of the Diamond
Lemma

Finally, observing in Figure 1 that there is an R-
path from c to h (through g), we see that the theorem
has been successfully proven.

Diagrams as Staged Observations: The
Existential Solve Heuristic

Existential solve is a heuristic procedure that we use to
the infer the trail of existence proofs implicit in a dia-
gram. We first developed existential solve as a means
to prove the Diamond Lemma automatically. We then
discovered that it plays an essential role in the proofs
of two other difficult theorems, which are described in
this paper.

Existential solve implements the reasoning described
in the proof of the Diamond Lemma above. The goal
of the heuristic is to construct a sequence of lemmas,
each of which proves the existence of ~or "solves" for)
one existential object in the diagram,z The key point
is that the objects are solved for successively, one at a
time. The heuristic is used to determine which object
to solve for first, which next, and so on.

Solving for an existential object means proving the
existence of an object that has the properties asserted
in the diagram. This is not as obvious a process as
it might seem, however, because some properties may
involve other objects which may not have been solved
for yet. The procedure must, therefore, not only de-
termine a succession of existential objects, but for each
such object it must decide which properties of the ob-
ject are to be considered defining properties.

The key idea in existential solve is to use the avail-
ability of defining properties as the principal criterion
for ordering the existential objects. A defining prop-
erty is a formula whose variables consist only of the

2Throughout this paper we indicate that an object is
existential by writing it in bold face.
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following:

* One and only one existential object that has not
already been solved for,

¯ Universal objects,

¯ Existential objects that have already been solved for.

At the beginning of the proof of the Diamond
Lemma there are two existential objects with defining
properties, d and e. When there is more than one can-
didate, existential solve chooses the existential object
whose defining properties, taken together, contain the
most other objects (universals and previously solved
for existentials). The rationale for this criterion is that
a greater number of objects in the properties means,
in some sense, more information, or greater constraint,
and thus a stronger definition. If there are ties when
this criterion is applied, existential solve proves the ex-
istence of the remaining candidates in logical parallel.
That is, a random order is used, but since the defining
properties of each object do not reference the com-
petitor objects, the selected order has no effect on the
resulting proofs.

Existential solve organizes the existential objects in
the diagram into a partial order by repeatedly apply-
ing the criteria just described. With each selection of
the next object to be solved for, that object becomes
available to appear in the defining properties of other
objects. Eventually, every existential object will have
at least one defining property, and the ordering process
is then complete.

Existential Solve in the Diamond Lemma

To see how existential solve works in the Diamond
Lemma, we apply it to the diagram in Figure 1. The
following formulae are explicitly represented in the di-
agram:

R(a, b) R(a, c) R(a, d) R(a, e)
R*(d,b) /~*(e,c) R(d,f) R(e,f)
R*(c,g) R*(f,g) R*(b,h) R*(g,h)

All of the objects are existential except a, b, and c,
which are identified as universal in the hypothesis of
the theorem.

In the first pass of existential solve, the existential
objects with potentially defining properties are d, e,
g, and h. The defining properties of d are

R(a,d) and R*(d,b)
with universals a and b. The defining properties of e
are

R(a,e) and R*(e,c)
with universals a and c. The only defining property
of g at this stage is R(c, g), and the only one for h is
R(b, h). Since each of these contains only one univer-
sal, g and h are ruled out at this stage. There is no
way to break the tie between d and e, so the order in
which they are solved for is randomly chosen.

In the next pass, d and e may appear in the defining
properties of other objects, so the object f has the
defining properties

R(d,f) and R(e,f)
The presence of the two previously solved for objects,
d and e, means that f now wins out over g and h, each
of which still has only one defining property containing
only one other object.

In the next pass, g has the defining properties
R(f,g) and R(c,g)

Now g wins over h because its defining properties con-
tain two other objects, f and c, while h still has only
one defining property, containing one other object.

In the final pass, h has the defining properties
R(b,h) and R(g,h)

and this marks the end of the trail.

Diagrams as Elisions of Infinitely Many

Observations

Recall our view of diagrams as partial models of the
world to which a proof refers. Diagrams are finite,
while mathematical worlds are typically infinite. While
a theorem may quantify over an infinite range of ob-
jects (as in "for every integer i..."), a diagram express-
ing the theorem will focus on an arbitrary example in
that range (as in "let io be an arbitrary integer").

In some proofs, the diagram consists of a finite num-
ber of such exemplars plus a finite number of existen-
tial objects that are "defined" (more precisely, proven
to exist) in terms of these exemplars -- and relations
between these objects. Frequently, however, this does
not suffice to convey a proof. In many cases it is nec-
essary to represent an infinite range of objects through
elision. The ellipsis notation (...) is the most common
means of expressing an infinite range through elision.

When a mathematical argument relies on the im-
plicit performance of an arbitrary number of calcula-
tions or operations, rigorous presentation of the argu-
ment must be based on inference rules that permit such
reasoning. The most common of such rules are vari-
ous forms of induction. 3 When the "arbitrary" number
is finite (but arbitrarily large), the appropriate rule 
some form of mathematical induction -- that is, in-
duction over the natural numbers -- as opposed to
transfinite induction which operates over an arbitrary
(possibly infinite) well-founded tree.4

When GROVErt detects the presence of ellipses in a
diagram, it tries to determine whether a finite (but ar-
bitrarily long) series is being represented, and hence
whether mathematical induction should be applied. If
the objects connected by the ellipses are labeled simi-
larly except for numerical (integer) subscripts, Grtov~.l~

3These are not the only rules that permit such rea-
soning: others include the Axiom of Choice and its many
equivalents.

4A well-founded tree is one that may have infinite
branching but no infinite paths.
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Figure 2: Graphical Statement of The Multiple Peaks
Theorem

interprets this to indicate a situation requiring mathe-
matical induction.

A proof by mathematical induction consists of two
parts, the base case and the step case. The base case
proves the theorem for the first element in the series of
objects. The step case proves the theorem for an ar-
bitrary element in the remainder of the series, on the
assumption that it holds for the preceding element.
Accordingly, when GrtovER recognizes a diagram call-
ing for mathematical induction, it decomposes the dia-
gram into two simpler diagrams, one for the base case
and one for the step case, using the ellipses to deter-
mine where the separation should occur.

GROVER’S assumption in performing this decomposi-
tion is that each of the resulting diagrams will contain
enough information to prove its part of the theorem. In
particular, the diagram for the step case must not only
express the desired conclusion (e.g., that the property
P(z) holds for z = n + 1), but it must also express the
inductive hypothesis (i.e., that P(n) holds) which will
be used to derive the conclusion P(n+l). GROV~.I~ veri-
ties this as part of the more general process of matching
the diagram with the corresponding conjecture. This
process was described in (Barker-Plummet & Bailin
1992). If the step case diagram does not represent the
induction hypothesis, the process will fail even before
a proof is attempted. In this sense, GROVEI~ has a
built-in safeguard against improperly interpreting the
ellipses.

The Multiple Peaks Theorem

To see how the interpretation of ellipses works, we
present the proof of the Multiple Peaks Theorem. In
Figure 2, R* refers to the transitive closure of a relation
R. The theorem states that, if R is globally confluent
then an object h can be found so that the figure can
be completed along the dotted lines, i.e., R*(b0, h) and
R*(bk+l, h).

Most notable about this theorem is the fact that the
number of "peaks," represented by the variable n, is

Figure 3: The Diagram for the Base Case of The Mul-
tiple Peaks Theorem

arbitrary.
The proof is a straightforward application of math-

ematical induction. The base case (n = 0) follows im-
mediately from the global confluence of R. The step
case (n = k + 1) follows from the inductive hypothesis,
which gives us the existence of an h/c such that

R*(b0, h/c) ^ R*(b~+l, 

Since we also have, from the assumptions of the the-
orem, that

R*(a~+l, b/~+l) A R* (a/c+1, b/c+2)

we infer, from the transitivity of R*, that

R* (a/c+l, h/c)

We therefore use the global confluence of/~ to get the
existence of an h/c+1 such that

R* (hk, h/c+1) R*(b~+2, hk+l)

and then, from the transitivity of R* again, infer that

R*(b0, h~+l)

As in the proof of the Diamond Lemma, the transi-
tivity of R* is automatically inferred by & and applied
where needed.

GRovErt interprets each ellipsis in Figure 2 as rep-
resenting a sequence tl ¯ .. tm of objects. Since the ob-
jects in one of the sequences are existential, aROVER
infers that their existence is to be proven by mathe-
matical induction. GrtovErt therefore replaces Figure 2
with Figures 3 and 4, and the theorem itself is decom-
posed into a base case and a step case by applying &’s
mathematical induction tactic.

Having decomposed both the diagram and the theo-
rem into two parts, GROVEI:t must now match the terms
in each theorem with objects in the corresponding dia-
gram so that the theorem’s hypotheses are recognized
as facts in the diagram.

Through its analysis of the ellipses as a shorthand
for mathematical induction, GrtOVEP~ is able to as-
sociate the diagram subscript k with the induction
variable n in the theorem. Completing the associa-
tion process is complicated, however, by a discrepancy
in representation between the theorem and the dia-
gram. The theorem (in its original form as well as
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Figure 4: The Diagram for the Step Case of The Mul-
tiple Peaks Theorem

in the step-case) does not contain the universal vari-
ables a0, al ... ak, ak+l and b0, bl, b2... b~, b~+l, bk+2
but rather two universal variables a and b, which are
applied as functions to an index variable i. In order
to complete the association, therefore, GI~OVER must
establish the correspondence between the variables a
and b in the theorem and the instantiated terms in the
diagram.

GROVER solves this problem using the idea of span-
ning hypotheses -- hypotheses of the form

Vx.(x < n + I --~ A) (1)

where n-}-I is associated with a diagram spanning limit,
which is the subscript of the final term of a sequence
in the diagram. GROVER replaces each spanning hy-
pothesis (1) with the instantiated formulae Air~x] for
all spanning instances t, which are the diagram objects
participating in one of the diagram sequences. GROVER
is then able to match the hypotheses of both the base
case and step case theorems with facts in their respec-
tive diagrams.

Focus of Attention: Choosing Relevant
Hypotheses
A diagram fact that has been proven from the con-
jecture’s hypotheses is available as a hypothesis dur-
ing any individual step of the proof strategy. Further-
more, the conclusion of any previous step in the strat-
egy is available as a hypothesis in subsequent steps.
Not all of these potential hypotheses are necessarily
useful, however, and in order to facilitate &’s search
for a proof, GROV~R tries to keep the hypotheses to a
minimum. Underlying GROVER’s approach is the idea
that some previously proven facts are relevant to the
current lemma, and some are not. If a hypothesis is
explicitly cited as a hint for a given object’s existence,
QROVER assumes that it is relevant. GROVER deter-
mines the relevancy of other facts by comparing the
terms found in the current lemma to those found in
the potential hypotheses. The objective is to find hy-
potheses that, taken together, mention all of the terms

found in the lemma’s conclusion. We call this a process
of covering all of the lemma’s terms.

To determine the hypotheses for a given lemma, a
heuristic algorithm examines the preceding lemmas to
see whether any of them can contribute to "covering"
the current lemma’s terms. The algorithm proceeds
backwards, examining the most recent lemmas first
and then, if necessary, moving on to the earlier lem-
mas. As this process continues, the set of terms that
still need to be covered shrinks.

The obvious selection criterion would be to add a
previous lemma to the hypotheses of the current lemma
if the previous lemma contains any of the terms re-
maining to be covered. We found that a more restric-
tive criterion of relevancy is necessary, however. A
measure of relevancy is provided by defining two classes
of terms in the current lemma:

1. Terms from the lemma’s conclusion that still need
to be covered -- we call these the required terms

2. Terms that appear in the lemma’s conclusion or in
the hypotheses thus far selected -- we call these the
desired terms
GROVP.R sorts parallel lemmas by 1) the number of

required terms they contain, and 2) within that, the
number of desired terms they contain. If none of the
parallel lemmas contains any required or desired terms,
the algorithm proceeds to the next latest set of paral-
lel lemmas to consider as candidate hypotheses. Oth-
erwise, the parallel lemmas that come out best in the
sort --i.e., the highest number of required terms, and
within that the highest number of desired terms -- are
selected as hypotheses.

When the process described above is complete --
either because all of the required terms have been cov-
ered, or because there are no more earlier lemmas to
provide potential hypotheses -- GROVER considers the
hypotheses of the theorem, and the diagram facts that
represent them. GROVER again applies a relevancy cri-
terion to determine which of these might be suitable
hypotheses for the current lemma.

To understand how the procedure we have just de-
scribed helps to prune hypotheses, we consider the final
lemma step of the Multiple Peaks Theorem, which is
the theorem’s conclusion:

3h.(R*(bo, h) A l~*(bk+2, 

We back up to the preceding lemma, which is

R*(hk, hk+l) A R*(b~+2, hk+l)

This lemma contains the required term bk+2, but the
required term b0 still needs to be covered, so we back
up to the parallel lemmas

R*(b0, h0) ^ R*(bl,h0)
R*(bo, hk) A R*(bk+l, hk)

Both lemmas contain the required term b0, so we must
look to the desired terms in order to break the tie. The
hk goal wins because it contains the desired term hk
while the h0 goal contains no other desired term.

44



Diagram Idioms: Visualization and

Abstraction

In this section we will describe the process by which
we move from the diagram to a collection of formulae
which it represents. This is a crucial step in GROV~R’s
automatic processing of the diagram.

One of the key components of &/GROVER is a graph-
ical editor called DEGAS5. DEGAS is a rather conven-
tional graphical editor, with tools allowing the drawing
of lines, ellipses, and rectangles, and for attaching la-
bels to these objects. The most important feature of
DEGAS for GROVER is that it is able to save the di-
agram in the form of a geometry facts file (G-file).6

The G-file is a generic textual representation of the di-
agram structure, irrespective of any semantics that we
associate with the diagram.

The use of a graphical editor which is able to pro-
duce a representation of the diagram at this level of
abstraction allows us to avoid some potentially diffi-
cult problems in understanding the diagram. We do
not, for example, have to be involved in line-finding,
recognizing collections of lines as rectangles, worrying
about whether a collection of points are collinear, and
so on. DEGAS provides us with a representation of the
structure of the diagram which is based on the tools
used to draw the diagram.

Interpreting the Diagram

When presented with a diagram, GROVm~ must inter-
pret it as representing facts that are expected to follow
from the hypotheses of the current theorem. We have
developed a small expert system for carrying out this
task. An important point in understanding the devel-
opment of this system is that we are not attempting to
develop a new language for drawing diagrams, rather
we are trying to ensure that the system properly inter-
prets the "natural" diagram for proving a given the-
orem. The rules of the expert system are intended,
therefore, to capture the usual practice of mathemat-
ical diagrams rather than to define a new language.
While we do not believe that a complete and correct
set of rules for achieving this goal necessarily exists,
we do believe that we can devise a generally useful set
of rules that approximate this desire.

We also observe that the rules used in interpreting
diagrams will depend on the mathematical context in
which the diagram is drawn. For example, a circle in
a diagram represents an abstract mathematical circle
if the diagram is offered in the context of a geometry
proof, while it probably represents a set when offered
in a set theory proof like the SchrSder-Bernstein The-
orem. In addition, the specific diagrammatic idioms

5DEGAS is the Diagram Editor for the GROVF_~ Auto-
mated System.

6DEGAS can also save the diagram as a postscript file,
or in a representation suitable for saving and restoring di-
agrams within DEGAS.

used may differ from author to author in an idiosyn-
cratic manner. Both of these factors indicate the ex-
istence of a number of diagrammatic idioms used in
mathematics, rather than a single unified language of
mathematical diagrams.

The interpretation of the diagram is divided into two
parts: a local analysis, and a global analysis. The
local analysis phase produces atomic formulae from the
spatial and explicit relationships in the diagram, and
writes them to a logic file (L-file). The global analysis
phase detects larger constructions in the diagram.

Local Analysis: Geometry To Logic

The analysis of the diagram proceeds in a bottom-up
fashion. First the individual objects in the diagram
are examined. The labels that are associated with
some objects are symbolic representations of the ob-
jects. Various types of labels are allowed in our sys-
tem, corresponding to the practices that we have en-
countered. The simplest label attaches a name to an
object, but more structured labels are possible, for ex-
ample, the label "¢ : R*(a,c)" indicates that the
labeled object is called c and that it has the property
R*(a, c). Other label forms that are allowed include
equalities such as a = f (b).

The analysis of the labels, as we have just seen, can
lead to some formulae being discovered, but the system
may obtain further facts from the geometric relation-
ships between the objects in the diagram. For example,
our expert system interprets a dot within a closed fig-
ure as the E relation and a closed figure completely
within another as the C_ relation.

In addition to arbitrary geometric relationships, re-
lationships may be stated explicitly. For example,
given an arc labeled with the formula "R" whose end
points are dots labeled a and b respectively, we infer
that the meaning of the arc is R(a, b). This is because,
in the language of our prover, "R" has the right form
to be a predicate symbol. An alternative reading is
possible, namely (a, / ER.This possible int erpreta-
tion is not eliminated completely by our system, but
it is deemed to be less likely (since R is not a legal
term in the syntax of our logic), and the preferred in-
terpretation is returned by the system. The rules for
interpreting arrows are similar to those for interpreting
arcs, except that the preferred interpretation of an ar-
row is as representing a function. For example, in the
SchrSder-Bernstein Theorem diagram (figure 5), an ar-
row labeled by the term "f" and end-points labeled "a"
and "b" will be interpreted as (a, b) E f, since f is 
constant term, rather than a predicate symbol, in the
& logic.

As another example, in the diagram of figure 5 we
use the device of dividing a circle into two parts by a
straight line. This indicates a partition of the set rep-
resented by the circle into two disjoint subsets. The
natural diagram might instead divide the enclosing set
by indicating a subset of that set using a second en-
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closed circle. GROVER would correctly interpret this
diagram as indicating that the enclosed circle repre-
sents a subset of the set represented by the enclosing
circle, but this would not cause the system to focus on
the remainder of the enclosing circle as an object in its
own right, which is what we need in the proof of the
SchrSder-Bernstein Theorem. We can imagine other
devices for dealing with this problem, for example the
use of shading to indicate the salience of the remainder
of the circle as an object.

Global Analysis: Verify Logic

The result of the local analysis of the G-file is a col-
lection of atomic formulae, which are implicitly con-
joined. We call this representation a Logic File (L-
file). Diagrams can represent more complex struc-
tures than a flat collection of atomic formulae how-
ever. These structures are detected in an analysis of
the L-file which we call verify logic. Verify logic is only
activated once the G-file representation has been com-
pletely interpreted as an L-file, so it is an operation
on logical formulae. In principle, the same processing
could be performed on the G-file representation, or in-
terleaved with the geometry to logic phase. From an
implementors point of view, however, it is simpler to
wait until the L-file representation is complete before
looking for higher-level structures.

The global analysis is implemented as a collection
of "critics", each of which looks for specific condi-
tions that might hold within the diagram, and mod-
ifies the logical representation appropriately. For ex-
ample, one of the critics implemented in GROVER is the
definition by cases critic.

The definition by cases critic is triggeredby the
presence of two equalities in the L-file of the form
x -- tl,x = t2, where x is an existential object, and
tl, t2 are arbitrary terms involving only universal ob-
jects. It is a general feature of diagrams that distinct
tokens represent distinct objects (token referentiality,
see (Barwise 1993)), and therefore such a pair of equal-
ities present a puzzle on the face of it. One explanation
is that the diagrammer is attempting to assert tl -- t2,
but the role ofx is then unexplained. The definition
by cases critic attempts to gather evidence that the
existential object x is being defined by cases, as under
some circumstances being equal to tl and under other
disjoint circumstances being equal to t2. If such evi-
dence can be found, the equalities z = tl and z = t2
are replaced by the critic with the more complex for-
mulae: P --~ z = tl AQ --~ z = t2, where P and
Q are possibly complex formulae representing the two
alternative conditions.

Example: The SchrSder-Bernstein
Theorem

The definition by cases critic plays a crucial role in
The SchrSder-Bernstein Theorem, a theorem from the
theory of functions which concerns the way in which

the "size" of sets can be measured. The SchrSder-
Bernstein Theorem states that if there is a one-one
function (an injection) from the set A into the B, and
a one-one function from B into A, then there is a bi-
jection between the two sets, i.e., a one-one function
from A onto B.

V f, g, A, B.Injection(f, A, B) A Injection(g, B, A) 
Bh.Bijection( h, A, B)

An intuitive proof of the SchrSder-Bernstein Theo-
rem would proceed as follows: The bijection h must be
some combination of of f and g-l, i.e., for each a E A,
h(a) will be either f(a) or g-l(a). The problem is
therefore to define a partition of A into sets A1 and A2
so that h behaves like f for members of A1 and g-1
on members of A2. Since h is to be a bijection, every
b E B will have to be in range(h). Therefore, if b is not
in range(f), then h-l(b) must be in A2. So A2 contains
g-l(B - range(f)). Moreover, A2 must be closed un-
der go f, because ifa E A2 then h(a) g-l(a), so h(a
cannot be I(a) unless I(a) = g-~(a). Therefore, 
f(a) : g-l(a), f(a) must be "hit" under h by some
other element of A, which can only be g(f(a)). So let
A2 be the smallest set containing g-l(B - range(f))
and closed under g o f, and let A1 be A - A~.

The diagram of figure 5 illustrates this strategy.

h=!f

!A

Figure 5: The Diagram for the SchrSder-Bernstein
Theorem

The diagram contains objects h, A1, A2 and C
whose existence must be proved, and in addition it
represents the definition of these objects.

The two arrows defining the function h in the dia-
gram, one arrow labeled h = f and the other labeled
h = g-1 are recognized by the definition by cases
critic as indicating a definition of the function h by
cases. The critic looks at the source points of the re-
spective arrows, to determine whether they indicate
that the function h is defined to be f on some sub-
set of its domain, and g-1 on the other subset of the
domain.

Three other critics are needed in the diagram-
matic proof of The SchrSder-Bernstein Theorem. The
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fu.~ction chains critic looks for information concern-
ing items at the end points of arrows, in order to con-
struct appropriate assertions concerning the relation-
ships between objects at the ends of these arrows. The
diagram of figure 5 contains universal objects al, a2, a4
and b3, whose role in the diagram is to serve as starting
points for function arrows. Since these are universal
objects, they are examplars for arbitrary objects with
the same properties that they themselves exhibit. The
function chains critic generalizes the formulae contain-
ing these objects to universal formulae.

b3, for example, is a member of C which is mapped
by the function g onto some member of A2. Rather
than view this structure as three distinct formulae,
b3 E C, (b3,a3) E f and 3 EA2, werecognise that
the geometric structure is intended to represent that
every member of C is mapped by g to some member
of A2.

The function chains critic examines the L-file for for-
mulae which match this pattern, constructing the ap-
propriate generalizations of the specific formulae. The
part of the diagram which is significant for this step is
shown in figure 6.

g

AI~ ! /~ rang~

!A !B

Figure 6: Function Chains

The result of applying the function chains critic to
the formulae just mentioned is the new formula:

Vb3.(b3 ̄  C ~ Vx.((b3, x) ¯ g ~ z ¯ )
The same critic notes that formulae a4 ¯ As,

(a4,b4) f, (b4,as) ¯ g and a5 ¯As indicate that
an arbitrarily chosen element in A2 maps under g o f
back into A2.

The formulae involving a4, b4 and a5 have the same
structure, except that this represents a chain of func-
tion applications. Again, the chain beginning with the
universal object is traversed, and the properties of the
beginning and end points of the chain examined. The
result is a universal formula which asserts that all start
points with the same properties as the exemplar are
mapped by the same chain, to end points with the
same properties as its exemplar.

The result of applying this critic to the chain is:

Va4.(a4 ̄  2 - -~
Vx, y.(((a4, x) ¯ f A (z, y) ¯ g) --* y 

These formulae capture the intent of the larger struc-
ture in the diagram, by aggregating facts recognized as
forming a pattern into an appropriate compound for-
mula.

On the basis of the formulae derived by the function
chains critic, the Closure critic recognizes that A2
1. contains the image under g of B - range(f),

2. and is closed under the composition g o f.

and therefore that A2 is (probably) intended to be the
closure of the given base set under the composition of
g and f. The crucial part of thediagram for this critic
is coincidentally identical to the part relevant to the
function chains critic, so consult figure 6.

The choice to consider A2 as the closure rather than
some superset of the closure is heuristic, but we believe
that this is generally likely to be the intention, partic-
ularly when no additional information about the set
is available, as in this case. The choice of A2 as the
closure means that we will add a formula to the L-file
indicating that A2 is a subset of all non-empty sets
with the properties 1 and 2. Note that this formula
does not imply that the set A2 itself enjoys properties
i and 2 above. A proof of this fact must be constructed
by the theorem prover later in the processing.

The closure critic adds the hint that A2 is defined
to be this intersection. This hint is used when the
individual goals of the strategy are constructed.

The final critic used in the proof is the generalize
domain and range critic, which is responsible for in-
ferring the intended domains and ranges of Function
assertions. In the diagram of figure 5, the only ar-
rows labeled by g have target points in A2, but we do
not know that g’s range is just A2. Indeed in the in-
tended proof, g is an injection into A. The generalize
domain and range critic examines the diagram look-
ing at all of the target points of arrows sharing the
same label. Having identified these end points the
critic identifies the largest graphical object contain-
ing all of these end points, and asserts this as the
set into which the function maps. This results in the
L-file formula Function(g, B, A2) being replaced by
Function(g, B,A), and Function(f ,A, range(f)) by
Function(f, A, B).

Like the closure critic, the action of the
generalize domain and range critic can be undesir-
able. It may over-generalize, since for example the in-
tended range of g may indeed have been A2, or under-
generalize, since the intended range of the function
may in fact not appear as a object in the diagram,
but may contain the inferred range. Experience with
other diagrams will determine which of these cases is
the most likely to occur, and the diagram cues that we
may use to determine the likely intended values for the
domains and ranges of sets.
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Other Approaches to Graphical

Theorem Proving

We are aware of work in graphical theorem proving by
Gelernter, Barwise and Etchemendy, and Pastre. We
try to identify both the similarities and differences of
our work with these other approaches.

Gelernter’s Geometry Machine

The concept of graphical theorem proving was intro-
duced by Gelernter in his Geometry Machine ((Gel-
ernter 1963; Gelernter & others 1963; Gilmore 1970)).
GROVER resembles the Geometry Machine (GM) in the
following respects:

¯ The diagram is used as a model of the goal to be
proven

¯ The diagram suggests constructions of terms that
are needed in the intended proof

Although GM is oriented specifically towards prov-
ing theorems in Euclidean Geometry (the prover uses
a set of axioms for Euclidean Geometry, which provide
the basis for proving the existence of needed terms),
Bundy has shown how the approach can be applied to
other domains if one replaces the concept of "diagram"
with the concept of "model" ((Bundy 1983), pp. 142-
149). The principal difference between the Gelernter
approach and GROVER concerns the way in which the
graphical information is used. In GM, the diagram is
consulted in order to guess bindings that will prove the
current subgoal. It is assumed that if the instantiated
subgoal is true in the diagram, it may be provable.
tROVER offers a different form of guidance: the advice
takes the form of specifying the subgoals themselves.
Thus with tROVER the high-level structure of the proof
is determined by the diagram.

Bundy’s generalization of GM provides a method of
pruning irrelevant formulae from the proof. In terms
of &, this would mean discarding a conclusion Ci of
a goal sequent A1 .." Am b C1 "’" C,, if the model can
be used to refute Ci, that is, if variables of Ci can be
bound to elements in the model in such a way that
the instantiated form of Ci is false in the model (it
must be remembered here that the variables in & play
the role conventionally played by constants in other
provers, and that schematic terms in & play the role
conventionally played by variables). There is no ex-
plicit analog to Bundy’s method in tROVER, but we
believe that it is implicitly present because the dia-
gram itself is what suggests the subgoals; thus the Ci
are already known to be true in the diagram.

Barwise and Etchemendy’s Hyperproof

The work of Jon Barwise and John Etchemendy in
graphical reasoning stems from an underlying belief
that visual information is frequently a more effec-
tive medium for reasoning than is text ((Barwise 

Etchemendy 1994; 1990b)). They present several ex-
amples to illustrate this point. They have been devel-
oping a theoretical foundation for this work in the form
of an algebraic theory of infons, that is, information
that can be manipulated independently of the specific
representations it may take. One of its key results is
the identification of five basic rules for manipulating
information, which provide the basis for the applied
work ((Barwise & Etchemendy 1990a), Section 

On the applied side, they have developed a sys-
tem called Hyperproof which allows the user to reason
about the blocks world both graphically and with for-
mulas. A subsequent version of ttyperproof, which will
support a more general class of problems, is now being
developed.

Hyperproof is a purely interactive tool, i.e., a proof
checker, rather than as an automatic prover such as
GROVER. The user can invoke either standard logi-
cal inferences on formulas, which are displayed at the
bottom of the screen, or graphical inferences on the
diagrams. These two forms of reasoning can be inter-
leaved. For example, the user can perform an oper-
ation that splits a diagram into two alternative dia-
grams, each with more information than the original
one (proof by cases), and an operation that merges two
diagrams into a single diagram containing the informa-
tion common to both. The graphical inference rules
supported by ttyperproof are formulated at a fairly
low level, comparable to those of first order logic. Nev-
ertheless, the graphical inferences serve to elide what
would otherwise be large blocks of logical inferences.
The reason for this power is that the diagrams com-
press a lot of information into a concise representation.

The high level goals of tROVER and Hyperproof
are quite compatible. The implementation approaches
seem to reflect different priorities. The emphasis in
GROVER has been on the heuristic elaboration of very
high level inferences (that is, translating high level
claims by the user, which are expressed graphically,
into formal proofs), so that the tool becomes a vehi-
cle for discovering, expressing, and verifying proofs at
a high level. The emphasis in Hyperproof is on the
use of diagrams as a concise representation of com-
plex situations, so that the tool facilitates human rea-
soning about such situations. In addition Hyperproof
embodies a formal model of reasoning with diagrams,
in which inference rules may diagrams as hypothe-
ses and/or conclusions. In tROVER the diagram is a
heuristic, meta-level device which plays no formal role
in the eventual proof.

More specifically, the salient differences between Hy-
perproof and GROVER can be summarized in terms of
capabilities found in one but not the other. The key
features of tIyperproof that are not now supported by
GROVER are:

¯ Graphical inference operations

* Dynamic interaction of the user with the diagram
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The graphical inference operations support the dy-
namic interaction by enabling the user to, in effect,
"draw" individual proof steps. The diagram in Hyper-
proof is thus an intrinsic part of the interactive reason-
ing process, manifested in the graphical inferences.

The key features of {]ROVER that appear to be absent
in Hyperproof are:

¯ Ability for the user to assert an existential claim
graphically

¯ Automated construction of strategies to prove these
claims

There is no provision in Hyperproof for the user to
add to a diagram an object whose existence must then
be proven as a subgoal. In Hyperproof the initial di-
agram represents the problem situation about which
some claim is to be proven; the graphical inferences
represent logical inferences on these situation descrip-
tions. In contrast, GGROVER provides the user with
a graphical means of specifying subgoals of the form
3x.P(x) whose proofs will assist in the proof of the de-
sired theorem. It is this form of argumentation that
we have emphasized in {]ROVER.

The way in which {]ROVER processes such user
input--the construction of a strategy--is another key
difference. (}ROVER heuristically processes the graph-
ical information to construct an existential assertion,
which is then passed to the underlying theorem prover.
The construction of these assertions is a non-trivial
task since it involves selecting, from all of the informa-
tion in the diagram, those facts that are relevant to the
object x and that should be included in the assertion
P. For example, in the proof of the Diamond Lemma,
the existential solve heuristic collects all those atomic
facts that refer to x and to no other object that has
not yet been defined.

The two approach are complementary. In Hyper-
proof the diagram is used as a presentation device that
makes it easier for the user to reason from a situation
(the assumptions of the theorem) to the desired con-
clusion. In the current implementation of GROVER, we
assume that the user already has a high level proof
strategy in mind--in particular, a series of existential
subgoals-- and that this strategy is most easily ex-
pressed by means of diagrams. Thus the challenge in
{]ROVER is for the machine to interpret this graphical
expression and derive a best guess at what the user
has in mind, and then to carry out the laborious and
error-prone details of the proof.

DATTE - The Work of D. Pastre

Pastre has described a theorem prover which uses di-
agrams to aid the proof of theorems, (Pastre 1977),
however this work is quite different from ours. The
diagram in Pastre’s theorem prover, DATTE, is an in-
ternal representation of the formulae that the theorem
prover is currently manipulating rather than something

that the users provides to guide the prover, as in our
case.

The chief similarity between our proposal and Pas-
tre’s work is the use of graphical inference rules. In
DATTE, various definitions are expressed as "statement
rules", which cause the internal diagram to be modi-
fied. For example, if the diagram represents a _ b and
x E a then the diagram is updated to represent x E b.
This is rather like our proposed graphical inference
rules. The major difference is that, in our case, the
user provides the diagram as guidance for the prover,
and the system views it not only as a representation
of formulae, but also as a proof strategy. DATTE’s dia-
gram represents only those formulae that are known to
be true at a particular point in the proof, not hypothet-
ical information or goals to be proved as in {]ROVER.

Conclusions
We have described various issues that arise when an au-
tomated system tries to interpret a diagram as a math-
ematical proof. In our investigation of three theorems
whose proofs require different techniques -- transfi-
nite induction, mathematical induction, and set the-
ory, respectively -- we found that a common element
is the decomposition of the proof into a series of ex-
istence proofs; the diagram suggests the conditions to
be proven in "solving" for successive objects. The di-
agram also suggests the degree of relevance of each
previously solved for object to the current existence
proof, thus providing a tractable set of hypotheses to
be used in each lemma. Finally, patterns in the dia-
gram may suggest higher-order abstractions that are
crucial in proving the theorem.

Eventually, our goal is to develop a system that will
foster the development of proofs by students of mathe-
matics and even by working mathematicians. By rais-
ing the level of the conversation to the types of abstrac-
tions contained in diagrams, a theorem proving system
could serve as a kind of surrogate colleague with whom
ideas are tested and the implications of different con-
structs explored, aROVER, in its prototype state, is
a long way being such a system, but it is a start at
uncovering the kinds of meaning embedded in a math-
ematical diagram.
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