From: AAAI Technical Report FS-97-03. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Formalization of Visual Mathematical Notations

Bernd Meyer
bernd.meyer@acm.org
Ludwig Maximilians Universitst
Insitut fiir Informatik
Oettingenstr. 67
D-80538 Miinchen, Germany

Abstract

This paper discusses picture logic, a visual lan-
guage for the specification of diagrams and dia-
gram transformations. Formal specification tech-
niques for diagrammatic or visual languages have
previously mainly been targeted towards static
diagrammatic languages. For reasoning about
certain types of diagrams, however, formalizing
a notion of change is inevitable. This is par-
ticularly true of visual mathematical notations
whose evaluation rules or consequence relations
correspond to visual or graphical transforma-
tions. The paper presents constraint-based ex-
tensions of picture logic which render it suitable
for the specification of such diagram notations
and the required transformations.

Diagrammatic Reasoning and
Formalizations

In computational diagrammatic reasoning, we can dis-
tinguish between reasoning about diagrams and rea-
soning with diagrams. We can either use non-visual
computational methods to reason about diagrams or
we can use computational reasoning methods that are
themselves diagrammatic in nature but not necessarily
applied to a diagrammatic domain. Of course, both di-
rections can also be integrated into reasoning about di-
agrammatic domains with visual computational meth-
ods. This seems to be a very natural and promising
extension, for if we aim at using diagrams as reason-
ing tools one of their natural places should be where
the domain of reasoning is diagrammatic itself. Such
an integration of reasoning with diagrams about dia-
grams will be discussed in this paper. We will present a
diagrammatic logic language for the formalization and
animation of diagrammatic notations.

There has been considerable discussion in the vi-
sual language community, whether a strict formaliza-
tion of diagrammatic languages is really necessary or
even useful at all. While the supporters of a formal
approach generally maintain that only formal defini-
tions of visual languages allow the creation of flexible

58

tools like parsers and compilers, the arguments most
often heard against such formalizations criticise the in-
flexibility and inefficiency of meta-environments that
are directly based on formal language definitions. No
matter which of these position one supports, it is clear
that within the realm of diagrammatic reasoning some
areas cannot live without a proper formalization of di-
agram languages. Our chief witness are visual math-
ematical notations, such as Venn Diagrams and Euler
Circles, Peirce’s a-B-Calculus, various visual notations
for Church’s A-calculus (Citrin, Hall, & Zorn 1995;
Keenan 1995) and boundary logic (Bricken 1988). Sev-
eral technical notations, e.g. State Charts (Harel 1988),
and declarative visual programming languages, e.g.
Pictorial Janus (Kahn & Saraswat 1990), also fall into
this category. It is perfectly clear that if we want such
notations to be fully valid theoretical tools they have
to be adequately formalized.

Despite the fact that visual reasoning and intuition
is often one of the major factors in mathematical dis-
covery, the conviction of most mathematicians is that
visual methods can only serve as inspiration for discov-
ery and as illustrations for proofs but are not permissi-
ble as proofs themselves, because they are not based on
a well-defined, closed set of reasoning methods.! Nev-
ertheless, the potential that visual expression bears for
mathematical language and even mathematical proofs
has been realized and has been demonstrated several
times. A superb collection of examples is (Nelsen
1993), but even the introduction to this book states
that “of course, 'proofs without words’ are not really
proofs”.

In recent years some ground breaking approaches
have attempted to establish the status of diagrammatic
notations as fully valid mathematical reasoning devices
by rigorously formalizing them (Hammer & Danner
1993; Hammer 1993; Shin 1995; Barwise 1993). While

'For a discussion see (Allwein & Barwise 1993; Shin
1995).

representing a big leap towards establishing diagram-
matic notations as valid mathematical reasoning sys-
tems, they all were aimed at some particular diagram-
matic system and the formalization methods chosen
were targeted towards this specific system. A general
framework or meta-language for the definition of di-
agrammatic mathematical notations has not yet been
established and most of these approaches do not give
rise to a computational implementation.

Another branch of diagrammatic reasoning that
would benefit from the existence of a formal meta-
language from a more practical point of view is found
where typical Al reasoning techniques are applied to
diagrammatic notations. Examples are the interpreta-
tion of classroom-style physics or geometry diagrams
(e.g. (Chandrasekaran, Narayanan, & Iwasaki 1993))
and reasoning about board games (e.g. (Anderson
1996)). While a large variety of reasoning tools is
readily available, the integration with visual domains
normally has to be hand-crafted. A diagram meta-
language which can be integrated with reasoning en-
gines would greatly facilitate such work.

A logic-programming based approach seems an ex-
cellent candidate for such an integration and at the
same time offers a basis for formally well-defined di-
agram specification and manipulation. Logic-based
specification methods have already proven their suit-
ability for linguistic representations and their princi-
ples can be extended into the domain of diagrams by
making pictures a new domain for logic programming.
The current paper explores the possibilities of such a
logic-based framework. It presents a visual logic pro-
gramming language for diagram handling, which is a
diagrammatic language itself, and discusses its appli-
cation to the definition and evaluation of visual math-
ematical notations.

A Method for the Formalization of
Static Diagram Notations

Extensions of logic grammars have been used before
to specify visual languages (e.g. in (Tanaka 1991;
Marriott 1994; Ferrucci et al. 1991; Bolognesi &
Latella 1989)). Our approach extends this idea and
provides a more general integration of logic program-
ming with visual expressions by integrating diagram-
matic structures as first class data into a full constraint
logic programming framework. This integration, called
picture logic, has undergone several revisions in the last
years. It was born as a visual set rewriting mechanism
integrated into Prolog (Meyer 1992) based on picture
matching instead of unification. Full picture unifica-
tion (Meyer 1993; 1994) was added later to allow a
tighter coupling with logic programming. Experiences

59

with this formalism have shown that plain logic pro-
gramming is only sufficient as the basis of the frame-
work, when its usage is restricted to syntactic diagram
specification. Used for the transformation of diagrams
two shortcomings are revealed: (1) For flexible geom-
etry handling a tighter coupling with arithmetics is
required. (2) Dynamic changes in pictures can lead
to temporary inconsistencies in a picture description
which can only be resolved at a later derivation stage.
Unfortunately, a deduction technique based on simple
resolution refutation fails as soon as these inconsisten-
cies occur and does not allow to resolve them at a later
derivation stage. To solve these problems two exten-
sions were made to the framework which are presented
in this paper: (1) A transition from logic programming
to constraint logic programming permits a close inte-
gration with arithmetics and thus allows to handle ge-
ometric properties properly. (2) A meta-programming
technique is used to support transient inconsistencies
which can be resolved at later processing stages.

We first review the basic framework. The general
idea is to introduce a new kind of term structure for
the description of diagrams into logic programming.
These new terms, called picture terms, are diagrams
themselves and have to be regarded as partially speci-
fied example pictures much like normal terms in logic
programming are partially specified terms. Embedding
these terms into a logic programming language we ob-
tain a diagrammatic logic language for the specification
of diagrams.

Picture terms consist of visual constants (picture ob-
jects) and visual variables (for picture objects).?2 Ob-
jects and variables in a picture term are in implicit
spatial relationships that can be inferred from the de-
piction of the term. An underlying formal model for
picture terms are graphs with typed object nodes and
typed relationship edges according to the definition of a
picture vocabulary V = (OT, RT) of graphical object
types OT and spatial relation types RT. Addition-
ally a background variable (depicted as a solid frame
around the term) can be used to denote an unknown
context analogously to a list rest in normal logic pro-
gramming. A second context variable, called frame
(depicted as a dashed frame around the term) is used
to denote the set of spatial relations between objects in
the background and foreground objects. Assuming a
vocabulary defined as ({circle, line, label}, {touches :
circle x line, attached : label X line}), Figure 1 shows
a picture term and the picture term graph to which it
corresponds.

2We adopt the usual convention that variable names
start with uppercase letters, constants with lowercase
letters.

cirle c1 cirle c2
touches
touches
li label la1
ine 11 attached

Figure 1: A Picture Term Graph

Every picture object can have an arbitrary number
of attributes. A circle ¢, e.g., could have attributes
c.center — point? and c.radius — real. Attributes
can be any (possibly partial) data structure carrying
additional information for geometry handling or inter-
pretation purposes.

Picture terms are integrated with logic programming
by defining a second kind of unification that is applied
to picture terms. This unification performs a subgraph
unification by finding a variable substitution 7 (called
projection) for picture object variables that makes two
picture term graphs identical up to some context which
is contained in the background variable. It essentially
solves the following simplified equation for :

7n(P®B®F)=n(PP®B & F)

where < P,B,F > and < P’/,B’, F' > are the pic-
ture terms to be unified. P (P’) is the graph corre-
sponding to the explicitly given picture objects and
their relations (the foreground), B (B’) is the graph
corresponding to the background, the frame F (F') is
the set of relation edges connecting nodes in P (P’)
with nodes in B (B'), m is the variable projection,
and @ is a merge operation for graphs. It is impor-
tant to note that both context variables, background
and frame, are partial data structures, i.e., an existent
background or frame can be extended by new objects
or relations during unification.

With picture unification, picture terms can be used
in a logic program anywhere a normal term can be
used. The rule in Figure 2, for example, is taken from
a specification that defines the language accepted by a
nondeterministic finite state automaton solely by ap-
plying visual transformations.

One advantage of such a specification is that it can
be used for animation of diagrams without extra costs.
If, for example, the instantiation of the first argument
of accept is visualized for each inference step, then an
animated execution of an NFA results.

Here is the point where geometry and thus arith-
metic constraints come into play: When the above
rule is applied, which moves the marker from one
state to the next state, the actual coordinates of the

60

new marker position are unknown. Since formally the
transformation of the picture is only given by a trans-
formation of the corresponding picture term graph, we
only know that the point P is no longer inside of C1
but now inside of C2. Picture term graphs define only
abstract spatial relations; nothing is known about the
absolute coordinates which are needed if the term has
to be visualized. Of course, in this trivial case it would
be easy to make an assignment to the new coordinates
of P by simply computing the center of C2, if its co-
ordinates are known. However, in general this is not a
good idea for two reasons: (1) Arithmetics is poorly in-
tegrated with normal logic programming and conflicts
with backtracking, unbound variables, etc. (2) In more
complicated cases it is not always possible to calculate
geometric properties on the spot. In the above case,
e.g., we might only know that P has to be inside of C2
but not where exactly it is located within C2. Putting
it simply into the center might generate a layout that
conflicts with other objects which could be put into
C?2 later. Therefore a more general form of integration
with geometry is required.

The transition to a constraint logic framework en-
ables us to achieve this by giving the spatial relations
geometric, i.e. arithmetic, interpretations defined on
relevant attributes of the involved objects. Every rela-
tion type in the vocabulary can either have an interpre-
tation or be uninterpreted (in which case it is handled
as a purely abstract relation object like above). An in-
terpretation is defined by a normal CLP-clause involv-
ing arithmetic constraints. The inside : point x circle
relation is, e.g., interpreted as:

interpretation(inside(P, C)) :-
distance(P.center, C.center, D)
& D + P.radius < C.radius.

This interpretation of inside enforces the fact that the
point is completely contained in the circle, but does
not give it a definite position. Interpretations can also
be symbolic, not directly involving any constraints:
interpretation(left_touching(X,Y)) :-
touching(X,Y) & left_of(X,Y).

During the unification of pictures the interpretations

of relations are enforced. For every relation in a picture

S

——y

accept(

_A%O o1+ [WIWs]) - P2=

accept(P2, Ws).

Figure 2: A Picture Logic Rule

that is the result of some unification the interpretation

attached to this relation is evaluated. By this the uni-

fication is effectively constraining the values of the at-
tribute variables of the involved objects. Our language
is based on a logic programming language that directly
handles constraints over real intervals, CLP(RI) (Older
& Vellino 1990), so that we can leave the actual con-
straint solving entirely to the underlying LP language.

We now have introduced a new, additional source
why a unification can fail: if the interpretations of
some relations in the picture are not compatible, the
underlying constraint solver will detect the inconsis-
tency and reject the unification. For example, without
interpretations, a picture term could well contain the
relations inside(X,Y) and outside(X,Y’) at the same
time, because they are handled as “meaningless”, un-
related predicates. With an appropriate interpretation
the contradiction will be detected. In short, if every re-
lation has an appropriate geometric interpretation no
geometrically inconsistent pictures can occur.

Of course, the designer of a specification has to take
care not to produce an over-constrained system of vari-
ables, since the derivation would then simply fail, as
is the normal behaviour of a CLP-deduction. For an
over-constrained system to produce a solution, some of
the conflicting constraints have to be (automatically)
relaxed. This can, for example, be achieved by extend-
ing the CLP-paradigm with hierarchical constraints
such as in the HCLP-framework (Borning et al. 1989;
Wilson & Borning 1993). As yet we have not investi-
gated methods to support over-constrained specifica-
tions in our framework. A good overview of recent
research into over-constrained systems can be found in
(Jampel, Freuder, & Maher 1996).

Under-constrained systems, on the other hand, are of
no harm to the derivation, but they do not produce suf-
ficiently instantiated geometric variables for a concrete
layout of the picture. If an under-constrained picture
has to be displayed, the geometric attributes have to be
instantiated with concrete values first. In the simplest
case the underlying constraint solver can be forced to

61

instantiate the geometric attributes with concrete val-
ues. Since the CLP(RI) solver works on real intervals,
such a function can readily be achieved by an interval
splitting algorithm and is indeed part of the CLP(RI)
system. Of course, this will only produce some “ran-
dom” solution that is consistent with the given con-
straints. There is no control over which layout is pro-
duced if several are possible. For more complicated
cases specialized domain-specific layout modules have
to be used that generate a “good” layout for an under-
constrained picture. Such layout techniques are well
investigated for some application areas, in particular
for graphs. Since they are typically based on highly
specialized algorithms, they can not readily be fully
integrated with the basic framework and their use has
to be confined to a dedicated output phase.

Problems in the Formalization of Visual
Evaluation

We now take a closer look at the constraint-based ex-
tensions in the context of picture transformations. We
have already said that a picture in which all relations
are interpreted can no longer contain any inconsis-
tencies. Unfortunately, there are cases where temgpo-
rary inconsistencies are unavoidable or even desirable.
These occur, for example, during picture transforma-
tions that are related to the evaluation of visual math-
ematical expressions.

When formalizing evaluation rules or consequence
relations for visual mathematical notations, we often
have to manipulate several graphical objects in a single
step. In a rule-based model it is quite common for such
transformations to be expressed in several rules each
of which transforms only a part of the object set con-
cerned. Intermediate transformation results, in which
some of the objects are already modified, while others
still have their original form, may well be meaning-
less, undefined, or even contradictory. In consequence,
some kind of transaction concept is required, where
the application of some set of transformation rules is
regarded as an atomic transaction which may produce

M

incorrect diagrams in intermediate steps but has to re-
store a well-defined state at its end.

We will use the visual A-calculus VEX to illustrate
this point. A complete discussion of VEX is beyond
the scope of this paper and can be found in (Citrin,
Hall, & Zorn 1995). A VEX-expression consists only
of circles and lines. Textual labels may be used to
improve readability, but they do not have any seman-
tic meaning. In VEX an isolated circle represents a
variable. A functional abstraction is represented by
enclosing its body completely in another circle which
does not touch any circles that belong to the body. The
formal parameters of an abstraction are given as cir-
cles touching the abstraction circle from the inside.3
Lines which connect circles are used to declare the
identity of two graphical objects. A special rule for
variables says that their corresponding circle has to be
depicted on the level of graphical inclusion on which
the variable is free. This graphical instance is called
the root of a variable. Copies of the variable may ap-
pear in arbitrary positions of the expression and are
connected to the root by identity lines. A function
application is depicted by letting the applied function
and the operand touch from the outside and drawing
an arrow from the function abstraction to the actual
parameter. The VEX expression in Figure 3 therefore
represents the expression (Az.z)y. A complete trans-
lation of VEX into textual A-calculus can be specified
in only eight simple picture logic clauses.

Evaluation of VEX expressions is defined by graph-
ical transformations. Informally speaking, the graphi-
cal B-reduction rule for VEX is defined in the following
way: (1) The arrow is redirected from the functional
abstraction to the formal parameter, (2) the circle rep-
resenting the functional abstraction is removed (3) the
formal parameter and the actual parameter are merged
and variable links are shrinked accordingly. The order
of these steps is irrelevant. The complete G-reduction
of (Az.z)y is therefore given in Figure 4.

Here we can observe two facts: (1) When performing
the steps of a B-reduction separately, the intermediate
states are not semantically well-defined diagrams and
(2) intermediate steps obtained by the manipulation
of single objects may even generate geometrically ill-
defined pictures. Let us look at the second case more
closely. Assume we are merging the formal parameter
with the actual parameter before removing the circle
of the functional abstraction. This is basically done by
removing the formal parameter and substituting the
actual parameter in its place. A naive approach to
solve this problem is given by the rule in Figure 5. Re-

3We are using a pure version of VEX here that allows
only abstractions over single parameters.

62

member that the two rectangles labeled B and F are
not picture objects but the context variables for back-
ground and frame. We apply this rule to the VEX
diagram given in Figure 3. Since picture unification
automatically maintains the context relations between
picture elements, the line from the root node y to the
actual parameter will automatically follow the merg-
ing, because the actual parameter C2 to which it is
connected is moved. Thus the pictures before and af-
ter the application of this rule are given by Figure 6.
What happens to the line connecting the root node y
and the actual parameter? Call this line I. A reason-
able picture vocabulary for VEX contains the spatial
relations touches : line x circle, inside : line x circle,
inside : circle x ‘circle, outside : line X circle and
outside : circle x circle. Given this vocabulary, the
picture before the rule application will contain the re-
lations outside(l, C1) A touches(l,C2). After the rule
application it will still contain both these relations,
since | has not been changed explicitly. But in ad-
dition it will now contain inside(C1,C2). The entire
set of relations thus has become geometrically inconsis-
tent: outside(l,C1) Atouches(l, C2) Ainside(C1, C2).
If the spatial relations are interpreted geometrically,
and we have argued above that they have to be inter-
preted, this geometric inconsistency will be detected
by the unification and the derivation will be rejected.
The rule is therefore not applicable.

Note that this is only a local conflict that would
be resolved at the end of the transformation once the
functional abstraction circle is removed.

While one can find workarounds to avoid generating
this simple inconsistency, this is not always possible in
the general case. More importantly, the above rule ex-
presses quite precisely and directly the transformation
we have in mind so that it would be preferable if we
can extend our framework to accommodate such tem-
porary inconsistencies as long as a consistent state is
restored at the end of a transformation.

A Method for the Resolution of
Temporary Conflicts

We will now present an extension to picture logic that
allows to detect and handle temporary inconsistencies.
For the sake of a more concise discussion we will use
a simplified example diagram language bozes in the
following. The sentences of bozes consist of rectan-
gles and circles. Circles are connected to a single
“parent” rectangle by a line, and circles sharing the
same parent may be interconnected by arrows. The
desired transformation of bozes is to move all circles
into their parent boxes while maintaining their inter-
connections. Thus the picture on the left hand side of

a2

Figure 3: The VEX Expression (Az.z)y

(¥ - P - ° -

Figure 4: VEX S-Reduction

Figure 7 is a sentence of boxes and the right hand side
is the desired transformation of this sentence. Like
above a naive approach to formalize the transforma-
tion consists only of the two clauses in Figure 8 with
the vocabulary ({circle,rect,arrow,line}, {startsat :
arrow X circle,endsat : arrow X circle, inside : O; x
rect,outside : Oy X rect, attached : line x O3}), where
01 = circle U arrow U line, O3 = rect U circle. Since
context relations are maintained automatically we do
not need to worry about handling the arrows at all.
Just swapping the boxes inside of their parent box,
the arrows are following them automatically, since the
startsat and endsat relations are maintained. How-
ever, we are facing the same problem as above. When
moving the circles one by one the first rule applica-
tion generates the state given in Figure 9. Thus the
picture contains the original relations outside(A4, R) A
endsat(A,C) and the new relation inside(C, R) which
are contradictory.

The basic idea of how the problem of temporary con-
flicts can be solved is to define an extension of picture
unification which can succeed despite of conflicts. For
the unification to remain a consistent operation the
conflicts have to be identified and removed from the
picture term. Unification then has to yield the conflict
set explicitly so that it can be handled by the remain-
der of the specification.

In order to achieve this we extend the notation of
picture terms. Let P be some picture term, then the

63

term P&C denotes the picture term and its associated
conflict set C. Unification of two picture terms without
conflict sets remains the same as above, but it behaves
differently with conflict sets. First we have to analyze
where conflicts can be detected: (1) Conflicts can only
be detected during the evaluation of relation interpre-
tations. (2) No conflicts can arise only from the eval-
uation of relations directly given in the foreground of
some picture term. Since the foreground has a consis-
tent geometric interpretation (it was given as a picture
in the first place!), the relations in the foreground must
have a consistent spatial interpretation. (3) Conflicts
therefore have to be detected during the interpretation
of relations in the background or frame.

If a conflict between two relations r; A 9 occurs and
neither of them is in the foreground we have to define
which of them is preferred, i.e., is kept in the picture
term. The less preferred relation will be put into the
conflict set. This is achieved by defining a partial order
over the relation types in the vocabulary so that r;
is preferred over ro if 7y < 72. For the purpose of
our example it is sufficient to define startsat, endsat <
inside, outside.

We can now extend unification in the following way:
To evaluate unif{ PT, PT") for picture terms PT =<
P,B,F > &C1 and PI" =< P',B',F' > &C?2 the
subsequent steps are performed:

1. Set the current conflict set C := C1

eval(

B
%
> | .
‘2 i, X) :~ eval(

B
. .
. ’X)

Figure 5: A Naive Approach to Define S-Reduction

=

S

Figure 6: Diagram Instances before and after Rule Application

2. Find a projection 7 such that
7(P®BO®F)=n(P' @B & F')

This is the usual picture unification without con-
straints.

3. Evaluate the interpretations attached to all the re-
lations in P’

4. For every interpreted relation r in B’, in the se-
quence defined by their partial order, evaluate its
interpretation. If the evaluation fails, a conflict is
detected. In this case let B’ := B’ — {r} and C :=
C +{r}.

5. Repeat the last step with F” in place of B’.

6. If C2 is a variable or C = C2 then succeed with
c2:.=C.

7. Otherwise fail.

Note that unification with conflict sets has become
a directed operation. New conflicts can only be in-
troduced in PT” but not in PT. The conflict set is
an aggregative structure and C2 will contain all con-
flicts from C1 plus the new conflicts that were caused
by the unification. A conflict-free picture can still be
enforced by using an empty conflict set for the second
argument. We now have simple means to realize the re-
quired “transaction” concept: during the transaction
temporary conflicts can be gathered in a conflict set
and at the end of the transaction a unification without

64

conflict set is used to ensure that a consistent picture
state has been restored.

Let us now look at the transformation of our ex-
ample language bozes again. If we extend the first of
the above transformation clauses with conflict sets like
shown in Figure 10, it is easy to verify that after it has
exhaustively been applied, the required transformation
is achieved, but the conflict set contains the relations
outside(A, B) for all arrows A and their respective par-
ent boxes B. Thus the original second clause, which
has an empty conflict set, is not applicable. It would
be possible to simply drop the conflict set when call-
ing the second clause, but any control would be lost
over whether the conflict set indeed contains only the
anticipated conflicts. We therefore introduce a special
predicate resolve for controlled conflict resolution. Its
first and fourth arguments are picture terms together
with their conflict sets, the second argument is a pic-
ture term describing a conflict item, and the third ar-
gument is a picture term describing how the conflict is
resolved. resolve matches all relations which are given
in the second argument with the conflict set of the
first argument. If the match is successful it removes
the matched relations from the conflict set of the first
argument and adds all relations given in the third ar-
gument to the picture term of the first argument. The
modified picture term and the modified conflict set are
returned in the fourth argument. resolve fails, if the
match of the relations in the second argument with the
conflict set of the first argument fails. Using this pred-
icate we can replace the original productions as shown

™

%

N

Mo-

Figure 7: The Example Language bozes

trans(O

trans(X, X).

, X) :- trans(O , X) .

Figure 8: A First Approach to Formalize the bores Transformation

in Figure 11.4 resolve is used to move all arrows with
outside-conflicts from the outside of the rectangle to
the inside. The new production set will now perform
the intended transformation and the derivation would
still fail as required if additional conflicts would occur
that have not been defined in the specification. In this
way global consistency is still maintained.

As we can see from the abstracted example we now
have the means to define diagram transformations like
those that occur in the S-reduction of the visual A-
calculus VEX. The combination of constraint-based
extensions and temporary conflict resolution therefore
makes picture logic applicable to the definition and
evaluation of the diagrammatic mathematical nota-
tions we were looking at.

Implementation

A complete implementation of basic picture logic as a
fully interactive graphical system exists. The system
consists of a Lisp-based frontend and a Prolog-based
backend and serves as both, a compiler and a runtime
environment. Diagrammatic input can be given with
an object-oriented graphics editor or it can be sketched
on a pen-tablet.

Since the underlying unification mechanism utilizes
full graph unification (implemented by set partition-

4The notation “P1l:Picture-Term” used in the second
clause introduces the variable P1 as a shorthand for the
depicted term.

65

ing), it is clear that high execution costs are involved.
Particular attention has to be paid to the fact that pic-
ture unification is a non-deterministic operation, since
it is impossible to define a unique most general unifier.
While full picture unification is desirable for the use
as a specification language, it is actually not utilized
in most picture logic programs. In the cases we have
explored, it is sufficient if unification deterministically
yields a single unifier. Significant speed improvements
have been achieved by introducing committed choice
unification which implements this restriction.

Prototyped versions of the constraint-based exten-
sions have been implemented in CLP(RI), but are not
yet fully integrated with the interactive environment.

Since normal constraint logic programming lan-
guages are unable to delete constraints, we have to sim-
ulate this by meta-programming techniques which re-
quire frequent re-evaluation of constraints. We are cur-
rently exploring the integration of a constraint-solver
that allows to delete constraints (Helm et al. 1995)
into the system. Such an integration would promise
significant performance improvements.

Related Work

There is a solid body of work on the formal specifica-
tion of visual languages which mainly is based on gram-
mars. A discussion is beyond the scope of this paper
and can be found in (Marriott, Meyer, & Wittenburg
1997). In general, grammar-based methods appear un-

-

N

Figure 9: Intermediate State in the bozes Transformation

C

trans(—O

& Cf , X) :- trans(O

& Cf, X) .

Figure 10: Revised Transformation Rule for bozes

suitable as-a basis of reasoning, mainly for three rea-
sons: (1) Grammars, especially context-free grammars,
have limited expressiveness and are not suited for ex-
pressing reasoning processes directly. (2) Grammars
are aimed at one-step processing tasks like parsing.
Dynamic changes in diagrams are difficult to integrate.
Such dynamic changes typically occur in diagrammatic
reasoning when reasoning about sequences of diagrams
like diagrammatic proofs or as a result of user inter-
action. (3) Grammars are difficult to integrate with
general reasoning methods except for as isolated black-
boxes which allow only very limited interaction with
the other components.

In (Gooday & Cohn 1996) a spatial logic based on
Clarke’s point calculus (Clarke 1981) is presented and a
specification of the visual programming language Pic-
torial Janus is given. This approach is aimed at the
specification of execution, too, but only single execu-
tion steps can be specified, since the framework does
not have an underlying notion of state or sequence.
No computational implementation is discussed and this
approach does not lend itself easily to an implementa-
tion, since it is based on full first order logic and point
sets.

Another logic ‘approach to diagram specification
is presented in (Haarslev 1997). It is based on
description-logic extended by concrete geometric do-
mains and arithmetic constraint. solving. While this
system presents a powerful method for the specifica-
tion and analysis of diagrams, it is not aimed at trans-
formation or animation.

Logic-based approaches to visualization are either

66

oriented towards generating layouts for static pictures
(Kamada & Kawai 1991) or based on procedural no-
tions of algorithm animation (Takahashi et al. 1994),
whereas we are aiming at animation as an automatic
side effect of the declarative specification of diagram
languages.

None of the approaches discussed in this section is a
diagrammatic language itself. We feel that it is impor-
tant to explore diagrammatic languages as specifica-
tion languages for visual notations, because diagrams
as a tool for formal reasoning should be particularly
useful when applied to spatial domains.

Conclusions

‘We have presented picture logic, a visual logic language
for handling diagrams. Its major distinguishing fea-
tures are that it uses the expressive power of visualiza-
tion within the specification formalism itself and that
the same specification framework can be used for speci-
fication, translation, transformation, and animation of
diagrams. In contrast to grammar-based approaches,
picture logic, being a full logic programming language,
offers good opportunities for the integration with other
reasoning methods.

This paper has in particular looked at the evaluation
and animation of visual mathematical expressions as
a special application area and has defined constraint-
based extension of picture logic that allow to handle
this domain.

In the same way consequence relations in visual logic
notations like Peirce’s a-f-calculus or Shin’s extended
Venn Diagram Systems should be formalizable. We

1

[F F
c |1 E
trans(—O g & Cf, X) :- trans(] | |, ‘1| l&ct X) .
5 F
trans(P1:/| O«2O | | & Cf1, X) :-
C1 c2
“« A
R «- A R
resolve(P1&Cf1, , , P2&Cf2),

trans(P2 & Cf2, X).

trans(Pic & nil, Pic).

Figure 11: Resolving Anticipated Conflicts after the Transformation

will continue to investigate the usage of picture logic
for the specification of such visual notations and hope
that it will prove useful as a general meta-language.

Acknowledgments

The author gratefully acknowledges discussions with
Kim Marriott during a stay at Monash University in
which many ideas on diagram formalization were either
born or substantially refined. During the time of writ-
ing the author was visiting the University of Colorado
at Boulder supported by DFG Grant ME11/94.

References

Allwein, G., and Barwise, J. 1993. Working papers
on diagrams and logic. Technical Report IULG-93-
24, Indiana University Logic Group, Visual Inference
Laboratory.

Anderson, M. 1996. Diagrammatic reasoning and
cases. In Thirteenth National Conference on Artificial
Intelligence.

Barwise, J. 1993. Heterogeneous reasoning. In All-
wein, G., and Barwise, J., eds., Working Papers on
Diagrams and Logic. Bloomington: Indiana Univer-
sity. 251 ff.

67

Bolognesi, T., and Latella, D. 1989. Techniques for
the formal definition of the g-lotos syntax. In IEEFE
Workshop on Visual Languages, 43 — 49. Rom: IEEE
Computer Society Press.

Borning, A.; Maher, M.; Martindale, A.; and Wilson,
M. 1989. Constraint hierarchies and logic program-
ming. In Levi, G., and Martelli, M., eds., Interna-
tional Conference on Logic Programming. MIT Press.
149 - 164.

Bricken, W. M. 1988. An introduction to boundary
logic with the losp deductive engine. Research report,
University of Washington.

Chandrasekaran, B.; Narayanan, N. H.; and Iwasaki,
Y. 1993. Reasoning with diagrammatic represen-
tations - a report on the spring symposium. Al-
Magazine 14(2):49 ~ 56.

Citrin, W.; Hall, R.; and Zorn, B. 1995. Programming
with visual expressions. In IEEE Workshop on Visual
Languages, 294 — 301. Darmstadt, Germany: IEEE
Computer Society Press.

Clarke, B. 1981. A calculus of individuals based on
’conncection’. Notre Dame Journal of Formal Logic
23(3):204-218.

Ferrucci, F.; Pacini, G.; Tortora, G.; Tucci, M.; and
Vitiello, G. 1991. Efficient parsing of multidimen-
sional structures. In IEEE Workshop on Visual Lan-
guages, 105 — 110. Kobe/Japan: IEEE Computer
Society Press.

Gooday, J., and Cohn, A. 1996. Using spatial logic
to describe visual programming languages. Artificial
Intelligence Review 10:171 — 186.

Haarslev, V. 1997. A fully formalized theory
for describing visual notations. In Marriott, K.,
and Meyer, B., eds., Theory of Visual Languages.
Springer-Verlag. Forthcoming.

Hammer, E., and Danner, N. 1993. Towards a model

theory of diagrams. In Allwein, G., and Barwise, J.,

eds., Working Papers on Diagrams and Logic. Bloom-
ington: Indiana University.

Hammer, E. 1993. Representing relations diagram-
matically. In Allwein, G., and Barwise, J., eds., Work-
ing Papers on Diagrams and Logic. Bloomington: In-
diana University.

Harel, D. 1988. On visual formalisms. Communica-
tions of the ACM 31(5):514 — 530.

Helm, R.; Huynh, T.; Marriott, K.; and Vlissides, J.
1995. An object-oriented architecture for constraint-
based graphical editing. In Object-Oriented Program-
ming for Graphics. New York: Springer-Verlag.
Jampel, M.; Freuder, E.; and Maher, M., eds. 1996.
Over-Constrained Systems. Springer.

Kahn, K. M., and Saraswat, V. A. 1990. Complete
visualizations of concurrent programs and their exe-

cution. In IEEE Workshop on Visual Languages, 7 —
15. Skokie/IL: IEEE Computer Society Press.

Kamada, T., and Kawai, S. 1991. A general frame-
work for visualizing abstract objects and relations.
ACM Transactions on Graphics 10(1).

Keenan, D. 1995. To dissect a mockingbird: A graph-
ical notation for the lambda calculus with animated
reduction. Technical report, Smalltalk Computing.

Marriott, K.; Meyer, B.; and Wittenburg, K. 1997.
A survey of visual language specification and recog-

nition. In Marriott, K., and Meyer, B., eds., Theory

of Visual Languages. Springer-Verlag. Forthcoming.

Marriott, K. 1994. Constraint multiset gram-
mars. In IEEE Symposium on Visual Languages. St.
Louis/MO: IEEE Computer Society Press.

Meyer, B. 1992. Pictures depicting pictures - on the
specification of visual languages by visual grammars.
In IEEE Workshop on Visual Languages, 41 — 4T.
Seattle/WA: IEEE Computer Society Press.

68

Meyer, B. 1993. Logic and the structure of space: To-
wards a visual logic for spatial reasoning. In Miller,
D., ed., International Symposium on Logic Program-
ming. Vancouver: MIT Press.

Meyer, B. 1994. Visual Logic Languages for Spatial
Information Handling (in German). Doctoral thesis,
FernUni Hagen.

Nelsen, R. B. 1993. Proofs without Words. Washing-

“ton/DC: The Mathematical Association of America.

Older, W., and Vellino, A. 1990. Extending prolog
with constraint arithmetic on real intervals. In Cana-
dian Conference on Electrical and Computer Engi-
neering.

Shin, S.-J. 1995. The Logical Status of Diagrams.
Cambridge/MA: Cambridge University Press.

Takahashi, S.; Miyashita, K.; Matsuoka, S.; and
Yonezawa, A. 1994. A framework for constructing
animations via declarative mapping rules. In IEEE
Symposium on Visual Languages, 314 — 322.

Tanaka, T. 1991. Definite clause set grammars: A
formalism for problem solving. Journal of Logic Pro-
gramming 10:1-17.

Wilson, M., and Borning, A. 1993. Hierarchical con-
straint logic programming. Journal of Logic Program-
ming 16(3 & 4):277 — 318.

n"/

J—
'

