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Abstract

This paper proposes an implementation of a Eu-
ler/Venn reasoning system using directed acyclic
graphs and shows that this implementation is correct
with respect to a modified Shin/Hammer mathemat-
ical model of Euler/Venn Reasoning. In proving its
correctness it will also be shown that the proposed im-
plementation preserves or inherits the soundness and
completeness properties of the mathematical model of
the Euler/Venn system.

Introduction

In the following study, we will look at an implementa-
tion of a Euler/Venn mechanical reasoning system and
show that this implementation captures the essential
properties 1 of a system similar to the Shin/Hammer
mathematical Euler/Venn system as given in (Shin
1996; Hammer & Danner 1996; Hammer 1995). To
do this, we will first look at a modified Shin/Hammer
formal mathematical system that is associated with
Euler/Venn diagrams. Then a second diagrammatic
system representing Euler/Venn reasoning, one lend-
ing itself naturally to implementation, will be proposed
using DAG’s~, and the relations between this system
and the formal mathematical system associated with
Euler/Venn diagrams will be explored. It will be ar-
gued that this second representation is in fact true to
the formal mathematical model of Euler/Venn reason-
ing and thereby preserves the properties of being sound
and complete.

Formal Specification of Mathematical

System

The mathematical formalization of the diagrammatic
language of Euler/Venn, EVE, is defined to be the
three-tuple (F, A, ~]), with F as the set of grammat-
ical or well-formed formulae, A the deductive system,
and ~ the semantics of the system. EVE is defined

1One system captures the essential properties of another
system if there is a translation or mapping between them
that preserves deductive and semantic relations.

2A DAG is a Directed Acyclic Graph.

to be a traditional Venn system with Euler like ex-
tensions (see below.) While this treatment was in-
spired by and is quite similar to that found in (Ham-
mer 1995), there are a number of important differences
that should be noted, the most important of which
include that the grammar presented here adds more
well-formed diagrams, and that the system’s seman-
tics have been changed to accommodate these new di-
agrams. By having a modified semantics and more
well-formed diagrams, two new inference rules are in-
troduced to maintain the completeness of the system.

The Vocabulary

1. Rectangles - Each rectangle denotes the domain of
discourse to be represented by the diagram.

2. Closed Curves - A countably infinite set C1, C2, C3
... of closed curves. Each closed curve must not
intersect itself. These curves denote sets.

3. Shading - The shading of any region denotes that
the set represented by that region is empty.

4. ® - A countably infinite set ®1,®2,®3, ... of indi-
vidual constants.

5. Lines - Lines are used to connect individual con-
stants ®n of the same n, in different regions to il-
lustrate the uncertainty of which set contains that
constant.

F - The Mathematical Grammar

Formation rules Formation Rules for well-formed
diagrams VEVF of EVF:

1. Any diagram containing only a Rectangle is a mem-
ber of VEVF.

2. If V E VEVF then:

(a) V with the addition of any closed curve C with
unique label N completely within the rectangle of
V so that the regions intersected by C are split
into at most two new regions, is a member of
vEv~ .3

3This grammatical stipulation while more general than
that used in (Hammer 1995) is still not as general as one
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3. No

(b) V with the addition of a ®, of a new n within any
region of a closed curve of V is a member of VEV~.

(c) V with the shading of any enclosed region is 
member of VEVF.

(d) If V contains a certain ®n then the result of
adding another ®n to any region not containing
®, and then connecting the two of them together
with a line is a member of VEVF.

other diagram is in VEv~.

Examples of diagrarn~ of EVF

Valid
Diagram ~ v]

Invalid
Diagram +vI

Notion of region A region is any area of a diagram
completely enclosed by lines of that diagram. Any re-
gion of the diagram completely enclosed by one closed
curve is referred to as a basic region. A minimal region
is any region which is not the combination of other re-
gions. The following set theoretic operations on regions
will be allowed:

1. U The union of two regions is the region containing
both of those regions.

2. N The intersection of two regions is the region that
is common to both regions.

3. C One region is the subset of another if that region
is entirely contained within the other.

4. - The difference of two regions is the regions of the
first not contained by the second.

5. ~ The complement of a region is the region not con-
tained in that region but still within the rectangle of
the diagram.

Notion of counterpart Two regions of different di-
agrams are considered to be counterparts if both are
directly enclosed by rectangles or if there is a subset
of the labels of the diagrams such the regions are both
the result of taking the intersection of the basic re-
gions associated with this set of labels. Counterparts
are preserved under union and complement. Counter-
parts agree with respect to shading and ® sequences in
two diagrams when for any two regions that are coun-
terparts one is shaded iff the other is shaded, and one
contains a link of a ®n sequence iff the other contains
a ®n link of the same n.

A - The Mathematical Deductive System

Given diagrams V and W of EVF, W can be inferred
from V if W is the result of applying any of the fol-

might like. But it can be argued that any valid Euler/Venn
Diagram can be expressed under this restriction.

lowing rules 4 to V:

1. Erasure of part of a ® sequence - V~ is obtained
by erasing a ®n of a ® sequence of V where that
®n falls within a shaded region and provided that
the possibly split ® sequence is rejoined by a line if
necessary.

2. Extending a ® sequence - V’ is the result of
adding a new ®n link to a ® sequence of V to a
minimal region not already containing a link of that
sequence.

3. Erasure - V’ is obtained from V by erasing:

(a) An entire ® sequence

(b) The shading of a region

(c) A closed curve if the removal does not cause any
counterpart regions to disagree with regard to
shading or containment of links of a ® sequence

4. Introduction of a new curve - V~ is the result
of adding a new curve to V, so that the other labels
of V are left undisturbed and all counterparts agree
with respect to shading and containment of links of
a ® sequence.

5. Inconsistency - V’ of any form can obtained from
V if V contains a region that is both shaded and has
the one and only link of a ® sequence.

6. Adding shaded regions - W is the result of
adding a new minimal region corresponding to the
intersection of basic regions already existing in V
provided that this new region is shaded and it drawn
so that the region is contained within the basic re-
gions to whose intersection it is intended to corre-
spond.

7. Removing shaded regions - W is the result of
removing a shaded minimal but not basic region of
V. To emphasize the fact that the region has been
removed the lines enclosing the now non-existing
region should be smoothed into curves, and the
remaining curves should be spaced out to remove
points of unintended intersection.

Unification - W can be inferred from diagrams V1
and I/2 if it is the case that:

1. The set of labels of V~ is the union of the labels of
V1 and½.

2. Counterparts in both W and V1 and W and Vg. agree
with respect to shading and containment of a link of
a ® Sequence.

The following are figures to illustrate the use of the
system’s two new rules.

4please note that the rules of Adding shaded regions
and Removing shaded regions are the above mentioned
new rules.
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Adding Shaded Regions:

Removing Shaded Regions:

A diagram V is provable from the set of diagrams !U
in EVE, written as fi7 ~-EFv V, if there is a sequence
of diagrams V1... Vn where Vn is equal to V and all
V1 ... Vn are either members of fi7 or the result of ap-
plying one of the above rules of inference to a prior
diagram in the sequence.

- The Mathematical Semantics

The semantics of the systemis given by the assignment
of a domain to the diagram and subsets of this domain
to each basic regions of the diagram. Formally this
assignment is the pair (U, f) where U is the domain and
f is a function associating a subset of U with each basic
region. Basic regions of the same label are assigned the
same subset of U by f.

Proposition 1 (Hammer (Hammer 1995))
If (U, f) is an assignment of U to basic regions then
there is a unique set assignment (U, g) to minimal re-
gions(where g is a function assigning subsets of U to
the minimal regions of the diagram with minimal re-
gions not existing in the diagram being assigned 0).
Given this (U, g) and (U, f), there is a unique model
(U,I) s.t. it extends both of them. This model’s inter-
pretation function I preserves the counterpart relation.

Diagram V is true in model M = (U, I) of EVF iff
for every region r of V, if r is shaded then I(r) = O, and
if r completely contains a ® sequence then I(r) ~ 
When this is the case M ~EVF V will be written. With
~Ttl {V} a set of diagrams, V is a logical consequence of

in EVe iff every model which makes all of ~7 true in
EVF also makes V true. This is written as ~ ~Ev~ V.

Soundness and Completeness of EVE

Theorem 1 Soundness of EVF (Extension of Ham-
mer (Hammer 1995))
For every set of diagrams ~ U {V}, if ~ FSVF V then

~Ev~ V.
Proof Sketch:
It suffices to show that the two new rules of infer-
ence preserve soundness; this plus Hammer’s Sound-
hesS proof will demonstrate the soundness of EVF.

1. If V’ is the result of applying the rule of Adding
a Shaded Region to V, then V ~EV~ V’. Sup-
pose that (U, I) ~Ewr V then for all minimal re-
gions r not existing in V I(r) = ~. Thus since the
newly added region is shaded then I(r) = 0, and
(u, I) ~Ev~ y’.

2. If W is the result of applying the rule of Removing
a Shaded Region to V, then V ~EWF W. Suppose
that (U, I) ~EVF V then for all shaded regions r in 
diagram I(r) = ~. Thus since the removed minimal
region does not exist in the diagram then I(r) = 
and (U, I) ~Evv V’.

Theorem 2 Completeness of EVF (Extension of
Hammer (Hammer 1995))
For every set of diagrams ~ U {V}, if !U ~EVF V then
~B FEwF V.

Proof Sketch:
For this proof, Hammer’s completeness proof found in
(Hammer 1995) will again be greatly relied upon. First
all diagrams in !U are extended to Venn diagrams and
put into the set flY, through the repeated application of
the Adding shaded regions inference rule. The same
is done to V extending it to V’. From soundness and
the transitivity of ~Eve it is concluded that !U’ ~Ew~
W. Now Hammer’s completeness result will be used to
show that ~U’ t-~wF V’. We now only need to apply the
rule of Removing shaded regions to show V’ ~-EWF
V. Hence !U t-EWF V.

To further clarify the above proof the following dia-
gram has been provided.

Formal Specifications of the DAG
Implementation

The implementation of the diagrammatic language of
Euler/Venn, EVI, is defined to be the three-tuple
(#,z),s).

The Vocabulary of the Implementation

1. Nodes - Each node represents a set that can be ex-
pressed as the intersection of one or more of the sets
represented by the diagram. Associated with each
node are a number of attributes: a name, whether
the set is empty (shading), and whether the set pos-
sibly contains any individual constants (®,). Re-
gions are named so that the set that they represent
is exactly the intersection of the sets associated with
the letters of its name. Likewise a node can also be
thought of as a region, not necessarily minimal, of
the diagram.
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2. Directed Edges - Directed edges connect nodes A
and B, leading from A to B, expressing that their
associated sets, S(A) and S(B), are such that S(A)
covers5 S(B). Likewise the edge relation can also be
thought of in terms of region containment.

In the sections to follow the natural meaning of the
predicates parent, child, ancestor, and descendent will
be used.

G - The Grammar of the Implementation

Formation Rules for proper DAG’s DEv~ of EVI:

1. Any DAG containing only one node named V and
no edges is a member of DEv,.

2. If D 6 DEvl, then D with the addition of one new
node N such that:

(a) N is connected to at least one other node N’, and
does not cause a cycle in the DAG.

(b) N’s name contains all of the letters of the names
of its parents with at most one additional letter.

(c) N’s name does not contain, for any letter L, L
and L.

is member of DEv,.

3. If D 6 DEv,, then the modification of D such that
either:

(a) Some node along with all of its descendents are
shaded.

(b) Some terminal node and all of its ancestors contain
a ®n.

is member of DEv,.

4. No other DAG is a member of DEv,.

Notion of region A region is represented by a node
of the DAG. A region is referred to as a basic region if
its label contains a letter with no bar, not contained in
the labels of any of its parents. This letter is referred
to as the basic region’s identifying letter. A minimal
region is any terminal node of the DAG. As before the
set theoretic operations U, N, C, -, ~ will be allowed
on regions.

Notion of counterpart Two regions are considered
to be counterparts if both of their names contain the
same set of letters. Counterparts are once again pre-
served under union and complement.

79 - The Deductive System of the
Implementation

Given DAG’s D and D’ ofEVi, D’ can be inferred from
D if it is the case that D’ is the result of applying any
of the following rules to D.

5,,A covers B" itf B ~ A and there is no C such that
B~CandC~A.

1. Erasure of part of a ® sequence - D’ is obtained
by removing a ®n of a ® sequence from a minimal
region provided that this minimal region is shaded.
The ®n is also removed from its ancestors not having
a different descendent also containing a ®, of the
same n.

Extending a ® sequence - D’ is the result of
adding a new ®n link to a ® sequence of D in a min-
imal region not already containing a link of that se-
quence. The same link is added to all of that node’s
ancestors.

Erasure - D’ is obtained from D by erasing:

An entire ® sequence, removing all ®n’s of a cer-
tain n occuring in any node of the DAG.
The shading of a minimal region, and the shading
of any of its parents not having all shaded descen-
dants.

(c) A basic region and all regions containing that re-
gion’s identifying letter or its complement, pro-
vided that the removal does not cause any coun-
terpart regions to disagree with regard to shading
or containment of links of a ® sequence.

Introduction of a new curve - D’ is the’result
of adding a new basic region to D as specified by
the Inductive Construction Technique (defined be-
low) and the other labels of D are left undisturbed
and all counterparts agree with respect to shading
and containment of links of a ® sequence.

Inconsistency - Any D’ can be obtained from D
if D contains a minimal region that is both shaded
and has the one and only link of a ® sequence.

Adding shaded regions - D’ is the result of
adding a new minimal region not existing in D as
specified by the Direct Construction Technique (de-
fined below) and provided that this minimal region
is shaded and is not a basic region.

Removing shaded regions - D’ is the result of re-
moving a minimal but not basic region that is shaded
from D and re-arranging the DAG as specified by
step 4 of the Direct Construction Technique.

Uu~flcation - D’ can be inferred from DAG’s D1
and Dg. if it is the case that:

1. The set of basic regions of D’ is the union of the
basic regions of D1 and D2.

2. Counterparts in both D’ and D1 and D’ and Dg.
agree with respect to shading and containment of a
link of a ® sequence.

A DAG D is provable from the set of DAG’s ~,
written aa ~ I-EvI D, if there is a sequence of DAG’s
D1...D, where Dn is equal to D and all D1...D,
are either members of ~ or the result of applying one
of the above rules of inference to a prior DAG in that
sequence.

.

.

(a)

(b)

.

.

.

.
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S - The Semantics of the Implementation

The semantics of the system is given by the assign-
ment of a domain to the root of the DAG, and subsets
of this domain to each basic region of the DAG. For-
mally this assignment is the pair (U, f), U being the
domain and f being a function associating with each
basic node a subset of U. Nodes of the same identify-
ing letter are assigned the same subset of U. Non-basic
regions not existing in the DAG are assigned 9 by f.
Once again Proposition 1 is used to establish that given
(U, f) there is a unique assignment to minimal regions
(U, g) and a unique model (U, I) extending them both.

Diagram D is true in model M = (U, I) of EVI iff
for every region r of D, if r is shaded then I(r) = 
and if r or its descendants contain an entire ® sequence
then I(r) ¢ 9. When this is the case M ~Ev~ D will be
written. With ~ (9 {D} a set of diagrams, D is a logical
consequence of ~ in EVI iff it is true in every model
which makes all of ~ true in EVI. This is written as

~sy, D.

Relationships Between (F, A, ~) and

Relationship Between P and

This section explains the grammatical relation be-
tween the formal mathematical representation of a Eu-
ler/Venn diagram and its corresponding DAG. It will
be shown that there is a translation process that re-
sults in a bijection between classes of isomorphic Eu-
ler/Venn Diagrams and DAG’s. This translation pro-
cess will be given in two forms one inductive and the
other direct. Each method is needed to explain algo-
rithms used in the deductive system of the implemen-
tation(namely the rules of Introduction of a new
curve, Adding shaded regions, and Removing
shaded regions.)

Translating Euler/Venn diagrams into DAG’s,
inductive construction Knowing that an Eu-
ler/Venn Diagram V can be constructed by a sequence
of adding circles in a certain way to an empty dia-
gram, it suffices to define the translation technique in-
ductively on this sequence.6

1. Base - The empty diagram is the DAG with one node
V and no edges.

2. Induction - When adding circle A to an existing Eu-
ler/Venn diagram V~ and its corresponding DAG D~

proceed as follows:

(a) Identify the region Y that covers A and the region
X that covers A. Add nodes YA and XA to D~

eIf given an already constructed Euler/Venn Diagram
this sequence can be arbitrarily chosen. The order of the
placement of the circles on the page makes no difference as
long as the two resulting diagram.q are equivalent.

directly below Y and X with an edge from Y to
YA and from X to XA.~

(b) Identify all regions represented by nodes in the
DAG crossed by YA and X-A (previously known as
A and A respectively.) s For each of these crossed
regions W, add to D~ WYA and WXA with edges
from W to each of them and_edges from YA to
WYA and from XA to WXA. Then any dupli-
cate letters that might occur in an individual name
are removed.

(c) Starting with the top of the DAG, determine if
any region is now covered by or covers one of the
newly created regions Z, all regions whose name
contains A or A. Assume that it is W that now
covers Z. Remove the edge leading to W from its
previously covering parent connect this old parent
to Z and draw a new edge from Z to W.9 Appro-
priately rename each of these nodes W to include
the letter(s) of their new parent Z not previously
in W. After doing this the new letters are added
to each of W’s descendents, also adding new edges
to their possible new parents. This is done to re-
tain only edges between covering regions.

3. Final Step - To finish the construction shading and
® sequence information needs to be included. Shade
all minimal regions of the DAG which correspond to
shaded minimal regions of the diagram. Likewise
add a ®n to a minimal region of the DAG if its
corresponding region of the diagram has a link of
a ® sequence of a certain n. Then starting at the
bottom of the DAG and working up shade any node
having all shaded children and put an @n into any
node having any children with a ®~ of a certain n.

Example of inductive construction

1. The empty diagram.

V ®

2. After adding the set A.

vIn the case that Y is V leave out the V from the names
of the nodes to make our DAG’s easier to read.

SFrom the grammar I~ it is known that each of these
regions is crossed once creating two new ml,lrnal regions.

9Here since it is known that there is a unique covering
parent so at most one edge needs to be changed for each
node.
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3. After adding the set B. B and B are added below
V and both A and A are split.

m
4. After adding th_.e set C. C is added below A and

renamed AC, C is added below V. B, A, B,_AB,
and AB are split. Duplicates AC, ABC, and ABC
are removed.

5. Re-order, A becomes AC, AB becomes ABC, AB
becomes ABC, BC becomes ABC, and BC be-
comes A BC. Edges from C to A B C and from B to
ABU are removed and a_ppropriatel_y replaced. Fi-
nally remove duplicates ABC and ABC.

Translating Euler/Venn diagrams into DAG’s,
direct construction Given any Euler/Venn dia-
gram V do the following to translate it into a corre-
sponding DAG D:1°

1. First identify all minimal regions of the Euler/Venn
Diagram V. To each of these regions associate a
name which contains the letters of all of the sets
of the diagram or their complements. Thus for any
minimal region R start by naming the region A (the
empty string) and iteratively look at each of the sets
represented in the diagram asking whether the min-
imal region is a subset of that set or its complement

10 Note, the intermediate DAG s used in this construction
may not be well-formed in terms of the above grammar G.

©
Figure 1: Example of rule 3. for one minimal node

and concatenating the appropriate letter to its cur-
rent name. Finally to make the names easier to read
alphabetize the letters of the name.

2. Start by adding to an empty DAG one node appro-
priately named for each minimal region of the Eu-
ler/Venn diagram V.

3. Let N be the number of sets in the Euler/Venn di-
agram, thus the name of each of the minimal nodes
consists of exactly N letters, n For each of these
minimal nodes add to the diagram as their parents
nodes with names consisting of N choose N - 1,
sometimes written as (NN_I), letters from each 
their names, while being careful not to duplicate any
node. Thus for each minimal region with a name of
N letters construct parents for that node all of which
have names of length N - 1 and are subsets of the
name of the minimal region. (See Figure 1 for further
clarity.) If a duplicate occurs connect that minimal
region to the already existing node. Continue this
process for each of the nodes of N - 1 letters and
so on, until only nodes consisting of one letter are
added. Finally add the node V as the parent of each
of these nodes consisting on only one letter.

4. Starting with the minimal nodes and working up the
DAG, eliminate all nodes who only have one child,
and following this delete any nodes with no descen-
dent minima/regions. If a node only has one child it
is the union of one region thus equal to its child, and
if it has no descendent minimal regions it is null.

5. Lastly shade and add ®,’s to the minimal nodes of
the DAG and then the entire DAG as done in the
last step of the Inductive Construction.

Example of direct construction

.
After first two steps, a partial DAG with only mlni-
real regions.

llEach rnlnlrnal region has a name of length N from part
1. of the current construction.
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2. After first iteration of step 3, adding nodes
{AB, BC, AC, AB, BC, AC, A C, A B, BC, B C, AB}

3. After second iteration of step 3, adding nodes
{C,B,A,A,B,C}.

4. After third iteration of step 3, adding node {V}.

5. Final dialgam after step 4, removing nodes
{AB, BC, BC, C,A}.

Examples of well-formed diagrams and their
translations

1. The empty diagram:

@

2. The diagram with one set:

V

3. Two intersecting sets:

4. Three intersecting sets:

5. A set completely contained in another:

The Capturing of Essential Properties
Lemma 1 Any Euler/Venn Diagram V can be trans-
lated into at least one DA G D.

This is direct from either of the above construction
techniques.

Lernma 2 Any Euler/Venn Diagram V can be trans-
lated into a unique DA G D.

Proof Sketch:
First we notice that the regions of a Euler/Venn dia-
gram can be ordered using the subset relation into a
partial order. Also any partial order or poset can be
described uniquely up to isomorphism by its compris-
ing covers relations. We then shade the nodes of the
poser if that region is empty and put a ®n in the node
if it contains a link of the ® sequence of the same n. We
now have that for ~ach Euler/Venn diagram there is a
unique characterizing poser. By above Lemma 1 and
looking closely at the above construction technique it
is seen that the DAG being constructing is, with the
directed edges interpreted as spatial relations, just this
poser. This can be shown inductively, focusing on the
inductive construction technique. For the base case
we look at the empty diagram, this has by definition
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a unique DAG. Assume Euler/Venn Diagram V has
a unique DAG and show that V with the addition of
one set has exactly one new node for each new region
and that the edge relation preserves the covers order-
ing. Here by rule 2(a) two nodes are added, one for
the new circle and another for its complement, so that
there are at least two new regions one corresponding to
the new set and the other to its negation. Due to the
grammar, each region crossed by the new set is divided
into two new regions, and by rule 2(b) exactly those
nodes are added to the DAG. Hence exactly the right
number of nodes are being added. Finally by rule 2(c)
the new DAG is re-ordered to preserve the covering
ordering. Trivially it is noted that the DAG and the
diagram both have the same nodes shaded and con-
taining a links of a ® sequences, since the same rules
are used to shade the poser and the DAG. Thus for
all Euler/Venn diagrams our translation results in a
unique DAG.

Lemma 3 Each DAG D is the translation of a unique
class of isomorphic Euler/Venn diagrams.

Proof Sketch:
First we observe that each DAG has a unique set of
terminal nodes with shading and ® information corre-
sponding to the minimal regions of the diagram. We
next realize that each class of isomorphic Euler/Venn
diagrams is characterized by a unique set of minimal
regions with shading and ® information. 12 Hence any
DAG is the translation of a unique class of isomorphic
Euler/Venn diagrams.

Lemma 4 The translation of a single Euler/Venn di-
agram into its corresponding DA G by the inductive and
non-inductive techniques stated above results in two
equivalent DA G’s.

Theorem 3 For any set of Euler/Venn diagrams {fifU
V} C DEvF, there exists a unique corresponding set of
DAG’s T({fi7 O V}) C DEv, such that: !U t-EVF V
iff T(~U) FEe, T(V) m ~EVFV iff T(fi~) ~Ev,
T(V).

The proof of this theorem uses the above Lemma 2
and Lemma 3 and then demonstrates the close rela-
tionship between the deductive and semantic systems
of EVF and EVI.

Soundness and Completeness of EV}
Theorem 4 Soundness
For every set of diagrams ~ U D, if ~D FEV~ D then

~EV, D.

12This can be seen from the fact that all of the diagram.¢
in one isomorphism class can be shown to be equivalent
to a Venn diagram with the shading of certain minimal
regions and with ®,% in certain minimal regions. Thus it
is by either the shaded or unshaded regions, since one is
the complement of the other, and which minimal l:egious
contain ®~’s that the class is characterized.

Proof:
Given ~ I-~v, D we know that T-I(~) ~-EVF T-I(D)
from Theorem 3. From this it is concluded that
T-I(~) ~EVF T-I(D) from the soundness of EVF.
Lastly, again using Theorem 3, ~ ~Evz D is con-
cluded. ¯

Theorem 5 Completeness
For every set of diagrams ~ U D, if ~ ~Evz D then

F Evl D.

Proof:
Given ~ ~gvz D we know that T-I(~) ~EVF T-l(D)
from Theorem 3. From this it is concluded that
T-I(~) FEVF T-I(D) from the completeness of EVF.
Lastly, again using Theorem 3, ~ FEVz D is concluded.

Future Directions
In future work, it will be shown that thinking of Eu-
ler/Venn diagrams as DAG’s allows one to more easily
define classes of Euler/Venn diagrams and algorithms
for determining membership in these classes. A few
such classifications are the class of Euler/Venn dia-
grams that do not have any intersecting regions, only
containment sometimes called transition diagrams, and
the class of Enler/Venn diagrams that can be drawn
as a valid Euler/Venn diagrams without any shading.
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