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Abstract The Model

Graphs are used extensively to facilitate the
communication and comprehension of quantitative
information, perhaps because they seem to exploit natural
properties of our visual system such as the ability to
process large amounts of information in parallel. Rather
than a holistic pattern recognition process, however,
research has found that graph comprehension is a
complex, interactive process akin to text comprehension.
Viewers form a mental model of the quantitative
information displayed in the graph through serial,
iterative cycles of identifying and relating the graphic
patterns to associated variables. Furthermore, graph
comprehension is not only constrained by bottom-up
perceptual features of the graphical display, but is also
influenced by top-down factors such as the viewer’s
expectations about, or familiarity with, the graph’s
content. Finally, individual differences in graph
comprehension skill interact with top-down and bottom-
up influences such that highly skilled graph viewers are
less influenced by both the bottom up visual
characteristics, and the top-down semantic content.

Introduction

Graphical displays are one of the primary means for the
representation, communication, and dissemination of
quantitative information. Graphs are used to depict
mathematical functions, display data from social and
natural sciences, and specify scientific theories. As a result,
graphical displays are used extensively in textbooks,
scientific journals, and the popular media.

What are the processes by which viewers interpret
graphs? What makes some graphs easy to understand for
some people, and what makes other graphs difficult to
understand? The goal of this paper is to outline a cognitive
model of graph interpretation, based on a series of
empirical studies. An understanding of how viewers
interpret graphs, and the factors that make them easy and
difficult for different populations, may help us to solve
many practical, as well as theoretical problems. The
practical problems include how graphs might be created by
graphic designers, scientists, and automatic data display
systems to more effectively communicate quantitative
information (Shah, Mayer, & Hegarty, 1997).

A model of graph compreherision will share some
characteristics of more general models of diagram
interpretation. However, graphs are unique compared to
other diagrarrt~ and visual displays. They are based on
rational imagery, meaning that information that is
presented is systematically related to the graphic
representation (Bertha, 1983). The relation is neither
arbitrary, as is the relation between words and concepts, nor
a first-order isomorphism, as is the relation between
pictures and their referents (Winn, 1987). Graphs can 
distinguished from partially abstract diagrams that are
meant to depict visuo-spatial information (for example,
mechanical diagrams of pulley systems or biological
diagrams of the functioning of the circulatory system)
because graphs represent some quantitative property of
either concrete objects or abstract concepts. The relation
between a represented concept and the graph is based on an
analogy between quantitative scales and visual dimensions
such as length, color, or area in which the visual
dimensions axe usually analog representations of this
quantitative information (Bertin, 1983; Hegarty, Carpenter,
& Just, 1991; Pinker, 1990). Thus, in the continuum of
different forms of written information, graphs are more
abstract than pictorial diagrams, but still represent
information in an analog, non-arbitrary fashion.

Researchers have suggested that it is this "rational", or
"natural" link between quantitative and spatial information
that makes graphs particularly well-suited for representing
quantitative information (MacDonald-Ross, 1977; Pinker,
1990; Winn, 1987). Indeed, graph comprehension can seem
easy, particularly when a trend or quantitative relationship
is explicitly represented in the visual features of the graph
(Larkin & Simon, 1987) or when a viewer has already
learned the association between a graphic feature and a
quantitative relationship, such as "an upwardly curved line
indicates an accelerating relationship" (Pinker, 1990). 
the graph in Figure 1, for example, the reader will easily
detect the decelerating relationship between batting average
and baseball player’s income. In order to tmderstand the
same relationship in the table below, by contrast, a viewer
must effortfully compute the relative diffe~eaaces in the
numbers in the cells.

However, both task analyses of graph comprehension
(Bertin, 1983; Pinker, 1990), as well as errors viewers
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Figure 1. A graph and table depicting the same data. In the graph above the decelerating, increasing relationship between
batting average and income is explicitly plotted in the x-y fines. In the table below, the deceleration is inferred by the
decreasing differences between the numbers in the table.

make in graph comprehension (Culbertson & Powers,
1959; Shah & Carpenter, 1995; Shah, Mayer, & Hegarty,
1997; Vernon, 1950), suggest that a complex set of
cognitive processes underlies the apparently effortless
comprehension of graphs (Guthrie, Weber, & Kimmerly,
1993). In addition, viewers’ internal representations of data
are often inaccurate or incomplete. This is true of not only
college students, but also of populations with significant
expefienee in data analysis and interpretation (Shah 
Carpenter, 1995). Consider, for example, the graph in
Figure 1 once again. Although the graph explicitly depicts
the increasing, decelerating, relationship between batting
average and income that most experienced graph viewers
readily comprehend, the graph also depicts a similar
relationship between age and income that is much more
difficult to comprehend.

A fundamental issue in graph research, then, is the
characterization of the interpretation processes and the
principled identification of the characteristics of graphic
formats, dam sets, and interpretation tasks, that influence
the interpretation processes. In this paper, I review a
number of studies in which I and others examine how task
and graph characteristics lead to different internal
representations of data, representations that support
relatively effortless and automatic retrieval of some
quantitative concepts, and the efforfful and complex
induction of other quantitative concepts.

These studies show that the interpretation of many
commonly used graphs is the result of a complex sequence
of cognitive processes, processes that are highly limited
and systematically biased. The time it takes to form a even
simple interpretation of some graphs in our studies can be
about 30 seconds, or the same amount of time as reading
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and understanding a paragraph of text, rather than the time
to say, recognize an object. Indeed, this research suggests
that the interpretation of graphs, shares many of the
characteristics of text comprehension.

Specifically,

1) Graph comprehension involves

a) Bottom-up processes in which people extract visual
chunks that explicitly represent a limited number of
quantitative facts or relations. Information that is not
explicitly represented in those visual chunks must be
computed by inferential processes that are difficult and
error prone.

b) Top-down processes in which knowledge of semantic
content also influences viewers’ interpretations of data.

2) The interaction of top down and bottom up processes is
individually applied to different chunks, so that the
interpretation process is serial and incremental, rather than
automatic and holistic.

3) Indivi~ml differences in graph comprehension skill
interact with top-down and bottom-up influences such that
highly skilled graph viewers are less influenced by both the
bottom up visual characteristics, and the top-down
semantic content.

In the next section, I describe some of the empirical
evidence supporting each of these conclusions.

Empirical Support for the model

Bottom-Up Processes

As discussed above, one of the oft-touted advantages of
graphical displays is the fact that they "take advantage of
the visual perceptual processing system." This general
statement has been made in reference to a wide variety of
graph comprehension tasks and graphical displays, from
scientific discovery (Gleick, 1987; l.,wandowsky 
Spence, 1989) to exploratory data analysis (Tukey, 1977;
Wainer & Thissen, 1981). The assumption is that
graphical displays, because they depict quantitative
information visually, make explicit certain quantitative
facts and relations that may not have been previously
apparent or obvious from other media such as text or
tables. For example, chaotic patterns of weather were
discovered when multiple time-series plots were placed on
top of one another (Gleick, 1987). The similarities and
slight differences between the visual patterns suddenly
"popped out," demonstrating the potential power of the
perceptual aspect of graph comprehension.

Thus, according to the previous theoretical and
computational approaches to graphical display
comprehension (e.g. Casner, 1990; Casner & Larkin,

1989; Larkin & Simon, 1987; Lohse, 1993; Pinker,
1990), graphical displays are most useful when they make
quantitative information perceptually obvious so that it can
be retrieved "automatically", minimizing cognitive effort
and maximizing the perceptual advantage of graphs over
other ways of presenting quantitative information (Larkin
& Simon, 1987; Pinker, 1990). By implication, the
visual characteristics of the graphical display, then, should
have an influence on what kinds of information are easy
and difficult to comprehend from a graph.

Much previous research that has compared the speed and
accuracy of identifying different quantitative facts
relations from different graphic formats has supported this
view (e.g. Cleveland & McGill, 1984, 1985; Legge, Gu,
& Luebker, 1989; Spence, 1990). For example, Carswell
& Wickens (1988) found that bar graphs and other
"separable" displays were better suited for identification of
individual facts. By contrast, line graphs, and other displays
that integrated two or more variables, were better suited for
tasks that required synthesis.

In recent research, my colleagues and I have examined
how the characteristics of graphical displays influence not
just the speed and accuracy of making perceptual
judgments, but viewers’ ability to describe, interpret, and
explain quantitative relations. In these studies, we have
begun to specify, for different graphic formats, exactly
what visual features are "mapped" more or less
automatically to quantitative conclusions, and what
information is more difficult to retrieve and must be
infened by complex processes. We examined expert and
novice viewers’ interpretations of a number of commonly
used graphic formats: line graphs, bar graphs, divided bar
charts, and "three-dimensional" wirefi’ames. For each of
these formats, we have found that viewers are able to
retrieve a limited number of quantitative facts or relations
that are highly constrained by the kinds of visual chunks
made explicit by the display. When information is not
explicitly represented in a particular graphic format,
viewers have tremendous difficulty understanding that
information and are often unable to do so. Below, I
describe a few of the studies in which we specify the way
in which the graphic format influences viewers
interpretations of data.

Line Graphs. In one series of studies, we examined the
interpretation of line graphs, specifically, the limitations
that influence a viewer’s comprehension of these line
graphs (Shah & Carpenter, 1995). In these studies,
viewers were asked to briefly describe or explain a series of
individually presented three-variable line graphs, such as
the graphs in Figures 1 and 2. The viewers’ descriptions
and/or explanations were coded according to the type and
amount of information they included about the relations
presented in the graphs.

Overall, the results suggested that the comprehension of
line graphs involves abstracting a limited set of
propositions that describe the functional relations depicted
by the x-y lines of the graphs; viewers rarely described
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Figure 2. Two perspectives the same data set in which the main visual features of the graphs differ greatly, leading to
qualitatively different interpretations of data.

more than nominal or ordinal information about the
parameter on the curve (in Figure 2a, the relationship
between room temperature and achievement test scores). 
typical description of the graph in Figure 2a, for example,
is that

a) Achievement test scores decrease as noise level
increases when it is 60 degrees;
b) Achievement test scores decrease as noise level
increases when it is 80 degrees;
c) Achievement test scores decrease more when it is 60
degrees than when it is 80 degrees.

But the graph in Figure 2b elicits qualitatively different
verbal description focusing on its x-y lines

a) Achievement test scores decrease with room
temperature for low (10 dB) noise levels;
b) Achievement test scores increase with room
temperature for high (30 dB) noise levels;
c) Achievement test scores for low (10 dB) noise levels
are higher than for high (30 dB) noise levels.

Viewers not only described graphs differently depending
on what information was coded on the x-axis, but weae
often unable to recognize the same d~m (on 32% of trials
viewers judged the same dam to be different) or draw the
alternative perspective. These studies suggest that for line
graphs, the major visual chunks are the x-y lines. When
information is not explicitly presented in the lines on the
graphs viewers, even experts, often have difficulty
interpreting ,hr~

Line Graphs vs. Bar Graphs. In another series of
studies, we examined how the format of a graphical display

(line graph or bar graph), as well as the scale of the graph
(absolute vs. percent), influenced viewers’ interpretations 
dam (Shah, Mayer, & Hegarty, 1997). Overall, we found
that viewers were much more likely to be able to describe
and answer questions about information that is explicitly
represented in graphs. When graphs require any kind of
mental computation, such as integrating information across
a display or translating from an absolute to percent scale,
viewers have tremendous difficulty and were often unable
to do so. More specifically, these studies charactefiz~ the
kinds of visual chunks that are retrieved for line graphs and
bar graphs. As in the previous studies, we found that line
graphs emphasize x-y trends. By contrast, bar graphs
emphasize comparisons that are closer together on the
display. Finally, we found that line graphs are more
biasing (emphasizing the x-y relations), while bar graphs
are more neutral.

Line Graphs vs. Wireframes. A third series of
studies examined the kinds of interpretations viewers gave
to line graphs and three-dimensional wirehame graphs such
as the graph in Figure 3. These studies demonstrate that the
internal representation of line graphs and wireframe graphs
emphasize different properties of the dAta~ A typical
description of a line graph includes descriptions of the x-y
lines, including differences between lines and changes along
the x-axis. Viewers provide more varied descriptions of
wireframe graphs, often describing maxima, minima,
and/or shape of the d~m space in addition to some
information about the quantitative relations. Thus,
wireframe graphs, particularly the landscape-like complex
graphs in this study, lead to qualitatively different
interpretations that emphasize configural properties rather
than quantitative relations.
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Figure 3. The wireframe graph in Figure 3a supports a spatial representation of data in which the important graphical
features, such as maxima and minima, am represented. By contrast, the line graph in Figure 3b supports a propositional
representation that emphasizes a decreasing relationship between year and mortality rate.

Summary. A number of studies demonstrate that the
perceptual characteristics of the visual display, in particular
the kinds of visual chunks that are retrieved in
comprehending different graphic formats, influence viewers
interpretations of data. Thus, just as characteristics of text,
such as coherence (van Dijk & Kintsch, 1983), influence
what kinds of inferences readers can easily make, the
characteristics of the graphical display influence what kinds
of quantitative inferences graph viewers can make. In
designing graphical displays, as in designing text (Bereiter
& Scardamalia, 1982), it is not merely enough that
information is presented technically correct, but also that it
is designed to effectively communicate the relevant
quantitative information.

Top-Down Processes

A second major characteristic of our model of graph
comprehension is that’ in addition to a bottom up influence
of the characteristics of the graphical display, there is a top-
down influence on the semantic content of the quantitative
information that is depicted in the graph. Again, this
aspect of a model of graph interpretation has parallels to
models of text comprehension. Specifically, models of
text processing incorporate the notion that readers’ prior
knowledge, expectations, and goals influence the process
by which they read and the kinds of information that they
comprehend and remember about a passage (e.g., ICmtsch
& van Dijk, 1978; van Dijk & Kintsch, 1983).

In the general case, it appears that viewers encode and
remember pictures and diagrams differently depending on

their knowledge and expectations. For example, verbal
labels have long been known to distort viewers’ memory
for ambiguous pictures (Carmichael, Hogan, & Walter).
More recent evidence suggests that viewers have schemas
for graphs and maps that distort their representations of
them. For example, participants in one study who were
asked to draw line "graphs" from memory tended to distort
the lines and draw them as being closer to 4500 than the
lines originally were (Schiano & Tversky, 1992; Tversky
& Schiano, 1989). When they were told that the same
display depicted a man, however, they distorted the lines so
that they were closer to 0oo or 9000.

What about the viewers expectations about the semantic
content of graphical displays? Much research in graph
comprehension has examined graph interpretation in
abstract or arbitrary domains, but comparatively little
research has examined how the semantic content of the
variables influences the interpretation of graphs (Carswell,
Emery, Lonon, 1993; Leinhardt et al, 1990). In recent
research, I have begun to examine how the semantic
content of graphs influences the kinds of interpretations
viewers give to dAt~. In these Studies, I examined the role
of familiarity with the quantitative relations presented in
graphs as well a viewers’ causal expectations.

Familiarity. The premise of the In’st study was that
viewers would be more likely to interpret relationships
between variables for which viewers had expectations about
general trends, such as number of ear accidents, number of
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Figure 4. Figure 4a (left) shows a conventionally plotted graph that is consistent with most viewers’ expectations of the
causal relations between these variables. In figure 4b (right), the x- and y-axes are reversed.

dnmk drivers, and trat~c density, compared to variables for
which viewers did not have any expectations, such as ice
cream sales, fat content, and sugar content (Shah, 1995).
The results from this study suggest that when viewers had
particular expectations, they were likely to describe those
relationships (for example, as dnmk driving increases, car
accidents increase), ignoring "idiosyncratic" data points
such as local maxima and minima that were inconsistent
with the general expected trends. By contrast, when
viewers did not has expectations, they were less likely to
describe general trends, and more likely to describe local
maxima and minima. These results suggest that viewers’
familiarity with quantitative trends influenced whether or
not they would describe those trends.

Expectations about Causal Relations. In a second
experiment, I examined viewers expectations of causal
relations that are depicted in graphs (Shah, 1995). The
assumption was that, given a set of familiar variables,
viewers are likely to have some expectations about the
directionality of causal relations. For example, one
expectation is that increased rates of dnmk driving or
decreased distance between cars cause car accidents and not
vice versa. In this study, viewers were presented with
graphs that depicted Am about common topics, in which
the likely dependent variable (the number of car accidents)
was plotted on the y-axis (conventional) as shown in
Figure 4a, or on the x-axis (reversed), as shown in Figure
4b.

When the position of graphic variables is conventional,
viewers were able to use their knowledge about the graphic
format and the variables to make accurate inferences about

the quantitative relations. However, when graphs are
plotted so that the data are inconsistent with viewers
expectations about causal relations, viewers frequently
described relations that were not actually depicted in a graph
but are consistent with their expectations or models about
the causal relations. For example, even though the graph
in Figure 4b does not depict a relationship between the
number of drunk drivers and the number of car accidents,
most viewers would expect a relationship between those
two variables, and novice graph viewers inaccurately
described this relationship on 93% of the trials.

The Serial Nature of Graph Interpretation

Models of graph interpretation that are based on task
analyses tend to emphasize the holistic, pattern recognition
aspects of graph interpretation (as reviewed by Guthrie et
al, 1993). According to these models, most of the
"cognitive" action in interpreting graphs occurs in encoding
the visual features of the graphical display and relating
them to their quantitative conclusions (Pinker, 1990). 
contrast, other aspects of the interpretation process, such as
relating the meaning of the graph to the quantitative
relations, are given much less importance.

However, a series of studies in which we examined
viewers eye fixations as they answered questions about line
graphs (Carpenter & Shah, 1997) supports our claim that
the interpretation of graphs is serial and incremental.
Viewers identify individual quantitative facts and relations,
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based on the component visual chunks of a display, and
relate them to their graphic referents.

Eye fixation studies. To study the process of graph
comprehension, we examined the pattern and duration
viewers’ gazes on line graphs (like the ones shown in
Figures 1 and 2) as they described and answered questions
about graphs. The results demonstrated that the
comprehension of graphs is complex, with viewers
spending the majority of the time interpreting a graph
relating information from the fines on the graph to their
referents, rather than viewing the patterns of lines
themselves. Furthermore, the results supported a model of
graph interpretation in which viewers serially identify each
individual visual chunk and relate it to its graphic referents
(the variable names). This iterative model can predict the
distribution of viewers’ gazes across different parts of a
graph as well as the total number of gazes required to
interpret graphs that vary in complexity.

Individual Differences

The final characteristic of our model of graph interpretation
is that individual differences in graph interpretation skill
interact with the bottom up influence of the graphic format
and the top down influence of the semantic content (Shah,
1995). Current studies are continuing to investigate the
role of individual differences in graph interpretation, but
data from our previous studies provide preliminary support
for the conclusion that expertise in graph interpretation
mitigates the effects of the both the visual characteristics of
the graphical display, as well as the semantic content.

For example, in the study of the interpretations that
viewers gave to line graphs and wireframe graphs, viewers
provided qualitatively different interpretations of the dam: A
closer examination, suggests, however, that there were two
different groups of subjects. One group was reslxmsible
for the differences in the two graphic formats. The other
group, which had higher mathematics SAT scores, and
their likely correlated experience and expertise in using
graphs, gave similar descriptions of the two formats.
These results corrmpond to other kinds of apdtude
treatment interactions, in which the way in which
information is presented matters more for less skilled
readers or viewers.

Similarly, our studies suggest that individual differences
in graph interpretation skill also influences the effect of the
semantic content of the graph. Novices described graphs
that depicted reversed causal models inaccurately 93% of the
time, describing what they expected rather than what the
graph said. By contrast, experts rarely made this errors
(17%).

Thus, the current studies suggest that graph
interpretation skill may play a role in how well viewers
can accurately interpret a graphical display, even when a
graph is not plotted to explicitly represent that
information, or the viewer has prior expectations that differ
from the information presented in the graph.

Conclusions

In summary, cognitive research supports a model of graph
comprehension in which interpreting a graph involves
translating the visual features of a graph to a conceptual
representation of the quantitative information via multiple,
integrated cycles of identifying quantitative relations and
the variables associated with them. The model assumes
that graph viewers have knowledge about different graphic
formats that influences and supports the interpretation
process. The relative ease or difficulty in interpreting
graph occurs because two kinds of processes are involved in
comprehending different kinds of information from a graph.
If the graph supports visual chunks that the viewer can
mapped to relevant quantitative information, then it may be
automatically retrieved. If not, quantitative information
must be computed by inferential processes that consist of a
number of retrieval and comparison substeps. When graph
viewers have less experience interpreting graphs, they may
be forced to rely on semantic knowledge even if this
knowledge is not consistent with the data. Thus, the
model proposes that viewers’ knowledge about graphic
formats, and expectations about the relationships between
particular variables, have a top-down influence on the kinds
of interpretations that viewers give to graphs.

This model had a number of theoretical and practical
implications. Theoretically, this research suggests that a
computational model of graph interpretation will need to
incorporate the following features:

1) The ability to support the automatic retrieval of some
quantitative facts (if straight line, linear relationship)

2) Individual identification of each quantitative function or
fact.

3) hdividn~l differences in knowledge influence about what
visual features imply.

4) The ability to identify and compare values to infer
relations.

5) Limited capacity in the amount of information viewers
can maintain.

6) Interactivity: perceptual properties influence
interpretation, knowledge about graphs and quantitative
relations influence what viewers encode.

There are also a number of practical implications of
graphic design relevant for both people (Shah, Mayer, 
Hegarty, 1997) and automatic ~t~ display systems (Roth
& Hefley, 1993). Different ways of presenting dnt~ can
influence what is easy to retrieve and therefore what
viewers are likely to encode. In designing graphical
displays one should use knowledge of the bottom-up
influence of graphic format to design displays that
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maximize retrieval and minimize difficult inferential
processes. In addition, because viewers are able to
comprehend a limited amount of information, an individual
graph should contain at most a couple of relevant
quantitative concepts. Finally, graphic design should be
catered to the audience; it is particularly important to pay
attention to the characteristics of graphical displays for
novice graph viewers.
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