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Abstract

Research shows that one can learn from self-explanations
(Chi et al. 1989), but the influence of diagrams on this type
of learning has not been assessed. This paper examines the
role of spatial localization on the self-explanation effect. It is
hypothesized that adjacency may blur feature
discrimination, leading to inappropriate self-explanations.
Ten subjects with naive conceptions about motion in a
curved path were asked to think aloud while studying a
chapter and a worked-out example. They were divided into
Low-Benefit (LB) and High-Benefit (HB) learners, using a
post-hoc median split on post-test measures (explanation,
isomorphic, and transfer tests). Analyses of verbal protocols
and drawings show that the LB learners self-explained
without learning. They used diagrammatic representations
extensively, relying on their features to make sense of the
example lines, whereas the HB leamers processed the text
conceptually. Contrary to previous emphasis on the benefits
of localization of information in a diagram (e.g., Larkin and
Simon 1987), spatial localization inhibited the self-
explanation effect because access to adjacent features
propagated inaccurate comprehension via familiar
diagrammatic knowledge. This research shows that learners
in the process of acquiring new conceptual knowledge are
not necessarily helped by local diagrammatic features
because they can use them indiscriminately. It also suggests
that the self-explanation effect may be tied to highly
constrained learning situations.

Introduction

Considerable progress has been made in understanding
how learning can arise from explanations (Armengol and
Plaza 1995, deJong 1993, VanLehn and Jones 1993). An
example of such progress is offered by the self-explanation
effect: a correlation between the presence of explanations
generated by a learner, and better learning (Chi 1996, Chi
et al. 1989). Chi et al. (1989) analyzed verbal protocols of
students studying examples and solving problems in
introductory college physics. Using a post-hoc median
split to define a group of Poor learners and a group of Good
learners, they noticed two differences between these
groups. One, the Good learners produced more self-
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explanations than their Poor learner counterparts, who
typically reread and paraphrased the example sentences.
And, two, the Good learners were able to articulate clearly
their comprehension failures, whereas the Poor learners did
not and commonly said that they understood the statements
presented in the worked out examples. These results have
been replicated, not only in physics (Ferguson-Hessler and
deJong 1990), but in computer science (Pirolli and
Bielaczyc 1989, Pirolli and Recker 1991), and in biology as
well (Chi et al. 1994). Moreover, a simulation called
"Cascade" has revealed that in the particular situation of the
Chi et al. study, the self-explanation effect is caused by
impasse-driven acquisition of small, rule-sized pieces of
knowledge (VanLehn and Jones 1993). "Cascade" has also
uncovered new learning strategies based on example use:
Min and Max. The Min example-using strategy is tied to
effective learning. It occurs when Ss try to solve the
problems by themselves, refer to the examples only when
they reach an impasse, and return to unaided problem
solving as quickly as possible. The Max example-using
strategy reflects less learmng and occurs with extensive use
of examples (VanLehn in press).

The motivation of the present paper stems from
interest in the role of diagrams in knowledge acquisition.
The contribution of diagrams to learning from explanations
has received little attention so far. Yet, it represents an
important research question. In machine learning, it is
desirable to build intelligent systems that can learn from
both linguistic and pictorial resources. Moreover, human
learning often involves pictorial modalities. Therefore, it is
natural to ask about the role played by diagrams in the self-
explanation effect (interestingly, diagrams were used
extensively in most of the previous self-explanation
studies, yet their contribution to the effect is unclear).
Finally, the paradigm used in self-explanations studies
represents an interesting avenue to test existing theories of
diagrammatic influence on cognition and to uncover
cognitive properties of diagrams.

Given what precedes, the goal of this paper is not to offer
a definite answer to the contribution of diagrams to
learning from explanations. Rather, this paper seeks to
open up an avenue of research. It does so by raising



critical elements of analysis to help us understand the
relationship between diagrams and the self-explanation
effect.

Diagrammatic Representations and Self-
Explanation Effect

To begin uncovering the contribution of diagrams to
learning from explanations, I have chosen to concentrate on
the role of information adjacency in self-explanations. The
reason for this focus is a seminal analysis of spatial
localization (Larkin and Simon 1987) that remains one of
the most cited when facilitative properties of diagrams are
empbhasized (e.g., Koedinger 1992; Cox and Brna 1995).

The above model proposes that one of the reasons for the
usefulness of diagrams lies in the diagrammatic
representations users build from them, in which they index
information by location in a plane. Information at
neighboring points can be accessed and processed at the
same time. The search for information is facilitated by
such indexing, allowing a single location to provide much
of the information needed for making an inference. This
search is regulated by an "attentional control mechanism"
that makes available all information present at a given
location and that switches its focus to any adjacent location
specified by the elements currently under consideration. A
pulley system (Figure 1) illustrates this mechanism in an
example where the goal is to find the ratio of the weights
such that the system is in equilibrium. The Figure shows
the pulley system and the way it is encoded by a problem
solver. Adjacency is defined by the content of each
encoded element: the locations a and b are adjacent
because they are both mentioned in the element (hangs a
from b). Problem solving begins at location a, where a
weight is found ((Weight a)), with associated value 1
((value a 1), along with the fact that ¢ hangs from
something at location b ((hangs a from b)), which is a rope
((Rope b)). By applying an appropriate production rule,
the rope at b is given 1 as an associated value. Then, since
location a and b are adjacent, attention is focused at b, and
the solution proceeds.

It is important to recognize that spatial localization may
not necessarily exert a positive impact on learning. First,
the above model considers the case of expert knowledge
rather than that of novices. For instance, the analysis
requires the existence of a correct program (rules of
inference) to solve the problem. In addition, it assumes a
normative theory of inference generation (e.g., problem
solving progresses in a particular order). However,
learners do differ in their ability to draw inferences.
Importantly, the above emphasis on the benefits of spatial
localization rests on the assumption that facilitation of
problem solving results from making all information at a
given location automatically available to the attentional
control mechanism. However, simultaneous access to
distinct features in a diagram may overwhelm novices and
confuse them. This hypothesis is suggested by the finding,
in the context of reading, that less-skilled readers have less
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efficient suppression mechanisms than more-skilled ones
(Gernsbacher 1993). A similar situation may well operate
with diagrams. If so, then spatial localization, and in
particular feature adjacency, could actually be detrimental
to less-skilled learners.

PULLEY SYSTEM

DIAGRAMMATIC ENCODING
(Weight a) (Rope b) (Rope c) (Pulley d)
(hangs a from b)

(pulley-system bdc)

(Weight e)

(hangs e from ¢)

(Rope f) (Pulley g) (Rope k) (Pulley i) (Rope j)
(Rope k) (Rope J) (Ceiling m)

(hangs d from f)

(pulley-system f g )

(pulley-system ki j)

(hangs g from k)

(hangs & from m)

(hangs j from m)

(hangs / from #)

(hangs e from /)

(value al)

Figure 1. Spatial localization guides problem solving by
making the problem solver move from one adjacent
location to the next (Larkin and Simon 1987).

This research addresses the above concerns by studying
learning in the context of inaccurate prior knowledge. Ido
so for two reasons: first, previous research on the self-
explanation effect has recognized the importance of prior
knowledge in the genesis of self-explanations. Second,
powerful, inaccurate preconceptions are often implicated in
science learning and the way learners manage these
preconceptions plays an essential role in knowledge
acquisition (diSessa 1993). Since these two reasons
constitute key issues in learning, finding out the way
learners use spatial localization to self-explain in the
context of inaccurate prior knowledge should reveal
valuable information on the hypothesized benefits of
spatial localization in learning. In what follows, I have
chosen the field of physics and in particular, physical



motion (in a curved path) because it has been shown that
naive beliefs in this domain are very common (McCloskey
1983, diSessa 1993).

The hypothesis guiding the present research is that the
use of adjacent features can prevent identification, and
hence correction, of inaccurate prior knowledge, by
allowing self-explanations when the features share similar
properties. Diagrams in the sciences are often made of
simple adjacent elements with certain identical properties
(e.g., a curve and a line both represent distances that can be
measured). In the context of learning, such adjacency can
lead to blurring the distinction between the features and can
inappropriately foster the ability to self-explain. As a
result, inaccurate prior knowledge is not necessarily
identified and modified, and localization can inhibit the
self-explanation effect.

Method

Subjects

Ten volunteers (three males and seven females), all
undergraduate students from the University of California
at Berkeley, who were paid $10.00 per hour for their
participation. They had taken neither college-level physics,
nor astronomy at the college or high school level. Four of
them had taken physics in high school. Only one knew
calculus, taken in college. They represented a range of
abilities in terms of grade point average (GPA) and
Scholastic Aptitude Test scores.

Materials

A three-page text entitled "Motion" was written by the
author to introduce basic physics concepts: speed, average
and instantaneous velocity, average and instantaneous
acceleration, tangent, vectors and the addition of vectors.
These concepts were presented with a definition, a brief
explanation concerning their usefulness, a simple diagram,
but no calculus. To illustrate the use of the concepts in the
study of motion, the author wrote a seven-page text
entitled: "An Example of Two Dimensional Motion:
Motion in a Curved Path." The text discussed two balls
falling, one along a straight line (ball A), and the other in a
curved path (ball B) with uniform horizontal velocity and
constant vertical acceleration. The trajectory of ball B was
analyzed by studying the way its instantaneous velocity
vector changed at successive times equally spaced. It was
shown that by grouping the successive instantaneous
velocity vectors, one can notice that these vectors change
by a constant vertical vector. Finally, an equation was
derived to express the instantaneous velocity in terms of
the initial horizontal velocity and the acceleration.
Diagrams were not provided at this stage (subjects were
asked to draw their own).
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Design and Procedure

The same experimenter tested all the subjects individually.
Sessions lasted between 1 hour 30 minutes - 2 hours and
were audio and videotaped. A fifteen question pretest was
administered to measure the subjects’' theoretical and
physical understanding of the physics concepts. It asked
subjects to distinguish between speed and velocity, and to
define instantaneous acceleration. After the pretest,
subjects were asked to read a two-page sheet of instructions
about the verbal protocol procedure, and they watched the
experimenter think aloud while reading a text about
introductory statistics. Then, the students practiced the
procedure with a two-page text about the study of light.
After this training, subjects were asked to study the text
presenting the basic concepts in the physics of motion, until
they were able to answer a ten-question test correctly.
Then, they studied the example by reading each statement
aloud and explaining their understanding with
verbalizations and drawings. Finally, they took an
"explanation test" and were asked to answer a set of 10
isomorphic and 6 transfer questions. The explanation test
prompted them to explain the physics of the two balls
studied in the chapter, inviting them to make drawings
along with their explanations, to avoid ambiguities of
interpretation during the analysis of their performance.
After completion of the postests, subjects were debriefed.

Results

The explanation test was coded as follows: thirteen facts
that had been mentioned in the example were identified
(see Appendix) and were counted as one point each, which
made a possible total score of thirteen. A post-hoc median
split based on performance on the postests (including the
explanation test) was used to define two groups, Low-
Benefit (LB) and High-Benefit (HB) learners. One
"middle" subject was dropped from the analysis, so there
was a total of 5 subjects in the LB learners' group and 4 in
the other group. The mean success of the LB learners was
44.8% (26.1% for the explanation test, 60% for the
isomorphic test, and 33% for the transfer test). The mean
success of the HB learners was 82.7% (71.2% for the
explanation test, 90% for the isomorphic test, and 66% for
the transfer test). In terms of background, the number of
LB and HB learners having had high school physics was
the same (2). In addition, the subject having had college-
level calculus turned out to be a LB learner.

Analysis of verbalizations accompanying the beginning
statements of the example on motion in a curved path
showed that all the students had an inaccurate conception
of the fall. According to the most common naive
conception, the ball was supposed to follow a straight line
on the table, a little curve when leaving the table, and then
a vertical line when falling. One student thought the ball
should experience a straight line on the table and a vertical
fall. Another naive conception that was built around the



idea of a vertical fall was the case of a student who thought
that the curve mentioned in the text was happening while
the ball was on the table. Finally, a student also said that
after a straight line on the table, the ball should follow a
diagonal path.

Self-explanations were identified in the verbalizations,
and their number was counted. A self-explanation was
defined as a unit of one or several lines of protocol
referring to the same idea, that was a comment about the
physics of the situation but not a paraphrase. For instance,
reading the statement: "The acceleration is therefore
constant” and saying “Well, I guess that would have to be
since the object is the same and gravity is the same” was
counted as a self-explanation because the subject in this
case was bringing his own knowledge to provide a coherent
explanatory statement.

Self-Explanations and Learning. The respective mean
numbers of self-explanations were computed (see Table
1). The null hypothesis that the two means are equal was
not rejected (p > .80, two-tailed). This result, which should
be interpreted with caution given the power limitation of
this test, may indicate that HB learners do not
necessarily self-explain more than LB learners. It is
important to notice that the figures from Table 1 do not
correspond to the ones that are typically found in self-
explanation studies which have used similar sample sizes
as the one in the present investigation. Such studies
usually get a clear, significant effect with a higher number
of self-explanations characterizing the HB learners' group.

HB Learners LB Learners
15.2 134
(SD=340;n=4) (SD=17.70; n =5)

Table 1. Mean Number of Self- Explanations.

Perhaps a qualitative difference between HB and LB
learners' self-explanations does exist? For instance, LB
learners might generate more inaccurate self-explanations
than their HB counterparts. This would represent a
departure from previous studies of the self-explanation
effect which have not reported such a differentiation
between the two groups of learners. Chi and VanLehn
(1991) have mentioned the occasional occurrence of
incorrect elaborations, and Pirolli and Recker (1991) have
noticed the rarity of incorrect explanations in their
investigation (1.8%). To address this hypothesis, self-
explanations were categorized as correct (such as the one
‘above), or inaccurate. An example of the latter is provided
by subject N's performance. In the paragraph analyzing the
motion of ball B at successive time intervals, N read the
following sentence: "In each successive interval, the
instantaneous velocity vector increases by the same
amount, Av." Instead of focusing on the length of that
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vector, N's attention was drawn to the distances on the
curve between the successive instantaneous velocity
vectors characterizing ball B's trajectory. N's explanation
was that these vectors are separated by equal distances on
the curve. In reality, the distances increase because of
acceleration. By comparing the distribution of such
inaccurate self-explanations and by contrasting them to
correct ones, it was found that LB and HB learners do
differ in terms of the quality of their self-explanations (see
Table 2).

HB Learners LB Learners
Mean 0.5 4.6
Percentage 33 34.8**
**p< 01,

Table 2. Mean Number and Percentage of Inaccurate
Self- Explanations.

It may be that self-explaining is nevertheless useful to
LB learners, who could refine their thinking in an
appropriate direction despite the fact that they are
generating inaccurate self-explanations. This hypothesis
was tested by considering the proportion of inaccurate self-
explanations that were produced while working on the first
and the last thirds of the example solution. The difference
between the two proportions is significant (z= 2.01, p= .02,
two-tailed) but it is in the direction opposite to that
expected by the hypothesis. A greater number of
inaccurate self-explanations was produced during the last
part of the example than during the first (53.8% versus
21.9%). This result clearly shows that the LB learners of
this study did not get any benefit from their self-
explanations. Self-explaining does not seem to help
remove inappropriate mental models, since all the ones that
have been isolated in the problematic self-explanations
were present during the postests.

A content analysis of the self-explanations reveal that
most (91.3%) of the LB learners' inaccurate self-
explanations relate to drawing connections from the text to
the physical world ("kinematic" category) as opposed to
applying a non-physical definition of a concept such as
"acceleration equals difference in speed over time"
("formulaic" category) which accounts for the remaining
8.7%. Self-explanations were also categorized as
"conservative" versus “liberal” when either a few or none
of the knowledge pieces mentioned in the explanation had
been presented in the text previously. For instance, an
explanation involving the decomposition of an
instantaneous velocity vector into a horizontal and a
vertical component was "conservative" because addition of
vectors had been presented in the introductory chapter and



it was mentioned in the example that ball B had a uniform
horizontal velocity. By contrast, saying that the
instantaneous velocity vector was the product of a number
X by a constant C was considered "liberal" because it
introduced a way to analyze vectors that had not been
mentioned in the text. It was found that LB learners’
accurate self-explanations are strongly tied to the
"conservative" dimension (p < .05, two-tailed) whereas
their inaccurate self-explanations are not (p > .05, two-
tailed). It is also interesting to note that HB learners' self-
explanations tend to be "conservative" (p < .05, two-tailed)
suggesting that LB learners make mistakes because they go
too much beyond the text. As a result, four out of the five
LB learners thought that the ball follows equal curved
distances along the curve during successive equal time
intervals. None of the HB learners came to this conclusion.

Diagrams and Self-Explanations. How did diagrammatic
adjacency affect self-explanations? At the beginning of this
paper it has been emphasized that diagrams such as curves
and lines used in the study of motion are made of adjacent
features which share similar properties (e.g., being
measurable). By facilitating access to such features, a
diagram also may contribute to blurring the discrimination
between them, leading to an "inhibition" of the self-
explanation effect by allowing learners to inaccurately self-
explain.

This hypothesis was explored by developing a model
(Figure 2) that makes use of adjacency to account for the
way the LB learners generated their inaccurate kinematic
explanations. The model was built by choosing at random
one inaccurate kinematic self-explanation from each of the
three LB learners and by analyzing the steps the subject
took to generate each self-explanation given: the content of
the example line; the subject's intuitive knowledge of the
physical world; and her understanding as described in the
preceding part of the protocol, by drawings and
verbalizations. The model accounts for 65% of the
inaccurate self-explanations. It does not account for any of
the HB learners' explanations which relied on conceptual
meaning rather than on a matching process between text
and diagrams to process each example line.

The model has two major phases: a component analysis
phase, where subjects work on the example line and on
their diagrams in a piecemeal fashion; and an integration
phase, where they put the different elements of their
understanding together. The component analysis phase
shows that LB learners typically used concepts of a line of
text to create a diagrammatic representation based on
previous verbalizations (step A). They then matched
diagrammatic attributes and concepts from the new line
using recognition or operators exploiting adjacency (step
B), and finally took the remaining concepts of the new line
that could not be explained this way as new attributes of
the diagram (step C). This last step allowed the integration
of ideas into an explanation.
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PHASE I. Component Analysis

A. Draw diagram to explain new example line, using
understanding of previous lines.

B. Maitch attributes between diagrams and words in
the example line to explain, using the "Recognition”
operator and Adjacency Operators (e.g., "Transfer").

PHASE I1. Integration-Explanation
C. Create diagrammatic attributes for remaining
concepts in the example line to explain.
D. Generate explanation.
sk 3 3 sk ok 3k 3k 3k ke ok ok sk ok sk ok ok ok 3 ok 3k ok ok e ok ke sk ok o ok sk sk ok sk ok ok sk ok sk ok ok skok ok ok
Figure 2. The model that uses adjacency to account
for LB learners' inaccurate explanations.

To understand how the model works, let us study the
exact transcript provided by subject N (Figure 3):

Example line #24:
In each successive interval the instantaneous
velocity vector increases by the same amount, Av.
Subject N:
[draws Curve 1 with arrows and segments]
"It just means to say that between each successive
intervals the distance is the same
[draws Curve 2 with segments and labels A, B, C, D]
A would be at C if it were into three parts, B would be
equal to A, would be equal to C
[writes the equalities and the sum]
and A+B+C would be equal to D."

curve 2

\é
\B

| C

curve 1

b

A=B=C
A+B+C=D
13 +1/3+1/73

Figure 3. N's transcript.

In the above episode, N interprets the fact that the
instantaneous velocity vector increases by the same amount
as being reflected by equal distances on the curve between
the successive vectors. First, let us notice that adjacency
between the vectors and the curve plays a role in N's
episode. It allows N to transfer a characteristic C
mentioned in the sentence ("same amount") from the



instantaneous velocity vectors to the curve. This is
represented in the model by an "Adjacency Operator"
called "Transfer", which is written as:

Transfer (C,a,b)/Adj(a,b)

where a characteristic C is transferred from the
diagrammatic feature a to the diagrammatic feature b,
given adjacency of a and b.

The model accounts for N's performance in the following
manner (see Figure 4): First, N's prior understanding of
instantaneous velocity vector is used to begin making sense
of line #24. N had previously misunderstood that the
successive instantaneous velocity vectors remain of the
same length, so a corresponding diagrammatic
representation is created (step A). However, this
representation does not immediately explain the fact that
these vectors "increase by the same amount," since the
vectors are of the same length. In step B, attributes from
the diagram and concepts of the example line are used the
following way: using the Recognition operator, "each
successive interval" is matched with the intervals on the
curve, as is "the instantaneous velocity vector" with the
vectors on the diagram. However, "the instantaneous
velocity vector increases” cannot be matched with the
equal length of the vectors, creating an impasse. At this
point, the Transfer operator notices the adjacency of the
vectors and the curve and transfers "same amount" from the
instantaneous velocity vectors to the equal segments on the
curve. Different knowledge pieces are now available, but

Example line: “In each successive interval, the
instantaneous velocity vector increases by the same
amount, Av."

38 3 2k 2k 3k 2k ok 2k o e ak 3k ok ok 3k 2k 3k 3k ok ok ok 3k 3k 3K 3k ok ok 3k 3k ok 3k 3k 3k 3k ok sk ok ko ok kk ok ok
PHASE I. Component Analysis

A. Draws Curve 1 (see Figure 3) from previous
understanding: curved trajectory, equal segments on
curve to represent time intervals, equal instantaneous
velocity vectors (i.v.v.).

B. Matches:

Operators: REC: Recognition, TRA: Transfer

REC: ("in each successive interval”, interval_curve)
REC: ("the instantaneous velocity vector", i_v_v)
Failed REC: (“increases", equal_length_i_v_v)

TRA: (“same amount", equal_curve_segments)

PHASE II. Integration-Explanation

C. Remaining concept: "increase". Create

corresponding diagrammatic attribute: i.v.v. becomes

more and more vertical.

D. Generate explanation: the successive i.v.v. are

found at equal segments on the curve.

ak 2k 3k ok 3k 3k 3k 3k 3K 2k 3k 3k 2k ok 2k 3k ke o 3 ok 3k ok sk ok 3k 3k sk 3k 3k ok ak ok ke 3k S ok ok ok ok 3k Kok 3k %k
Figure 4, How the Model from Figure 2 Accounts for N's

Performance in Figure 3.
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the occurrence of “increase” in the example line is left to be
explained. So in step C, a new diagrammatic attribute is
created (the fact that the vectors become more and more
vertical) corresponding to "increase". This step allows one
to integrate all the pieces into an explanation: the
successive i.v.v. are found at equal segments on the curve.

What precedes illustrates the fact that adjacent features
can foster the generation of inappropriate explanations.
They function as a source of additional degrees of freedom
for a learner in generating a self-explanation. This is so, in
this paper, when particular properties/qualitics are shared
by the local features. In N's example, for instance, a vector
had a "length" and an "amount," and such measurable
entities were transferable to the curve.

In the present study, the qualities transferred were all
highly familiar ones. That is, they corresponded to
concepts that can be visualised automatically on a diagram
because they are highly practiced. Indeed it may be that
the Transfer operator should be written as:

Transfer (C,a,b)/Adj(a,b), Fam(C)

where Fam stands for Familiarity. In N's example, we can
see this familiarity at work with "same amount”. The equal
segments on the curve, initially drawn to represent equal
time intervals, were readily seen as representing "same
amount": they became terribly tempting to explain why the
instantaneous velocity vector increases by the same
amount. In this case, N needed strong suppression
mechanisms to reject this automatic knowledge and to
decide to increase the length of his instantaneous velocity
vectors. Why did this not happen? The answer to this
question lies in the relationship between highly familiar
diagrammatic knowledge and mental models. We know
little about this critical issue, which I have begun
investigating.

Discussion And Conclusion

The purpose of the present paper was to explore the role
played by diagrammatic representations in the self-
explanations effect. It has been shown that learners do not
necessarily become HB learners if they self-explain: no
significant difference was found in terms of the number of
self-explanations in the LB learners and the HB learners'
groups, contrary to what previous self-explanations studies
have found for similar sample sizes; self-explaining does
not seem to have helped the LB learners of this study to
refine their comprehension appropriately; and the LB
learners' self-explanations tended to be inaccurate.

It was found that, among the key variables influencing
the LB learners’ performance is the use of spatial
localization. The LB learners' inappropriate use of this
diagrammatic property played an important role in their
ability to generate inaccurate self-explanations. Access to
adjacent features sharing common, familiar properties led
to the propagation of inaccurate comprehension,
inappropriately fostering self-explanations (e.g., N used an



adjacent feature to the instantaneous velocity vector -- the
curve ---, which is also measurable, to end up saying that
equal distances separated the vectors on the curve). As a
result, the use of these features prevented identification and
correction of inaccurate prior knowledge.

This exploration of the role of spatial localization in
explanations shows that, contrary to what has been
previously emphasized (Larkin and Simon 1987), the
organization of information by location in diagrams does
not turn out to be a strong, beneficial quality of diagrams,
at least in the present context. It also shows that it is
important to consider the properties of local elements,
rather than localization per se. When doing so, one finds
that subjects in the process of acquiring new conceptual
knowledge are not necessarily helped by local
diagrammatic features that share similar, familiar
properties/qualities (such as being potentially referred to by
their length) because they can use them indiscriminately.
The overwhelming benefits of localization emphasized in
Larkin and Simon's analysis hold for subjects who are
experts already, rather than novices. Experts can break
down the elements of a diagram according to their relevant
properties in a given problem, but novices in the early stage
of learning have not yet acquired the skills to do so. As
such, the present results extend previous analyzes on
perceptual inference (Scaife and Rogers 1996).

Finally, this paper shows that a correlation between the
presence of self-explanations and poor learning will be
observed when diagrams provide low-ability learners with
a high number of degrees of freedom. Such a case occurs
in particular when adjacent features share a relevant,
common property, leading to a lack of discrimination of
these features. This situation tends to "inhibit" the self-
explanation effect by providing learners with the flexibility
to generate inappropriate explanations of their own. This
analysis suggests that the self-explanation effect may be
tied to highly constrained situations.
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Appendix: The Coding Scheme for the
Explanation Test

Presence or absence of the following ideas: Uniform
horizontal motion/ Application of the velocity concept in
the horizontal direction/ Uniform velocity can be seen by
equal horizontal distances of the ball falling in a curved
path/ There is uniform vertical motion/ The acceleration is
uniform/ Acceleration can be seen by increasing vertical
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distances/ The motion of the ball can be analyzed by
studying successive instantaneous velocity vectors/ An
instantaneous velocity vector is tangent to the path/ It can
be decomposed in two vectors/ The decomposition is an
addition of vectors/ One of these initial vectors
(horizontal) is the initial horizontal velocity vector of the
ball/ The vertical component shows a constant vertical
change/ This change is acceleration.

References

Armengol, E.; and Plaza, E. 1995.
Learning: A Knowledge Level Analysis.
Intelligence Review 9(1): 19-35. ~

Explanation-Based
Artificial

Chi, M. T. 1996. Constructing Self-Explanations and
Scaffolded Explanations in Tutoring. Applzed Cognitive
Psychology 10: 533-549.

Chi, M. T.; and VanLehn, K. 1991. The Content of
Physics Self-Explanations. The Journal of the Learning
Sciences 1(1): 69-105.

Chi, M. T.; Bassok, M; Lewis, M. W.; Reimann, P.; and
Glaser, R. 1989. Self-Explanations: How Students Study
and Use Examples in Learning to Solve Problems.
Cognitive Science 13: 145-182.

Chi, M. T.; de Leew, N; Chiu, M. H.; and LaVancher, C.
1994, Eliciting Self-Explanations Improves
Understanding. Cognitive Science 18: 439-477.

Cox, R.; and Brna. P. 1995. Supporting the Use of
External Representations in Problem Solving: The Need
for Flexible Learning Environments. Journal of Artificial
Intelligence in Education 6(2-3): 239-302.

DiSessa, A. A. 1993, Toward an Epistemology of Physics.
Cognition & Instruction 10(2-3): 105-225.

DeJong, G. ed. 1993. Investigating Explanation-Based
Leamning. Boston, Mass.: Kluwer Academic Publishers.

Ferguson-Hessler, M. G. M.; and deJong, T. 1990.
Studying Physics Texts: Differences in Study Processes
Between Good and Poor Solvers. Cognition & Instruction
7: 41-54,

Gernsbacher, M. A. 1993. Less Skilled Readers Have Less
Efficient Suppression Mechanisms. Psychological Science
5:294-298.

Koedinger, K. R. 1992. Emergent Properties and Structural
Constraints: Advantages of Diagrammatic Representations
for Reasoning and Learning. In AAAI Spring Symposium
on Reasoning With Diagrammatic Representations. Menlo
Park, Calif.: American Association for Artificial
Intelligence.



Larkin, J. H.; and Simon, H. A. 1987. Why a Diagram is
(Sometimes) Worth Ten Thousand Words. Cognitive
Science 11: 65-99.

McCloskey, M. 1983. Intuitive Physics. Scientific
American 248: 122-130.

Pirolli, P. ; and Bielaczyc, K. 1989. Empirical Analyses of
Self-Explanation and Transfer in Learning to Program. In
Proceedings of the Eleventh Annual Conference of the
Cognitive Science Society. Hillsdale, NJ: Erlbaum.

Pirolli, P.; and Recker, M. 1991. Knowledge Construction
and Transfer Using an Intelligent Tutoring System,
Technical Report, CSM-1, School of Education, University
of California at Berkeley.

Scaife, M.; and Rogers, Y. 1996. External Cognition:
How do Graphical Representations Work? International
Journal of Human-Computer Studies 45: 185-213.

VanLehn, K. in press. Analogy Events: How Examples
are Used During Problem Solving. Cognitive Science xx:
XXX-XXX.

VanLehn, K.; and Jones, R. M. 1993. Learning by
Explaining Examples to Oneself: A Computational Model.
In S. Chipman and A. L. Meyrowitz eds. Foundations of
Knowledge Acquisition: Cognitive Models of Complex
Learning, 25-82. Boston, Mass.: Kluwer Academic
Publishers.

143





