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Abstract

We show that fuzzy logic and other soft computing
approaches explain and justify heuristic numerical methods
used in data processing and in logic programming, in
particular, M-methods in robust statistics, regularization
techniques, metric fixed point theorems, etc.

Introduction

What is soft computing good for? Traditional
viewpoint. When are soft computing methods (fuzzy,
neural, etc.) mostly used now? Let us take, as an example,
control, which is one of the major success stories of soft
computing (especially of fuzzy methods; see, e.g., (Klir
1995)).

e In control, if we know the exact equations that
describe the controlled system, and if we know the
exact objective function of the control, then we can
often apply the optimal control techniques developed
in traditional (crisp) control theory and compute the
optimal control.

Even in these situations, we can, in principle, use
soft computing methods instead: e.g., we can use
simpler fuzzy control rules instead of (more
complicated) traditional techniques. As a result,
we may get a control that is much easier to
compute but that it somewhat worse in quality.
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e However, the major application of soft computing in
control is to the situations when we only have partial
knowledge about the controlled system and about the
objective functions and in which, therefore,
traditional optimal control theory is not directly
applicable. Here is where all known success stories
come from: utilities like washing machines or
camcoders, car parking automation, and other
applications all share one thing: they all have to
operate in a partially known environment.

From this viewpoint, as we gain more and more knowledge
about a system, a moment comes when we do not need to
use soft computing techniques any longer: when we have
accumulated enough knowledge, we will then be able to
use traditional (crisp) techniques.

From this viewpoint, soft computing methods look like a
(successful but still) intermediate step, "poor man's" data
processing techniques, that need to be used only if we
cannot apply "more optimal” traditional methods.

Another possible use of soft computing: it has a great
potential for justifying heuristic methods. The above
viewpoint summarizes the existing usage of soft computing
techniques: currently, these methods are, indeed, mainly
used only when we lack information. However, as we will



try to show in this paper, the potential for soft computing
techniques is much broader.

Indeed, let us assume that we have the complete
information, and so, we can use some crisp data processing
algorithms. Where do these algorithms come from? If
several data processing algorithms are applicable, which of
these algorithms should we choose? In a few cases, these
algorithms have a profound mathematical justification, but
in most cases, these methods are heuristic in the sense that
their justification comes from informal arguments rather
than from the formal proofs.

Now, “informal" means formulated in a natural
language, not in the language of mathematics. So, to justify
these methods, we must formalize this natural language
description in precise terms. This is exactly what soft
computing (especially fuzzy logic) is doing.

So, soft computing has a great potential in justifying
heuristic methods.

What we are planning to do. In this paper, we will show
that soft computing methods can indeed explain heuristic
methods, both in more traditional data processing and in
intelligent data processing techniques (e.g., related to logic
programming).

Data processing methods: a useful
classification

Before we explain how soft computing can be used, let us
briefly classify the existing methods of data processing by
the complexity of results that we want to achieve:

¢ In some problems, all we want is one or several
numerical values. It may be that we measure some
characteristics, or it may be that we know the model,
and we want, based on the experimental data, to
estimate the parameters of this model. These
problems are usually handled by statistical methods.

¢ In other problems, we want to know a function. We
may want to reconstruct an image (brightness as a
function of coordinates), we may want to filter a
signal (intensity as a function of time), etc. These
methods are usually handled by different
regularization techniques.

¢ Finally, there are even more complicated problems,
in which we want to reconstruct a model of an
analyzed system. Methods that handle such problems
are called intelligent data processing methods. Many
of these methods are based on logic programming, a
formalism that (successfully) describes complicated
logical statements algorithmically, in a kind of
programming language terms.
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In this paper, we will show that soft computing explains
heuristic data processing methods of all three types.

Soft computing explains heuristic
methods in statistics

Two types of heuristic methods in statistics. Most
statistical methods are well justified. There are only two
areas where heuristic methods are still used (see, e.g.,
(Wadsworth 1990)):

e While we are computing and transforming
probabilities, we are on the safe ground of well-
justified techniques. Whatever estimate we get, we
can always compute the probabilities of different
possible errors for this estimates, the probabilities for
different errors in estimating the above-mentioned
probabilities, etc. However, comes a time when we
need to make precise recommendations (make
decisions). And here is when we often have to use
heuristic methods.

Let us give a simple example of what we mean.
Measurement errors usually have a Gaussian
distribution, with some standard deviation o. We
usually know this value o after testing the measuring
instrument. A natural question is: if we have

measured the value £ ,what are the possible actual
values of the measured quantity x?

The literal answer is "any", because for Gaussian

distribution, arbitrary large deviations £ - x have
non-zero probability: with probability 5%, we can
have errors greater than 2o, with probability 0.1%,
errors greater than 30, etc. Suppose that we bought
an instrument, made a measurement, and the error
was greater than 2c. Well, we would conclude that it
is possible. But if an error was greater than 6c (which
corresponds to the probability = 10%%), we would
simply conclude that it cannot be a random error: we
would ask the manufacturer to replace the faulty
instrument, and he will most probably replace it (or
at least repair it).

This common sense decision is based on the
heuristics idea that if some event has a very small
probability (like < 10°%), then this event cannot
occur. If you walk into a casino and a roulette, which
is supposed to be random, stops on red 100 times in a
row you would conclude that it is broken.

This idea, however, is very difficult to formalize,
because we can always divide the real line into small
enough segments so that the probability of being in
each of them is <10°%%. Thus, if we simply postulate
that such low probability events do not happen, we
will have a make a nonsensical conclusion that no



value of error is possible at all. Thus, we have to use
heuristic methods.

¢ Another situation in which we have to use heuristic
methods is robust statistics (see, e.g., (Huber 1981)
and (Wadsworth 1990)): If we know the exact values
of the probabilities, then we can use traditional well-
justified heuristic methods. However, often, we do
not know these probabilities. What methods should
we then use? For example, let us consider the
situation in which we want to find the parameters C;,
.. »C, of amodel y = f(x, . . .,x,, Cy, .. .,C,) based on
the results (x,* ..., x,,(k) , y""), 1< k <K, of several
(K) measurements in which we measure both the
inputs x;, and the output y. Ideally, we should find the
values of C; for which the model exactly predicts all
measurements results, i.e., for which all prediction
EITOIS ey = y(k) - f(x,(k) eees x,,(k) » Ch,v .Gy ) are equal
to 0. This requirement makes perfect sense for an
idealized situation in which all the values of y are
measured with an absolute accuracy. However, since
measurements are never 100% accurate, even if the
model is precise, the measured values y(k) will still
differ from the actual values, and thus, from the
model's prediction. Thus, we cannot require that the
errors are exactly equal to 0; we can only require that
these errors e,,...,ex are small.
When errors are normally distributed, then a natural
way to determine the parameters is by using the least
squares method e,° +...+ ¢ — min. If we do not
know the probabilities, we can use a class of heuristic
methods called M-methods, in which we find the
parameters C,. ..,C, from the condition
y(e) + ... +y(ex) —min ey
for some function y(x). These methods often work
fine, but they are still heuristic. How can we justify
them?

The next question is: what function y(x) should we
choose?
Let us show that both types of heuristic methods can be
justified by using soft computing (namely, fuzzy logic).

Formalization of the requirement that events with
small probabilities cannot happen. We want to describe
the requirement that an event with a sufficiently small
probability, i.e., with a probability that does not exceed a
certain small number p, << 1, cannot occur. The problem
with a standard probabilistic justification of this
requirement is that we may have many events E,, . . ., E,
each of which has a very small probability p(E;,) < p..
There is no problem with excluding each of these events,
However, when we want to exclude all of them, the

32

excluded event E = E; V .. . V E, can have a very high
probability (all the way up to 1).

To avoid this problem, we can, in situations of partial

information, use degrees of belief d(E;) instead of
probabilities p(E;). In this case, the degree of belief d(E) of
the entire excluded partt E = E; V...V E, can be
determined from the degrees of belief d(E;) by using a t-
conorm a V b, a fuzzy analogue of “or” (Klir and Yuan
1995), (Nguyen and Walker 1997): d(E) = d(E) V. .. V
d(Ey). The simplest t-conorm is @ V b = max(a, b). For this
t-conorm. if d(E) < p, for all i, then d(E) =
max(d(Ey),....d(Ey)) is also < p,. Thus, we can safely
exclude all these events.
Justification of M-methods in robust statistics.
Informally, the requirement for choosing the parameters of
the model is that all the errors ¢; are small, i.c., that ¢ is
small, e, is small, . .., and eg is small. A natural way to
formalize this requirement is to use fuzzy logic. Let p (x)
be a membership function that describes the natural-
language term “"small". Then, our degree of belief that ¢ is
small is equal to p(ey), our degree of belief that e, is small
is equal to u(e,), etc. To get the degree of belief d that all K
conditions are satisfied, we must use a t-norm (a fuzzy
analogue of "and"), i.e., use a formula d = p(e&.. .&
p(ek), where & is this t-norm.

In (Nguyen, Kreinovich, and Wojciechowski 1997), we
have shown that within an arbitrary accuracy, an arbitrary
t-norm can be approximated by a strictly Archimedean t-
norm. Therefore, for all practical purposes, we can assume
that the t-norm that describes the experts' reasoning, is
strictly Archimedean and therefore, has the form a&b =
¢ (p(a)+ @(b)) for some strictly decreasing function ¢
(Klir and Yuan 1995), (Nguyen and Walker 1997). Thus,
d = ¢le(ule)) +...+ ©(p(ex))). We want to find the
values of the parameters for which our degree of belief d
(that the model is good) is the largest possible. Since the
function ¢ is strictly decreasing, 4 attains its maximum if
and only if the auxiliary characteristic D = ¢ (d) attains its
minimum. From the formula that describe d, we can
conclude that D = o(u(e)) +....+ o(u(ex)). Thus, the
condition D — min takes the form (1), with y(x)=o((n(x)).

So, we have indeed justified the M-methods. This
justification enables us to answer the second question:
what function y(x) should we choose. We should base this
choice on the opinion of the experts. From these experts,
we exfract the membership function p(x) that corresponds
to "small", and the function @(x) that best describes the
experts' “and”.

Comment. In image processing, M-methods are called
generalized entropy methods, and the function y(x) is
called a generalized entropy function. In (Flores, Ugarte,
and Kreinovich 1993), (Mora, Flores, and Kreinovich
1994), and (Flores, Kreinovich, and Vasquez 1997), we
have successfully used this method for radar imaging
(including planetary radar imaging). For such problems,



minimization of the function (1) is a difficult task; to
compute the minimum, we used another soft computing
technique: genetic algorithms.

Soft computing explains heuristic
methods in regularization

Heuristics. One of the main problems in reconstructing a
signal is that this problem is ill-defined in the following
sense: if we know the values x(#;) of the signal x(¢) for
several consecutive moments of time #,...,t,, we can, in
principle, get arbitrary values in between. To make
meaningful conclusions, we need to restrict the class of
signals to signals that smoothly depend on time, i.e., which
cannot deviate largely from x(#;) while ¢ goes from # to the
next value fyy . Thus, we have two problems here:

e first, how can we limit the smoothness of the signal,
and

e second, when we have fixed the smoothness, which
extrapolation techniques should we choose.

In both cases, we mostly have to use heuristics methods.
Let us show that these methods can be justified by using
fuzzy logic.

Justification of smoothness. Intuitively, the unknown
signal must satisfy the property that its values x(f) and x(s)
in two close moments of time should be, themselves, close
to each other. In other words, we must have the following
implication: if 7 and s are close, then x(¢#) and x(s) should be
close. How can we formalize this requirement?

In classical (two-valued) logic, the statement "if A then
B" is equivalent to the inequality #(A) < #(B), where 1(A)
and #(B) are the truth values of the statements A and B
(t(A) = 1 if A is true, and = O otherwise). Similarly, in
fuzzy logic, if we have a 100% belief in the implication "if
A then B", it is usually interpreted as d(A) < d(B), where
d(A) and d(B) are the degrees of belief in A and B,
respectively. So, the above statement can be reformulated
as the inequality d(A) < d(B), where d(A) is the degree of
belief that ¢ and s are close, and B is the degree of belief
that x(f) and x(s) are close.

Intuitively, the degree of closeness between the two
moments of time ¢ and s depends only on the interval
between them, i.e., on the difference ¢ - s. In other words, ¢
is close to s if and only if the difference +—s is small.
Similarly, x(f) is close to x(s) if and only if the difference
x(f)-x(s) is small. To describe these degrees of belief in
precise terms, we must know the membership functions
corresponding to the word "small". Let p(x) be the
membership function that describe "smallness" of time
intervals.
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The difference x and —x are of the same size, so the
degree of belief that x is small must be the same as the
degree of belief that -x is small. Hence, p(x) = p(-x), i.e.,
H(x) is an even function.

The larger x > 0, the less reasonable it is to call x small,
thus, the membership p(x) must be strictly decreasing for x
>0.

It is natural to assume that smallness of signal intervals
(of type x(f) -x(s)) is described by a similar membership
function, with the only difference that signals may be
measured in different units. Therefore, we describe 'small’
for signals as p((x(5)-x(s))/k) for some multiplicative
constant & that describes the possible difference in units.

Thus, the above inequality takes the form p (t-5) <
W((x(#)-x(s))/k) for all £ and s. Since the function y is even,
we have p(x)= u(lxl), and the above inequality can be re-
written as [ (Iz-s1) < p(I0e(#)-x(s)lVk). Since pL(x) is a strictly
decreasing function, this inequality is equivalent to It — 5| =
Le(®) - x(s)lVk, i.e., to x(¢) - x(s)| < k.lz-sl, and

Le(8)-x(s)I
—— <k
Jt-sl

Thus, out of a fuzzy informal restriction we got a crisp
restriction on the signal x(f). When s—t, we conclude that
the time derivative x(f) of the signal x(¢) is limited by £.

Moreover, from the experts, we can elicit the
membership functions that correspond to "small" for time
intervals and for signal values, and therefore, extract the
value k that limits the time derivative.

Justification of traditional regularization methods. In
(Kreinovich et al. 1992), we have shown that if we
formalize the statements like "the derivative x(f) of the
signal x(t) should be small for all *, and "the value of the
signal itself should not be too large”, then we arrive at the
extrapolation techniques called regularization, that chooses
a signal x(¢) for which J(x(9)*dr+ AJ(x(9))’dt—min, and
that, moreover, thus justification enables us to find the
value of the regularization parameter A based on the
experts' knowledge.

Soft computing explains heuristic
methods in logic programming

Heuristic numerical methods in logic programming.
Logic programming is based on traditional, two-valued
logic, in which every statement is either true or false
(inside the computer: 1 or 0). However, in proving results
about logic programs, and in computing the answer sets, it



is often helpful to use numbers in between 0 and 1. These
intermediate numbers are usually introduced ad hoc,
without any meaningful interpretation, as heuristic tools.

One of the cases when such numbers are used is the use
of metric fixed point theorems (Fitting 1994) (see also
(Khamsi,Kreinovich, and Misane 1993)). Many methods of
logic programming used the idea of a sequential approach
to the answer, in which we start with some (possibly
incorrect) interpretation s,, and then apply some reasonable
correcting procedure s—C(s) until no more corrections are
necessary. An interpretation s is usually described by
describing, for each of the atomic properties py,...., Pus....
(i.e., properties that are either directly used in the logic
program, or that can be constructed based on the ones
used), whether each particular property p; is true or not. In
other words, s = (s, . . ., S, . . .), where s; = 1 if p; is true,
and = 0 otherwise. In terms of the correcting procedure, the
fact that no more corrections are necessary takes the form
C(s) = s. In mathematical terms, this means that the
resulting model s is a fixed point of the correcting
transformation C.

Fixed points are well-analyzed in mathematics.
Therefore, to prove the existence of answer sets and the
convergence of the above iterative procedure, it is
reasonable to use the existing mathematical fixed point
theorems. Traditionally, in view of the discrete character of
traditional logic programming models, in logic
programming, only discrete-valued fixed point theorems
were used. Fitting (Fitting 1994) was the first to
successfully apply continuous-valued (namely, metric)
fixed point theorems in logic programming. The main idea
behind these methods is that we introduce a numerical
metric to describe the distance p(f, s) between two
interpretations ¢ and s.

Metric methods are used for logic programs in which the
atomic properties are naturally stratified:

e the first layer consists of the properties that can be
casily deduced directly from the logic program;

¢ the second layer contains the ones that be determine
indirectly, i.e., for which, in addition to the rules, we
must know the truth values of the atomic statements
from the first layer;

e similarly, we can define third, fourth layers, etc.

The distance p(¢, s) is then defined as 2L, where L is the
first layer on which ¢ and s differ.

Comments.
¢ From the viewpoint of metric fixed point theory, the
choice of 2“ does not really matter; instead, we could
use any strictly decreasing sequence dy..
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e How can we justify this metric?

Soft computing justification. Experts sometimes err.
Hence, when an expert assigns the truth values #,...,z,,... to
the properties p;, his assignments may differ from the
actual (unknown) truth values Ty, . . ., T,, . . . of the
properties of the described object.

As a result, even when we have two different
interpretations ¢ #s, it is still possible that these
interpretations describe the same object (T = S), and the
difference is simply due to the experts' errors. Intuitively,
the "closer” t and s, the larger our degree of belief d(T = 5)
that the (unknown) actual interpretations T and S coincide.
Thus, we can define the metric p(z, s) as 1 - d(T=S8) =d(T
#3). Let us show that this natural definition leads exactly to
the desired metric.

Indeed, T#s if and only if 3n(T, # S, ). An existential
quantifier is, in effect, an infinite sequence of “or”
operations; so, to make the conclusion meaningful, we
must use max as an “or” operation (see the detailed
explanation of this choice in (Nguyen et al. 1997)) . Hence,

d(T # S) = maxd(T, #S,)

If for some property p,, we have #, = s,, then for this
property, we have no reasons to believe that T, # S,.
Therefore, for this n, d(T}, # S,) = 0, and in the maximum,
we can only take into consideration the values n for which
% Sy

How do the values d(n) = d(T,, # S,) differ?

e If the corresponding property p, can be directly
extracted from the rules, then we are the most
confident in the expert estimates. So, if an expert
does say that £, # s, , we take d(n) to be equal to 1
(or close to 1 ). We will denote the corresponding
degree of belief by d.

e  For statements from the second layer, we need to use
additional rules to justify them. Experts may not be
100% sure in these rules. Hence, our degree of belief
in whatever conclusions we make by using these
rules should be smaller than in conclusions that do
not use these rules. As a result, for the properties p,

- from the second layer, our degree of belief d(n) that
the expert is right and that 7|, # S, is smaller than for
the first layer. If we denote the degree of belief for
properties from the second layer by d,, we thus
conclude that d, < d.

e Similarly, the degree of belief d3, d,
corresponding to different layers is a strictly
decreasing sequence: di> dy> d3> ...



For each n, the degree of belief d(T, # S,) is equal to d,
where L is the layer that contains the property p, .The
smaller L, the larger d;. Therefore, the distance p(t, s ) =
d(T # S) , which is equal to the maximum of these values
d(n) for all n for which f, # s, is equal to d, for the
smallest L that contains a property n for which 7, # s, . In
other words, the distance p(¢, s ) is equal to d|, for the first
layer L on which ¢ and s differ. This is exactly the desired
metric.

Comment. Similarly to the previous cases, soft computing
methods not only justify methods of logic programming,
but also help to find appropriate algorithms for solving
logic programming problems; see, e.g., (Kreinovich 1997),
(Kreinovich and Mints 1997), and references therein.
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