
Fault Tolerant Coordination of Robot Teams

Jeffrey Coble Diane J. Cook

The University of Texas at Arlington
500 W. 1st St., MS #19066 Rm. 412 Woolf Hall

Arlington TX, 76019
817-272-3321

{coble,cook}@cse.uta.edu

Abstract
Coordinating interaction among robot teams in order to
maintain a formation is difficult. The objective of our
research is to develop fault tolerant methods of
accomplishing this task that will perform well in real world
environments. We are examining this problem from a
distributed computing perspective and have experimented
with symbolic machine learning as a method for addressing
uncertainties in communication among distributed,
autonomous robots. Our intent is to develop solutions that
have a broader applicability to distributed computing
environments and applications.

Introduction
Coordinating a robot team in the pursuit of a common goal
is difficult. Elements of this problem can be equated to that
of communication and coordination in distributed
computing applications. In distributed computing
applications, issues such as maintaining global state and
determining causality among a series of events are fraught
with difficulty, even under controlled conditions (Chow
and Johnson 1997). There are known algorithms for
addressing such problems, however they are designed to
work in environments where communication links and
processors are reliable. These algorithms quickly fail when
a distributed computing application is introduced into a
volatile environment, in which communication links may
be unstable, the number of nodes may change, or
adversaries may introduce errors into the communication
channel (Chow and Johnson 1997).
 Formation control of robot teams has been an issue in
research on autonomous military scout vehicles (Arkin and
Balch 1997) (Balch and Arkin 1995), satellite formation
flying for communication and surveillance missions, and
unmanned space vehicles (Bauer, et. al. 1997) (Corazzini,
et. al. 1997), among others. Military scout vehicles often
assume different formations, depending on such mission
specific factors as terrain and the desired sensor coverage.
Satellite formation flying is equally mission specific,
depending on such factors as the area to be surveyed and
the frequency. Unmanned space vehicles may be
constrained by the escape vectors necessary for a satellite
formation to resist the earth’s gravitational pull.

 Although there has been significant work related to
coordinating robot teams, very few researchers have
focused on expanding their approaches to incorporate fault
tolerance. Our research focus is to develop intelligent
methods for maintaining fault tolerant coordination in robot
teams, with the hope of developing solutions that have a
broader applicability to distributed computing
environments and applications.

Coordination Strategy
Recent work in formation control has centered around three
formation control strategies (Arkin and Balch 1997) (Balch
and Arkin 1995). They are:

• Unit-centered-referenced: The center of the
formation is computed by averaging the x and y
positions of each member of the formation. Each robot
can then determine its correct position in the formation
by calculating its correct position from this center
point.

• Leader-referenced: Each member of the formation
calculates its position as a reference to the leader. The
leader only concerns itself with its movement toward
the goal, not in maintaining the formation.

• Neighbor-referenced: All members of the formation
maintain their position relative to one other member.

 In terms of creating a fault tolerant method of
coordination, each to these approaches has its problems.
The unit-centered approach requires that each robot in the
formation be able to acquire the global state of the entire
formation. This can either be accomplished by a broadcast
method, where robots broadcast their new position
periodically to the other members of the formation, or a
querying method, where robots periodically request new
position information from the rest of the members. Both
methods can be communication intensive in moderately
sized formations. Furthermore, achieving a precise
snapshot of the state of all robots at a given time is difficult
(Chow and Johnson 1997) and requires significant
communication overhead just to ensure the accuracy of
such a state at a given time. Coupling these difficulties

Copyright © 1998, American Association for Artificial Intelligence
(www.aaai.org). All ri ghts reserved.

From: AAAI Technical Report FS-98-02. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

with the unreliability of wireless communication and the
chance that a robot may be destroyed, unbeknownst to the
other robots, makes using the unit-centered method a very
challenging prospect for real-world systems. The leader-
referenced method eliminates some of the difficulty of
acquiring global state but may assume a communication
capability that is not realistic. Some robotic formations
may be geographically dispersed to the point where some
robots may not be within communication range of the
leader. The neighbor-referenced method is perhaps the

most realistic but may introduce errors in the positional
information that increase as they are propagated down the
communication tree. Figure 1 illustrates four formations
commonly used for military scout vehicles. The arrows
indicate the flow of positional information when using the
neighbor-referenced coordination approach.
There are clearly communication strategies that are more
appropriate for some circumstances than for others.
Therefore, it is not our intention to rule out any approach
but simply to illustrate some of the potential problems with
each. We are currently testing our work using the
neighbor-referenced method because we believe it is a
practical method of communication for robot teams that are
distributed over a large geographic area and in a hostile
environment. It is more robust in situations where
communication connectivity may be spotty due to adverse
topographical conditions.

Dynamic Topology
We are initially focusing on the issue of the dynamic
formation topology. In real environments, robots may be
destroyed or encounter obstructions which will temporarily
prevent them from communicating with some or all of the
remainder of the formation. This problem is similar to one
that occurs in distributed computing applications, where the
failure of nodes or communication links can change the
topology of the configuration.
 With respect to topology changes, there are currently

two situations in which we are interested. The first is the
situation where a robot is destroyed. In such a
circumstance, it would be desirable for the robot that was
receiving positional information from the destroyed robot
to assume the role of its missing neighbor. This would
cause the gap in the sensor network to be closed and allow
the formation to continue on its path to the goal. Figure 2,
diagram A, illustrates the optimal conditions for the robot
team. Diagram B illustrates the optimal response to the
destruction of a formation member. The second situation in
which we are interested is when communication between
robots is temporarily obstructed. In such a circumstance,
the optimal action for the robots would be to continue on
their current course, avoiding any physical obstacles, and
maintaining the formation. This situation is illustrated in
figure 3.
Now that we have considered these two circumstances, we
would like a robot team to be able to distinguish between
the two and act appropriately. Our initial work deals with

1

2 3

54

1

24

3

1

3

4

2

4 2 3 51

A. B.
C.

D.

Figure 1. Common military scout vehicle formations. A. is the wedge, B. is the diamond, C. is the column,
and D. is the line. The arrows indicate the flow of position information through the formation topology.

Figure 2. Robots moving over an area to conduct a sensor sweep. The shaded spheres
surrounding the robots indicate intersection of communication/sensor ranges. Diagram A
depicts the sensor coverage when robots coordinate properly under optimal conditions.
Diagram B depicts the optimal response to the destruction of one of the robots in the
formation. The robot closes the gap in the formation.

Figure 3. Depicts the optimal response to a temporary
communication obstruction. The robots maintain their original
roles, as they should.

using machine learning techniques for providing a robot
with a means by which it can make these decisions.
 We have constrained our work to the problem of
maintaining a formation of military scout vehicles. The
goal is to keep the vehicles in a formation so that they can
move from a target location to a goal location and produce

a sensor sweep of a continuous area.
We make the following assumptions about the problem:
1) Communication between the robots will not be

reliable. Factors which may influence this are
environmental, topographical, failure of a robot
counterpart, or adversaries interfering with
communication.

For instance, obstacles may block communication for
periods of time or a robot in the formation may be
destroyed.
2) Sensors, such as visual tracking methods, will not be

completely reliable and are very sensitive to range.

Some missions may require the robots to be geographically
distributed, such as those where it is desirable to maximize
the sensor coverage of the formation. In such a case, visual
sensors would have limited value for coordinating with
other robots.
3) Some positions in a formation may be more vulnerable

to destruction than others. Therefore, a robot’s
position in the formation, and subsequently the
position of its neighbor, has meaning when
determining the likelihood of a missing neighbor
versus a temporary loss of communication.

First, let us consider the reasons why we would want a
robot to assume the role of a missing neighbor. The
mission of the robots is to provide a sensor sweep of a
particular path. Since each robot is capable of sensing a
finite region, the sensing regions must overlap in order to
capture the global state of a continuous region. Gaps in the
sensor coverage diminish the value of the mission since

Figure 4. CORBA based architecture for robotic team simulation.

ORB

CORBA
Server

Robots
Represented
as Objects

Java Applets/Applications

ClientClientClient

Target
Object

Target
Object

Target
Object

Target
Object

Factory
Object

there is now inconclusive information about the swath
covered by the robots.

Simulator Architecture
We are developing a simulator to validate our methods of
formation control. Figure 4 illustrates the simulator
architecture. The simulator consists of a CORBA server,
which contains a single factory object. In general, a factory
object is an object that allows clients to invoke methods to
create other objects dynamically.
 In our simulator, the clients initiate a connection to the
CORBA server and binds to the factory object. The client
can now invoke a method within the factory object to create
target objects that represent the robot vehicles. The target
objects can be instantiated with such parameters as
formation type and communication strategy.
 The client is responsible for visually representing the
movement of the robots to the user. However, all
communication and state maintenance is done at the server
level, between the target objects. The client only represents
the result of this interaction to the user. The CORBA
server is multi-threaded so that any number of clients may
invoke a simulation. The clients are written in JAVA. This
choice was made simply for platform independence and so
that clients could be embedded within a web browser. The
CORBA Server, factory object, and target objects are
written in C++. The availability of a C++ CORBA ORB
(Object Request Broker) was the deciding factor for this
implementation, but alternative object-oriented languages
could be substituted.
 By representing the robots as objects, we are able to
support a variety of communication methodologies.
Furthermore, this architecture allows us to create a discrete
event simulation (Shen 1996), which allows us to study the
effects of ordered event delivery and the results of
introducing incremental error levels, which is represented
by dropping messages in a random or patterned manner.
CORBA provides a powerful tool for interaction among
objects (Baker 1997) and provides distributed access to
those objects.
 We are in the process of implementing our simulator.
Future work will illustrate the use of the simulator to test
various communication strategies and incremental error
rates. The simulator will demonstrate our integration of
intelligent methods of error recovery and will provide us
with an automated mechanism for generating training data
for machine learning algorithms.

Machine Learning Techniques
Our initial approach at introducing fault tolerance into the
robot coordination problem revolves around machine
learning techniques. For this first study, we are using C4.5
(Quinlan 1993), a symbolic machine learning algorithm, to
learn a decision tree that will classify contextual
information and allow the robots to react to dynamic

changes in a set of parameters. A decision tree generally
represents a disjunction of conjunctions. Every branch of
the tree (a path from the root to a leaf) represents a
conjunction of attribute values. The entire tree, considered
as a whole, represents a disjunction of these conjunctions
(Mitchell 1997). In our work, we are considering the
following attributes:

• Number_of_Robots: This attribute represents the
number of robots in the formation.

• Communication_Delay: This is a continuous value
that represents the communication delay that a robot
experiences when expecting information from its
neighbor. The values range from 0 to 1, with anything
above 0 being considered abnormal. We are currently
using increments of 0.1

• Formation_Type: wedge, line, diamond, column.
These are military scout vehicle formations.

• Obscurance_Level: This is a continuous value that
represents the level of topographical obscurance that a
robot believes is present in the environment. The
values range from 0 to 1, with anything above 0
meaning that the environment offers some amount of
potential communication obscurance. We are currently
using increments of 0.1

• My_Role: This is an integer value that is less than or
equal to the number of vehicles in the formation.

 The C4.5 algorithm takes as input a set of training
examples, designed to explain some of the possible
scenarios of the aforementioned attributes, coupled with a
classification value. The classification values are Change
Role and Don't Change Role. We would like our robot to
decide, based on its real-time assessment of the attribute
values, whether or not to assume the role of its neighbor or
to continue in its current role. So, the robot is attempting to
ascertain whether or not its neighbor has been destroyed or
just temporarily obstructed from communicating.

Preliminary Results
We evaluated this symbolic learning method by generating
a set of training data and running a cross validation
experiment. To create the data, we set the
Number_of_Robots equal to thirty, an arbitrary starting
point, and made some general assumptions about the
vulnerability of various positions in the four formations
illustrated in figure 1. For instance, we assumed that a
robot whose position was closer to the exterior of the line
formation was more likely to be attacked by an enemy and
subsequently destroyed. To reflect this in the training data,
we weighted certain positions in the formations on a linear
scale of vulnerability to destruction. So, we used the
Number_of_Robots, Formation_Type, and My_Role
attributes to create this weight. In addition to this weight,
we considered the Communication_Delay value and the

Obscurance_Level value. To classify the training
examples, we normalized and averaged these three values
and classified anything over 0.5 as Change Role and
anything under 0.5 as Don’t Change Role.
 Our experiment consisted of 1,728 training examples.
For each of the four formations, we generated a set of
training examples where the number of vehicles in the
formation ranged from three up to thirty. For each of these
formations, we generated a training example for each
possible role and we then randomly assigned a
Communication_Delay value and an Obscurance_Level
value to each one.
 We used C4.5 to cross validate the results across ten
blocks of data. C4.5’s cross validation operation broke up
the data into ten equal groups, so that each group’s number
of cases and class distribution was as uniform as possible.
C4.5 then constructed ten decision trees, using nine of the
ten blocks as training data while holding one different
block out for test data each time. The average error rate for
this ten-fold cross validation was 13.8%. This error rate is
comparable to other successful applications of symbolic
machine learning and is along the lines of what we
expected for a problem that is suitable for a symbolic
machine learning solution. Further analysis of our method
for generating training data may yield ways to reduce this
error rate further.
 The method we used for generating the classification
values for the training data is only designed to illustrate the
combination of a potentially large set of simple attributes.
The completion of our simulator will allow us to more
accurately generate training data and classification values.
It will also allow us to experiment with other attribute
values, possibly dependent upon various communication
methods, and potentially a more complex classification
scheme.
 These early results lead us to believe that symbolic
machine learning is an appropriate method for dealing with
some of the uncertainties present in this and other
distributed computing applications. Further work will
explore sensitivities in the various parameters and validate
a robots ability to employ machine learning techniques in
its real-time response mechanisms.

Future Work
This paper represents the beginning of a research project to
examine solutions to the coordination of robot teams in the
context of distributed computing applications. Our future
work will include completion of our simulator so that we
may adequately test and examine our results. We will
continue to examine symbolic machine learning methods
and the integration of these methods into real-time robotic
control algorithms.
 The continuous nature of the attributes in this domain
strongly indicates the potential value of probabilistic
reasoning. Such methods would not return a discreet
classification value, but rather a probability distribution for

the desired attributes. In the case of robotic formation
control, we believe it is possible to construct a Bayesian
Network (Russell and Norvig 1995) that would encode the
attribute values and their probabilistic relationship to each
other. The information that the robot would receive from
the Bayesian Network would be a probabilistic assessment
of the likelihood that the robot’s neighbor was destroyed.
It seems reasonable that the robot would gradually adjust
its course based on the strength of this likelihood
assessment. In the future, we will be assessing the ability
to learn a Bayesian Network from simulated (or real) data
and to use that Bayesian Network to reason about the
robot’s course adjustments, based on real-time environment
parameters.
 We will continue our investigation of these solutions in
the general domain of distributed computing environments
and applications.

Conclusions
Our initial work has focused on evaluating the applicability
of symbolic machine learning methods to deal with the
uncertainty that is inherent to distributed computing
environments.
 We have tested our approach on a simple configuration
of a robotic team coordination problem. We have selected
a set of attributes that a robot must consider when
determining whether its neighbor has been destroyed or is
temporarily obstructed from communicating. These tests
were conducted with the C4.5 machine learning algorithm.
Our preliminary results indicate that the decision tree
generated by C4.5 is capable of providing an effective tool
that will allow a robot to resolve its dilemma in this
circumstance.

References
1. Arkin, R.C. and Balch, T.R., Cooperative Multiagent

Robotic Systems AI-based Mobile Robots: Case
Studies of Successful Robot Systems , D. Kortenkamp,
R.P. Bonasso, and R. Murphy (eds), MIT Press, in
press.

2. Baker, S., CORBA Distributed Objects Using Orbix,
ACM Press, NY, NY, 1997

3. Balch, T. and Arkin R., Motor Schema-based
Formation Control for Multiagent Robot Teams,
Proceedings of the International Conference on
Multiagent Systems. San Francisco, CA April 1995.

4. Bauer, F., et. al., Satellite Formation Flying Using an
Innovative Autonomous Control System (AUTOCON)
Environment, AIAA Guidance, Navigation, and
Control Conference August, 1997

5. Chow, R. and Johnson, T., Distributed Operating
Systems & Algorithms. Addison Wesley Longman,
Inc., 1997

6. Corazzini, T., et. al, GPS Sensing for Spacecraft
Formation Flying, Proceedings of the Institute of

Navigation GPS-97 Conference, Kansas City MO,
September 1997.

7. Mitchell, T., Machine Learning, McGraw-Hill
Publishers, NY, NY, 1997.

8. Quinlan, J., C4.5: Programs for Machine Learning,
Morgan Kaufman Publishers, Inc, San Mateo, CA,
1993.

9. Russell, Stuart and Norvig, Peter, Artificial
Intelligence: A Modern Approach, Englewood Cliffs,
NJ: Prentice Hall Inc, 1995.

10. Shen, C., A CORBA Facility for Network Simulation,
in the Proceedings of the 1996 Winter Simulation
Conference (WSC96), Coronado, California,
December 1996.

11. Suzuki, I. And Yamashita, M., Distributed Anonymous
Mobile Robots---Formation and Agreement Problems,
in the Proceedings of the 3rd International Colloquium
on Structural Information and Communication
Complexity (SIROCCO '96), Siena, Italy, June 1996.

