
Interval-valued Epistemic (IVE) Fluents

John Funge
Microcomputer Research Lab

Intel Corporation
john. funge@intel, corn

Abstract

We have developed a syntactic approach to rep-
resenting knowledge within the situation calcu-
lus using interval arithmetic. Knowledge was
first incorporated into the situation calculus us-
ing a possible-worlds approach. Unfortunately,
this previous approach is not amenable to easy
implementation. This is because it is not clear
how to specify the initial situation as the num-
ber of possible worlds is potentially uncountable.
We solve this problem by using interval-valued
epistemic (IVE) fluents to represent the agent’s
knowledge of its world. With respect to the pre-
vious possible worlds approach, our approach is
provably sound and (sometimes) complete.

Introduction
Autonomous agents are being used to help automate
the process of making animations. The ultimate goal
is to have virtual actors that can be directed in much
the same manner as human actors. Such technology
could also be used in computer games to provide more
challenging adversaries and helpful partners. Unfor-
tunately, such useful agents are still someway off, but
the complexity of even some of today’s virtual worlds
means that these agents will have to be able to be
able to reason, act and perceive in changing, incom-
pletely known, unpredictable environments. It is nat-
ural, therefore, to turn to cognitive robotics for inspira-
tion. In particular, we have adopted theories of action
originally developed for robotics for use in animation
and games. One of our key concerns in adopting these
theories was that they should be practical and usable
by programmers. To this end we have developed a syn-
tactic or sentential approach to representing knowledge
within the situation calculus using interval arithmetic.
Knowledge was first incorporated into the situation
calculus using a possible.worlds approach. Unfortu-
nately, this previous approach is not amenable to easy
implementation. This is because it is not clear how to
specify the initial situation as the number of possible
worlds is potentially uncountable. We solve this prob-
lem by using interval-valued epistemic (IVE) fluents
to represent the agent’s knowledge of its world. With

respect to the previous possible worlds approach, our
approach is provably sound and (sometimes) complete.

The situation calculus is a well known formalism
for representing changing worlds in sorted first-order
mathematical logic. The version we will be using is
widely described in the literature (for example see (Re-
iter 1991; Scherl & Levesque 1993)). For the sake
completeness we briefly run through the main ideas.
A situation is a ’:snapshot" of the state of the world.
A domain-independent constant So denotes the initial
situation. Any property of the world that can change
over time is known as a fluent. A fluent is a function,
or relation, with a situation term as (by convention)
its last argument. Actions are the fundamental in-
strument of change in our ontology. The situation #
resulting from doing action a in situation s is given by
the distinguished function do, such that, s~ = do(a, s).
The possibility of performing action a in situation s is
denoted by a distinguished predicate Poss (a.s). Sen-
tences that specify what the state of the world must
be before performing some action are known as precon-
dition axioms. Effect axioms give necessary conditions
for a fluent to take on a given value after performing an
action. Successor state axAoms address the well known
frame problem by giving necessary and sufficient con-
ditions.

The subject of this paper is how we can express,
within the situation calculus, what an agent knows
about its world. This is useful because it allows us
to write axioms predicated not only on the state of
the world, but also on an agent’s knowledge of its
world. For example, the following precondition ax-
iom states that it is possible to call a person x if and
only if we know their telephone number and we have
a quarter, Poss(call(x),s) ~, 3yKnows(teINum(x)
y, s) A MaveQ,mrter(s). Thus if an agents knowledge
deficient it can attempt to formulate a plan to aquire
the necessary knowledge.

Actions that affect an agent’s knowledge of its world
are known as knowledge producing actions. This is be-
cause they do not affect the state of the world, but
rather only the agent’s knowledge of its world.

44

From: AAAI Technical Report FS-98-02. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Previous Work

-f_.(2 ",-’T,

- -~ ..~.>
r~

.,.,%
-.h.

Figure 1: After sensing, only worlds where the light is
on are possible.

Knowledge was first added to the situation calulus
by Moore (Moore 1985) using the notion of possible
worlds. In (Scherl & Levesque 1993), the technique was
extended to incorporate Reiter’s solution to the frame
problem (Reiter 1991). The idea behind the possible
worlds approach is to define an epistemic fluent to keep
track of all the worlds an agent thinks it might possibly
be in. The scenario is depicted graphically in figure 1.
Initially the agent is unable to decide which world it
is in. That is, whether in its world the light was on or
off. The agent then turns around to see that the light
is in fact turned on. The result of this sensing action
is shown in the figure as the agent discarding some
of the worlds it previously thought were possible. In
particular, since it now knows that the light is on in
its world, it must throw out all the worlds in which it
thought the light was turned off.

An epistemic fluent

The way an agent keeps track of the possible worlds
or, as the case may be, possible situations is to define
an epistemic fluent K. The fluent keeps track of all the
K-related worlds. These K-related worlds are precisely
the ones in the bubbles above the agents head in the
figure. They are the situations that the agent thinks
might be its current situation. So we write K(s’, s)
mean that in situation s, as far as the agent can tell,
it might be in the alternative situation s’. That is, the
agent’s knowledge is such that s and s~ are indistin-
guishable. It can only find out which situation it is
actually in by sensing the value of certain terms, for
example terms such as light(s).

When we say an agent knows the value of a term %
in a situation s, is some constant c, we mean that ~- has
the value c in all the K-related worlds. For convenience,
we introduce the following abbreviation:

Knows(r=c,s) ~Vs’ K(s’,s) =~ r[s’] =c, (1)

where r[s’] is the term ~- with the situation arguments
appropriately inserted.

When an agent knows the value of a term, but we
do not necessarily know the value of the term, we use
the notation Kref(’r, s) to say that the agent knows the

referent of r:

Kref(T, s) ~- 3z Knows (r = z, s). (2)
We now introduce some special notation for the case

when ~- takes on values in]~.1 In particular, since there
are only two possibilities for the referent, we say we
know whether v is true or not:

Kwhether (% s) a_ Knows (T = T, s) V Knows (~" = I,
(3)

Sensing
As in (Scherl & Levesque 1993), we shall make the sim-
plifying assumption that for each term T, whose value
we are interested in sensing, we have a correspond-
ing knowledge producing action senser. In general,
if there are n knowledge producing actions: sense~.~,
i = 0,... ,n - 1, then we shall assume there are n as-
sociated situation dependent terms: To;...,~-,,_l. The
corresponding successor state axiom for K is then:

Poss(a,s)=~ [K(s", do(a,s))

(as’)(K(s’, A (s"= do(a,s’))) A
((a ~ sensero A... A a ~ senser,~_l)

v (~ = ~enSe.o ^,-o(~’) = ro(~))

v (~ = ~ense.._, A~._~(~’) = ~._~(~)))].
The above successor state axiom captures the re-

quired notion of sensing and solves the frame prob-
lem for knowledge producing actions. We shall ex-
plain how it works through a simple example. In
particular, let us consider the problem of sensing the
current temperature. Firstly, we introduce a fluent
temp : SITUATION --4]I~ +, that corresponds to the tem-
perature (in Kelvin) in the current situation. For
now let us assume that the temperature remains con-
stant: Poss(a, s) =~ temp(do(a)s)) = ternp(s). We will
have a single knowledge producing action senseTemp.
This gives us the following successor-state axiom for K:
Poss(a,s) =~ [K(s",do(a,s)) ~=~ (3s’)(K(s’,s)
do(a, s’))) A ((a # senseTemp) V (a senseTemp A
te p(s’) = reap(s)))].

The above axiom states that for any action other,
than senseTemp, the set of K-related worlds is the set of
images of the previous set of K-related worlds. That is,
if s’ was K-related to s, then the image s" = do(a, s’), of
s’ after performing the action a is K-related to do(a, s).
Moreover, when the agent performs a senseTemp ac-
tion, in some situation s, the effect is to restrict the

1~ just denotes the "Boolean numbers", consisting of
the "numbers" /, T and all the usual connectives associ-
ated with Boolean algebras. To avoid introducing special
notation to state all our results twice, we shall just view
relational fiuents as functional fluents that take on values
in B. We adopt the usual convention that Foo(s), and
-~Foo(s) are, respectively, just shorthand for foo(s)
and foo(s) =/.

45

set of K-related worlds to those in which the tempera-
ture agrees with the temperature in the situation s. In
other words, senseTemp is the only knowledge produc-
ing action, and its effect is to make the temperature
denotation known: Kref(temp, do(senseTemp, s) The
reader is referred to (Scherl &: Levesque 1993) for any
additional details, examples or theorems on any of the
above.

Discussion
The formalization of knowledge within the situation
calculus using the epistemic fluent K makes for an ele-
gant mathematical specification language. It is also
powerful. For example, suppose we have an effect
axiom that states that if a gun is loaded then the
agent is dead after shooting the gun: Loaded(s) =v-
Dead(do(shoot, s)). Furthermore, suppose that we know
the gun is initially loaded Knows(Loaded,so), then we
can infer that we know the agent is dead after shooting
the gun Knows (Dead(do(shoot, So)).

There are a number of problems that make epistemic
reasoning hard. Notably, knowledge by one agent of
the knowledge of another; knowledge of an agent of
her future knowledge; knowledge by an agent of other
times; or knowledge of intensional terms. We will not
be considering any of these problems. Instead we will
address some of the problems that arise when we try to
implement some of the ideas we have already discussed.

Implementation

The implementation problems revolve around how to
specify the initial situation. For example, if we choose
an implementation language like Prolog, specifying the
initial situation may involve having to list out an expo-
nential number of possible worlds. For example, if we
do not initially know if the gun is loaded then we might
consider explicitly listing the two possible worlds s_a,
and s b, such that:

k(s_a, s0).
k(s b,s0).
loaded(s a).

As we add more relational fluents, that we want to be
able to refer to our knowledge of, the situation gets
worse. In general, if we have n such fluents, there will
be 2" initial possible worlds that we have to list out.
Once we start using functional fiuents, however, things
get even worse: we cannot, by definition, list out the
uncountably many possible worlds associated with not
knowing the value of a fluent that takes on values in
IR.

Intuitively, we need to be able to specify rules that
characterize, without having to list them all out, the
set of initial possible worlds. It may be possible to
somehow coerce Prolog into such an achievement. Per-
haps, more reasonably, we could consider using a full
first-order logic theorem prover. However, first-order
logic theorem provers are often inefficient and experi-
mental.

Ignoring all the above concerns let us assume that
we can specih, rules that characterize the set of initial
possible worlds. For example, suppose that initially we
know the temperature is between 10 and 50 Kelvin. We
might express this using inequalities: Vs’ K(s/, So)
10 ~ temp(J) ~ 50. This, however, brings us to our
second set of problems related to reasoning about real
numbers.

Real numbers

We just wrote down the formula that corresponds to:
Knows(lO ~ temp ~ 50, So). Suppose, we are now inter-
ested in what this tells us about what we know about
the value of the temperature squared. In general, if we
know a term ~- lies in the range [u, v] we would like to
be able to answer questions about what we know about
some arbitrary function f of T. Such questions take us
into a mathematical minefield of reasoning about in-
equalities. Fortunately, a path through this minefield
has already been charted by the field of interval arith-
metic.

Interval arithmetic
To address the issues we raised above we turn our
attention to interval arithmetic (Moore 1966; "l-~pper
January 1996). Some of the immediate advantages in-
terval arithmetic affords us are listed below:

¯ Interval arithmetic enables us to move all the details of
reasoning about inequalities into the rules for combining
intervals under various mathematical operations.

¯ Interval arithmetic provides a finite (and succinct) way
to represent uncertainty about a large, possibly uncount-
able, set of alternatives. Moreover, the representation re-
mains finite after performing a series of operations of the
intervals. In (Pesonen & Hyvonen 1995) interval arith-
metic is compared to probability as a means of repre-
senting uncertainty.

¯ Writing a sound oracle for answering ground queries
about interval arithmetic is a trivial task. Moreover, we
can answer queries in time that is linear in the length of
the query. Returning valid and optimal intervals is more
challenging (see below). This should, however, be com-
pared to the vastly unrealistic assumption people often
make about the existence of oracles for answering queries
about the real numbers.

¯ There is no discrepancy between the underlying theory
of interval arithmetic, and the corresponding implemen-
tation.

We construct interval arithmetics from regular number
systems (e.g. the real numbers ~, the integers Z, etc.)
as follows:

¯ For any number system X, we add a new number system
sort :rx. The constants of ~x are the set of pairs (u, v)
such that u,v E X and u ~ v. There are functions
and predicates corresponding to all the functions and
predicates of X.

¯ For an interval ~ = (u,v), we use the notation ~_ = u for
the lower bound, and ~ = v for the upper bound.

45

¯ The function width, returns the width of an interval x,
i.e. width(w) = ~ -

¯ When we have a number x and an interval ~ = (u,v),
such that u ~< x ~< v we say that ~c contains x, we write
x E x. Similarly for two intervals x, y such that y ~< x_
and ~ ~ ~, we say that y contains w, we write ~ C y.

¯ For two intervals x0, xl we say that so <: xl if and only
if 5o ~ =_~.

¯ We let I and T represent, respectively, the minimum and
maximum elements of the number system in question.
For example, in R*, (/, T) ---- (-oo, co).

As a simple example, consider the case of the num-
ber system ZB. There are three numbers in the num-
ber system: (I,_L), (_L,T) and (T,T). Note
we have (I,I) ~< (_L,T) ~< iT, T), (I,I) C
and (T,T) C (I,T). In]~, T I can be usedto
represent, respectively, "true" and "false". Similarly,
(T, T), (_L, T) and (/, Z) in 2"B can be used to
resent, respectively, "known to be true", "unknown",
and "known to be false". We thus get what amounts
to a three-valued logic which, by way of example, we
develop further in section.

By way of analogy, complex numbers are also made
up of a pair of (real) numbers, and operations on them
are defined in terms of operations on the reals. How-
ever, it would lead to confusion, if when reading a text
on complex analysis we could not comprehend com-
plex numbers as a separate entity, distinct from pairs
of real numbers. We therefore forewarn the reader
against making the same mistake for intervals. That
is, although numbers in 27x are made up of a pair of
numbers from]~ it is important to treat them as "first-
class" numbers in their own right.

Interval-valued fluents
The epistemic K-fluent that we discussed previously
allowed us to express an agent’s uncertainty about the
value of a fluent in its world. Unfortunately, as we
explained above, we saw there were implementation
problems associated with trying to represent an agent’s
knowledge of the initial situation. Fortunately, in the
previous section we saw that intervals also allow us
to express uncertainty about a quantity. Moreover,
they allow us to do so syntactically, and in a way that
circumvents the problem of how to represent infinite
quantities with a finite number of bits. It is, therefore,
natural to ask whether we can also use intervals to
replace the troublesome epistemic K-fluent.

The answer, as we shall seek to demonstrate in the
remainder of this paper, is a resounding "yes". In par-
ticular, we shall introduce new epistemic fluents that
will be interval-valued. They will be used to repre-
sent an agent’s uncertainty about the value of certain
non-epistemic fluents.

We have previously used functional fluents that take
on values in any of the number systems: ~, ~, etc.
There is nothing noteworthy about now allowing flu-

ents that take on values in any of the interval num-
bers systems: 2"~, Zx. Firstly, let us distinguish those
regular fluents whose value maybe learned through a
knowledge-producing action. We term such fluents
sensory fluents. Now, for each sensory fluent f, we in-
troduce a new corresponding interval-valued epistemic
(IVE) fluent ZI.

For example, we can introduce an IVE fluent Ztemp :
SITUATION ~ ~’R*+- We can now use the interval
2-temp(S0) = (10,50) to state that the temperature
is initially between 10 and 50 Kelvin. Similarly, we
can even specify that the temperature is initially com-
pletely unknown: Ztemp(S0) = (0, OO}.

Our ultimate aim is that in an implementation we
can use IVE fluents to completely replace the trouble-
some K-fluent. Nevertheless, within our mathemati-
cal theory, there is nothing to prevent our IVE fluents
co-existing with our previous sole epistemic K-fluent.
Indeed, if we define everything correctly then there
are many important relationships that should hold be-
tween the two. These relationships take the form of
state constraints and, as we shall show, can be used
to express the notion of validity and optimality of our
IVE fluents. If these state constraints are maintained
as actions are performed then the IVE fluents com-
pletely subsume the troublesome K-fluent. This will
turn out to be true until we consider knowledge of gen-
eral terms. In which case we can maintain validity but
may have to sacrifice our oriNnal notion of optimality
(see below).

Seeking to make IVE fluent ubiquitous necessitates
an alternative definition for Knows that does not
mention the K-fluent. To this end, we introduce a
new abbreviation, ZK,o~ such that for any term T,
ZK, o~ (% s) = (u, v) means that inte rval valu e is
(u, v). By "interval value" we mean the value we get
by evaluating the expression according the set of rules
that we shall discuss below. For now, let us just con-
sider the case when r is some fluent f. When f is
a sensory fluent then Zg, o~ is the value of the cor-
responding IVE fluent, otherwise it is completely un-
known:

~r :ry (s) if f is a sensory fluent,ZKnows(.f,8) (J_, T) otherwise. (5)
k

We now take the important step of redefining Knows
to be the special case when ZKno~ (% s) has collapsed
to a constant interval:

KnowJ (~ = c, s) ~ :rK.~ (r, s) = (c, c). (6)
The definitions of Kref, and Kwhether are now in terms
of the new definition for Knows~. As required, this new
definition does not involve the problematic epistemic
K-fluent.

We are now in a position to define what it means for
an IVE fluent to be valid:
Definition 0.1 (Validity). For every sensory fluent f,
we say that the corresponding IVE]]uent Zy is a valid inter-
val if f’s value in all of the K-related situations is contained
within it:

(Vs, s’) K(s’,s) ~ f(s’) e

47

Note that since we have a logic of knowledge (as
opposed to belief) we have that every situation is K-
related to itself: (Vs) K(s,s). Thus, as an immedi-
ate consequence of definition 0.1, we have that if an
IVE fluent Z/ is valid then it contains the value of f:
(Vs) :(s) ̄ Z:(s).

The validity criterion is a state constraint that en-
sures the interval value of the IVE fluents is wide
enough to contain all the possible values of the sen-
sory fluents. It does not however prevent intervals
from being excessively wide. For example, the inter-
val (-oo, oo) is a valid interval for any IVE fluent that
takes on values in Z’x-. The notion of narrow intervals
is captured in the definition of optimality:

Definition 0.2 (Optimality). A valid IVE fluent Z/ is
also optimal if it is the smallest valid interval:

(v y,s, J)K(s’, s) ~ (I(s’) Z:(s) c y).

Correctness
In this section we shall consider some of the conse-
quences and applications of interval-valued fluents to
formalizing sensing under various different assump-
tions. Our goal will be to show that we can main-
tain valid and optimal intervals as the agent performs
actions. This leads to the soundness and complete-
ness result given at the end of the section. Please note
that in order to promote brevity, proofs of the theo-
rems given below are omitted. However, the interested
reader may find all the required proofs, given in full,
in (Funge 1998).

The first step will be to define successor state ax-
ioms for IVE fiuents. This is done in much the same
way as it was for regular fluents. For example, suppose
we have a perfect sensor, then the following successor-
state axiom states that after sensing, we "know" the
temperature in the resulting situation Poss(a, s)
[Zt,mp(do(a,s)) = y ** (a -= senseTemp A ~ =
temp(s)) V (a £ senseTemp A2-temp(S) = y)

Now let us consider the case in general. Firstly, we
note that there is always an initial valid IVE fluent.

Lemma 0.1. For any initial situation So and sensory
fluent f we have that 2-i = (±, T) is a valid interval.

It is also the case that there will usually be an initial
optimal interval.

Lemma 0.2. If the initial set of K-related situations is
either completely unspecified or specified with inequalities
then we can find an initial optimal IVE fluent for each of
the sensory fluents.

Unless otherwise stated, we make the following as-
sumptions about all sensory fluents f: Each fluent
is independent (no changes to one affect either the
value or the knowledge about the value of another);
The value of l’i, in the initial situation, is optimal
and valid (justified by lemma 0.1); The successor-
state axiom for f is such that f remains constant:
Poss(a, s) =~ [f(do(a, s)) = f(s)]; The successor-state

axioms for each of the corresponding IVE fluents :2/
are of the form:

Possia, s) ~ [Iiid~a,s)) = y
(a = sense/A~ = y = fis)) V a 7£ senseI AI/is) =Y)I.

We can now state our main correctness result.

Theorem 0.1. With the above assumptions, for all situa-
tions s, and sensory fluents f, every IVE fluent Ii is valid
and optimal.

Sketch proof The proof is by induction on s* =
do(a,s). The base case follows directly from the as-
sumptions. For the inductive case we seek to prove that
(Vs")K(s",s*) =~ f(s’) 6 5~:(s*) and that Ef(s*) is op-
timal. There are two cases to consider. The less inter-
esting case is when a ¢ senseI in which case the succes-
sor state axioms for K and 2;: ensure the result follows
by induction. When a = senseI the successor state ax-
iom for E/ gives us that I/(do(sense/, s)) = if(s),
Meanwhile the successor state axiom for K ensures that
s" = do(a, s’) A K(s’, s) f(s’) = f(s). The result follows
easily from these two facts and that if(s), f(s)) is a thin
interval. See (Funge 1998) for the details.

As a corollary we have that the definition of Knows
given in equation 1 is equivalent to the one given in
equation 6. Under the current set of assumptions this
establishes the soundness and completeness of our ap-
proach with respect to the previous possible worlds
approach (Moore 1985; Scherl & Levesque 1993).

Corollary 0.1. For any sensory fluent f we have that:

Knows (f = c, s) l=> Knows’ if = c, s).

The proof is straightforward from the definitions and
theorem 0.1.

In (Scherl & Levesque 1993) a number of correctness
results are proven for Knows. The above equivalence
means that under the current set of assumptions the
correctness results carry over for Knows~.

Operators for interval arithmetic
One of our original motivations, listed above, for intro-
ducing intervals was the promise of being able to conve-
niently calculate what we know about a term from our
knowledge of its subcomponents. For example, sup-
pose in a situation s we know the value of a fluent
f(s), what do we know about (f(s))2?

The answer to this question leads us to the large
and active research area of interval arithmetic. The
fundamental principle used is that interval versions of
a given function should be guaranteed to bound all
possible values of the non-interval version. For exam-
ple, let us consider a function ¢ : II~ --. I~. The interval
version of this function is 2"¢ : 2"R ~ 2"R- The result
of applying 2"¢ to some interval x is another interval
y = :Z’e(x). We say that the y is a valid interval if for
every point x E ~, we have that ¢(x) E y. Note also
that for any valid interval y, if y C_ y’ then, y’ is also
a valid interval. If, for every interval x, 2"¢(x) gives

48

valid interval then we say that :Z-~ is a sound interval
version of ¢.

As we might expect from our previous discussions
defining a sound interval version of any function is triv-
ial. In particular, we just let the interval version return
the maximal interval of the relevant number system.
For example, the function that, for any argument, re-
turns (-c~, (x~} is a sound interval version of any func-
tion ¢ : R ---* N.

Hence, we see that once again we also need to be
concerned about returning intervals that are as narrow
as possible. The optimal interval version of a function
¢ is thus defined to be the sound interval version that,
for every argument, returns the smallest valid interval.
Unfortunately, for most interesting functions, no such
interval versions are known to exist. There are three
basic approaches that have been found to address this
shortcoming:

Special Forms Consider the expression t + (50 - t).
If we naively evaluate this expression for the inter-
val (0, 50) we get back the interval (0,100}. It
clear, however, that the expression simplifies to 50
and the optimal interval is thus (50, 50). Therefore,
researchers have looked at various standard forms for
expressions in an attempt to give better results when
evaluating the expression using intervals. In general,
however, not only is there no known optimal form
but there is also no known single form that is always
guaranteed to give the best result. The closest re-
searchers have been able to do so far is the so called
"centered forms" (Alefeld & Herzberger 1983).

Subdivision The standard tool in the interval arith-
metic arsenal is subdivision. Suppose we have an in-
terval x and we evaluate 2"¢(x) to give us an interval
that is too wide. Then we subdivide m into xl and
w~ such that x = xlUx~. We then evaluate each half
separately in the hope that 2-¢(xl) U2"¢(x~) C :Z.¢(m).
In practice this usually works well although in the-
ory the functions can be noncomputable in which
case any hopes of refining our intervals vanish.

Linear intervals The final approach we mention is
a new approach that was recently invented by Jef-
frey Tupper (Tupper January 1996). The idea
that instead of using constants to bound an interval
we use linear functions. Thus for linear expressions,
such as t + (50- t), we can define operators that are
guaranteed to return optimal intervals. Of course,
we can then recreate similar problems by consid-
ering quadratic expressions but Tupper also shows
how we can generalize interval arithmetic all the way
up to intervals that use general Turing machines as
bounds!

Knowledge of terms
Previously, we introduced the abbreviation :Z’K,o~. In
equation 5 we defined 2"K,o~ for fiuents and in what
follows we shall show how to define :Z’Kno~ for general

terms. Vv’e begin by stating what it means for our
definitions to be valid.

Definition 0.3 (Validity for terms). For every term T,
we say that the corresponding interval value of the term
given by Ignows (% s) is valid interval if v’svalue in all
of the K-related situations is contained within it:

(Vs, s’) K(s’,s) ~ r[s’] :’ £Kno~(r,s).

Fortunately, the general notion of soundness for in-
terval arithmetic carries over into our notion of validity
for a :T.Knows.

Theorem 0.2. Suppose 5~¢ is a sound interval ver-
sion of an n-ary function ¢ : X" --~ X. Fur-
therrnore, let xo, . . . , x,~-i E Ix be, respectively,
valid intervals for ZKnows(~ro,S),.. . ,IKnows(~-n_l,s).
Then, I~ (so x,,_ l) is a valid interval for
ZK, o~,, (¢(~-o T._I), s).

The important consequence of this theorem is that
our definition on ~Knows for terms can stand upon the
shoulders of previous work in interval arithmetic. That
is, we can define 1-Kno~ recursively in terms of sound
interval versions of functions. Assuming the same as-
sumptions as in theorem 0.2 we have that

Note that some of our functions may be written using
infix notation, in which case we may refer to them as
operators. The important aspect of this definition is
that we do not have to redesign a plethora of oper-
ators for interval arithmetic and prove each of them
sound. In the previous section we noted the difficulties
associated with defining optimal versions of operators.
We also noted that there are a number of ways to deal
with the problem. Each of the methods we outlines
maintains validity and is thus appropriate for us to
use. Which particular method we choose to narrow
our intervals can be thought of as an implementation
issue for our approach.

Usefulness

For a long list of useful operators for interval arithmetic
the reader could do no better than to consult (Tupper
January 1996). By way of example, however, we shall
list some useful operators for lB.

Interval versions of operators, and relations, are
given in bold. Elsewhere, we rely on context to im-
ply the intended meaning.

49

Definition 0.4 (Operators

T = (u, v>
To = (uo, vo> ̂ n = (~,, v,>

ro ̂ n = (u, v)
TO = (UO,V0)An = (ul,m)

For some constant c,

T(C) = (U,V)

v:~-,-(=) = (’~, v>

For some constant c,

T(C) = (~,,v)

These definitions enable

for Z~).

¢. -.T = (~v,-~u)
ToAT1

(u0Aul,v0Avl)

To C_ (u,T)
=e;, To V T1 C

(uo v ul, vo v v,)

To C_ (_L, v)
T(c) C_ (±,~),
for any constant c

::~ :Izr(z) (u, T)
r(c) _C (u, T),
for any constant c

v~T(=) _c (_L, ~)

us to evaluate :Z-Knows for
terms taking on values in ~. Notice however that
most of the definitions are in terms of C_. This is
because we can, in general, only guarantee valid re-
sults, not optimal ones. For example, if we assume
r = i.l_, T) then we get that r V-~r C (±, T). While
this is valid, it is clearly not optimal. Since there are
only two numbers in ~ we can subdivide to perform an
exhaustive search for the optimal value. That is, let
r = r0 U rl, where TO ---- i-l-, _L), and rl = (1, 1).
we get that TO V --r0 = (T, T), and rl V -~rl = (T,
With more variables the exhaustive search approach
has worst case exponential complexity. In general it
may be observed that if each variable occurs only once
in an expression then evaluating it will yield an opti-
mal result. Also if we start with thin intervals then we
will also get an optimal result. Finally, for a propo-
sitional formula in Blake canonical form (Blake 1938)
evaluation with intervals always yields an optimal re-
sult (H. 1997). Moreover, all propositional formulas
can be converted to this form. Thus we can evaluate
propositional formulas in linear time and get optimal
results. The catch is that converting propositional for-
mulas to Blake canonical form is NP-hard.

Therefore, as we should expect, intervals do not pro-
vide us with a means to magically circumvent com-
plexity problems. What they do provide, however, is
the ability to track our progress in solving a problem.
For the majority of real world problems, where exact
knowledge is not imperative, this will often allow us to
stop early once we have a "narrow enough" interval.
At the very least we can give up early if convergence
is too slow. This should be contrasted to other meth-
ods of evaluating expressions where we can never be
sure whether the method is completely stuck, or is just
about to return the solution.

Let us now consider some more examples in which
our interval arithmetic approach can be shown to be
useful and correct. Since Knows~ is correct with respect

to Knows we know that we can not derive any false re-
lationships using Know-#. The important point is that
many true and useful relationships hold. In particular,
we have that the following can all be shown to hold:

Knows’ (P, s) V Know-# (Q, s)

Know-# (P V Q, s)

Knows’ (-~P, s)
-,Knows’ (P, s)

3x Know] (P(x),
Knows’ (gx P(x),

==~ Knows~ (Pv Q, s)

Know-# (P, s)
Know-# (C2, s)

==~
~Knows" (P, s)
Knows’ (-~P, s)

==;" Knows’ (3x P(x),
~z 3x Know.# (P(x),

The proofs all follow by simple application of the rules
given in definition 0.4 and can be found in (Funge
1998).

Finally, in our discussion of the possible worlds ap-
proach, we saw that we could make deductions based
on modus ponens. Fortunately, we can perform similar
reasoning with intervals.

Theorem 0.3. Let To and rl be terms for that take on
values in ~, such that (u,v) is an optimal value for
ZKnows (to, s), and To[S] =~ T1 [S]. Then, ZK.ows (T1, s) C_
(u, T).

The proof follows from basic properties of intervals
and the observation that T0[S] ~ T1 Is]. Once again see
(Funge 1998) details.

Inaccurate Sensors

In (Bacchus, Halpern, & Levesque 1995), the K-fluent
approach is extended to handle noisy sensors. By re-
defining Knows we can also easily extend our approach
to allow for inaccurate sensors. We may say that we
know a fluent’s value to within some A, if the width of
the interval is less than twice A:

Knows(A,f = z,s) ~-- ~f(s) C_ (z-- A,z + A). (7)

If we have a bound of :l:A on the greatest possible
error for the sensor that recorded yesterday’s temper-
ature then we can state that the value sensed for the
temperature is within +A of the actual value:

Po (a,s) [Z, mp(do(a, s))
(a = senseTemp A u = max(O, temp(s) -- A)

v = min(Itemp(S) + A, temp(s)))

V (a y£ senseTempA:Ttemp(S) = (U,V))].

Sensing Changing Values
Until now, we only considered sensing fluents whose
value remains constant. In (Scherl & Levesque 1993)
once a fluent becomes known then it stays known.
That is, if the value of a known fluent changes then the
agent will automatically know the fluents new value.
This often counterintuitive. For example, if one has
checked the temperature once then it is natural to as-
sume that after a while the information may be out of

5O

date. That is, we would expect to have to sense the
temperature periodically.

Using the epistemic K-fluent to model information
becoming out of date corresponds to adding possible
worlds back in. Unfortunately, the K-fluent keeps track
of an agent’s knowledge of all the sensory fluents all at
once. It can therefore be hard to specify exactly which
worlds the agent should be adding back into its con-
sideration. In contrast, with intervals there is nothing
noteworthy about allowing the particular relevant in-
terval to expand. We must simply ensure that our
axioms maintain the state constraint that the interval
bounds the actual value of the fluent.

At the extreme we can extend our approach to
handle fluents that are constantly changing in unpre-
dictable ways. We can model this with exogenous ac-
tions (Giacomo, Lesp@rance, & Levesque 1997).
assume that the current temperature changes in a com-
pletely erratic and unpredictable way, according to
some exogenous action setTemp. Then, we can write a
successor-state axiom for ternp that simply states that
the temperature is whatever it was set to:

Poss(a, s) ~ ternp(do(a, s)) -=

[(a = setTemp(z)) V (a ~ setTemp A temp(s) = z)].

We can, also, write a successor state axiom for E-temp.
In particular, if we again assume accurate sensors, we
can state that the temperature is known after sensing
it, otherwise, it is completely unknown:

Pos$(a, 8) :~ [~ternp(do(a, s)) --~ (u,’o)

(a = senseTemp A u = v ---- ternp(s)) V

(a ¢ senseTemp A u = 0 A v = oo)]. (9)

Note that this definition works because, by defi-
nition, (Vs) ternp(s) E (0, c~). At first
it may appear strange that we have, for example,
Itemp(do(setTemp(2), s)) = (0, co>. Upon reflection,
however, the reader will hopefully recall that our in-
tention is to use the IVE fluents to model an agent’s
knowledge of its world. Therefore, until sensing, the
agent rightly remains oblivious as to the effect of the
exogenous action setTernp. For the fluent that keeps
track of the temperature in the virtual world we of
course get that ternp(do(set Temp(2), s))

If we have a bound on the maximum rate of tem-
perature change, per unit time, to be Atemp, and we
add the ability to track the time to our axiomatization,
then we can do a lot better. Suppose we have an ac-
tion tick that occurs once per unit of time. Moreover,
we limit exogenous actions to only occurring directly
before a tick action. Then we can have a successor-
state axiom that states the temperature is known after
sensing; or after a period of time it is known to have
changed by less than some maximum amount; other-

wise it is unchanged:

Poss (a, s) ~ [~[temp (do(a, s)) = (u,

(a = senseTemp A u = v = ternp(s))

(a = tick A (Sup, vp) ~-temp(S) = (Up, Vp)
U = max(O, up -- Aternp) A v = vp + Atemp)
(a ~ senseTemp A a ~ tick A Eternp(S) = (u,v)]. (10)

This type of axiom can be used to "plan to replan".
That is, the degradation in our knowledge level is pred-
icatable and can be used as the basis for a replanning
action.

Conclusion
Our original aim was to develop theories of ac-
tion and knowledge that are practical and usable
by programmers. We envisaged using these theo-
ries to develop autonomous agents for use in com-
puter animation and games. Thanks, in part, to
the work described in this paper we have indeed
successfully developed autonomous agents that can
reason, act and perceive in changing, incompletely
known, unpredictable environments. Some frames
from some corresponding animations can be found at
www. cs. toronto, edu/-:funge/images .html . Additional

documentation on the work can be found in (Funge
1998).

References
Alefeld, O., and Herzberger, J. 1983. Introduction to
Interval Computations. Academic Press.
Bacchus, F.; Halpern, J.; and Levesque, H. 1995. Rea-
soning about noisy sensors in the situation calculus. In
IJCAI-95.
Blake, A. 1938. Canonical Expressions in Boolean Alge-
bra. University of Chicago: PhD thesis.
Funge, J. 1998. Making Them Behave: Cognitive Models
for Computer Animation. CS Dept, University of Toronto:
PhD thesis.
Oiacomo, G. D.; Lesp6rance, Y.; and Levesque, H. 1997.
Reasoning about concurrent execution, prioritized inter-
rupts, and exogenous actions in the situation calculus. In
IJCAI-97.
H. Levesque, University of Toronto. 1997. Personal com-
munication.
Moore, R. E. 1966. Interval Analysis. Prentice-Hall.
Moore, R. C. 1985. A formal theory of knowledge and
action. In Formal Theories of the Commonsense World.
Pesonen, J., and Hyvonen, E. 1995. Interval approach
challanges monte carlo simulation. In Scientific Comput-
ing, Computer Arithmetic and Validated Numerics.
Reiter, R. 1991. The frame problem in the situation cal-
culus. In Artificial Intelligence and Mathematical Theory
of Computation.
Scherl, R., and Levesque, H. 1993. The frame problem
and knowledge-producing actions. In AAAI-93.
Tupper, J. January 1996. Graphing Equations with
Generalized IntervaZ Arithmetic. CS Dept, University of
Toronto: MSc thesis.

51

