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Abstract

Autonomy is a very important property for a ro-
bot to have, yet implementing it in a robot is far
f~om trivial, particularly when one requires the
meaning of autonomy to include self-motivation,
instead of mere automaticity.
The fact that emotions are considered to be essen-
tial to human reasoning and human motivation in
particular, suggests that they might play an im-
portant role in robot autonomy. The purpose of
the work reported here is to know if and how emo-
tions can help a robot in achieving autonomy.
Experimental work was done in a simulated robot
that adapts to its environment through the use of
reinforcement learning. Results suggest that emo-
tions can be useful in dividing the task in smaller
manageable problems by focusing attention on the
relevant features of the task at any one time.

Introduction

In the field of robotics, the criteria used to define
whether a robot is autonomous or not are not well es-
tablished. In general, simply requiring that, once the
robot is finished, it does its task without human inter-
vention is enough. The word’s root meaning suggests an
alternative definition of autonomy that has stronger re-
quirements. Namely, a truly autonomous robot should
also develop the laws that govern its behaviour. To
accomplish this, a robot should have an adaptive con-
troller that improves its performance by unsupervised
learning when interacting with its environment. Al-
though true autonomy is still a very open research sub-
ject, it is advantageous to any agent that has to deal
with unexpected situations. Arguments in favour of
true autonomy have been put forward in several diverse
fields, for example robotics, animal robotics1 (McFar-
land 1994), agents theory (Ferguson 1992) and interact-
ire virtual environments (Blumberg 1995).

In robotics, emotions are often used to modulate
activity in a fixed controller (Cafiamero 1997; Bates,
Loyall, & Reilly 1992a). The social role of emotions has
been particularly explored: The external demonstration

1Modelling of animal behaviour using robots.

of emotions has been used as a sort of communication
mechanism that allows the robot to report to others
its internal state (e.g. its level of task achievement
(Shibata, Ohkawa, & Tanie 1996)) or makes the 
bot capable of generating empathy emotions in people,
by creating an illusion of life in a believable character
(Bates 1994).

The present research focuses on how to use emotions
in the control of an autonomous simulated robot that
adapts to its environment using reinforcement learn-
ing. The work was done under an animat philosophy
(Wilson 1991), by building bottom-up a biologically
inspired complete agent by synthesis. A robot was
equipped with a recurrent network model of "emotions"
which incorporates the important computational fea-
tures of Dam~sio’s somatic marker hypothesis (Dam£sio
1994). Yet, the developed model is based on a simpli-
fied hormone system and is far from the complexity
of true emotions experienced by humans. Experiments
were carried out on a simulated Khepera robot in an
animal-like adaptation task.

In the next section, a detailed description of the emo-
tion model developed is presented. The experiments
done with this model are reported in the following sec-
tion.

Emotions

People like to have a Cartesian approach to life in think-
ing that all their reasoning is purely logical and emo-
tions are purely disruptive. In fact, individuals do not
always make rational choices (Grossberg &: Gutowski
1987) and pure logical reasoning shows serious faults
when used to model human reasoning in the field of
Artificial Intelligence (Dreyfus 1992). Recent neuro-
physiological research suggests that our thinking is not
so detached and ungrounded. With the help of the emo-
tions, the feelings provided by our body play an import-
ant role in reasoning. This is the central claim of the
somatic-marker hypothesis2 (Dam~sio 1994).

Dam~sio makes a clear distinction between the con-
cepts of emotion and feeling that will be used in the cur-

2Marker because it marks an internal image and somatic
because it is the body that does it.
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rent work. Feeling designates the process of monitoring
the body. Feelings offer us the cognition of our visceral
and musculoskeletal state. Emotion is a combination of
a mental evaluative process with dispositional responses
to that process, mostly toward the body proper but also
toward the brain itself.

Somatic markers are special instances of body feel-
ings (visceral and non-visceral sensations) generated 
emotions, that are acquired by experience based on in-
ternal preference systems and external events and which
help to predict future outcomes of certain scenarios.
They will force attention on the negative or positive
outcome of certain options, that can be immediately
defeated leaving fewer alternatives or can be immedi-
ately followed. This way, the somatic markers provide
humans with a reasoning system that is free from many
of the faults of formal logic, namely the need for much
computational and memory power for having every op-
tion thoroughly evaluated.

Many emotions theorists agree that emotions are
most helpful for focusing attention on the relevant
features of the problem at hand (De Sousa 1987;
Tomkins 1984; Plutchick 1984; Scherer 1984; Panksepp
1982).

Inspired by the ideas that have been presented, an
emotion model was developed that is described next.

Model

A large subset of theories of emotions is based on cognit-
ive appraisal theories (Lazarus 1982; Power & Dalgleish
1997), although some evidence exists to suggest that
emotions can be aroused without cognition (Zajonc
1984).

Following the psychologists’ main stream, most AI
models of emotions are based on an analytic approach
(Sloman, Beandoin, & Wright 1994; Pfeifer 1982; Pfeifer
& Nicholas 1985; Bates, Loyall, & Reilly 1992b) that
tries to endow the model with the full complexity of hu-
man emotions as perceived from an observer’s point of
view. In opposition to this kind of approach, a bottom-
up approach was followed here.

The model that was developed -- figure 1 -- is based
on four basic emotions: Happiness, Sadness, Fear and
Anger. These emotions were selected because they
are the most universal emotions along with Disgust
(Dam~sio 1994) and are adequate and useful for the
robot-environment interaction afforded by the exper-
iments. Others might prove too sophisticated or out
of place. For instance, there seems to be no situation
where it is appropriate for the robot to feel disgust.
Yet, if, for instance, toxic food was added to the envir-
onment, disgust would become useful to keep the robot
away from it. The emotions chosen are also usually in-
cluded in the definitions of primary emotions (Shaver
et al. 1987; Power & Dalgieish 1997), which is a good
indicator of their relevance and need.

The model determines the intensity of each emotion
based on the robot’s current internal feelings. These
feelings are: Hunger, Pain, Restlessness, Temperature,

Figure 1: Emotions model.

Eating, Smell, Warmth and Proximity. Each emotion
is defined by a set of constant feeling dependencies and
a bias. The values of the dependencies were carefully
chosen to provide adequate emotions for the possible
body states. For example, the sadness intensity will be
high if hunger and restlessness are high and the robot
is not eating.

Furthermore, based on what was suggested in
(Dam~sio 1994), the emotion state should also influ-
ence the way the robot feels. In general, the body reac-
tions aroused by emotions also give rise to the emotions
that create them. In this model each emotion tries to
influence the body state in such a way that the result-
ing body state matches the state that gives rise to that
particular emotion.

When an emotion is active, i.e. its intensity value
is significantly large, then it will influence the body
through a hormone system, by producing appropriate
hormones.

The hormone system in the model is a very simpli-
fied one. It consists in having one hormone associated
with each feeling. A feeling intensity is not a value
directly obtained from the value of the body sensation
that gives rise to it, but from the sum of the sensation
and hormone value. The hormone values can be (posit-
ively or negatively) high enough to totally hide the real
sensations from the robot’s perception of its body.

The hormone quantities produced by each emotion
are directly related to its intensity and its dependen-
cies on the associated feelings. The stronger the de-
pendency on a certain feeling, the greater quantity of
the associated hormone is produced by an emotion.
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On the one hand, the hormone mechanism provides
a sort of fight between the emotions to gain control
over the body which is ultimately what selects which
emotion will be dominant. On the other hand, what
the robot feels is not only dependent on its sensations
but is also dependent on its emotional state.

The hormones’ values can increase quite rapidly, al-
lowing for the quick build up of a new emotional state,
and decrease slowly allowing for the persistence of an
emotional state even when the cause that has given rise
to it is gone, another of the characteristic features of
emotions.

The dominant emotion is the emotion with the
highest intensity, unless no emotion intensity exceeds
a selection threshold. In this case, there will not be a
dominant emotion and emotional state will be neutral.
Emotions were divided into two categories: positive and
negative. The ones that are considered "good" are pos-
itive (only Happiness, in the set of emotions used), the
others are considered negative.

In summary, the model of emotions described
provides not only an emotional state coherent with the
current situation, but also influences the body percep-
tion. In order to evaluate the role of emotions in reas-
oning, this state should be used for the actual control
of the robot, determining its behaviour (Albus 1990;
Wright 1996; Moffat, Frijda, & Phaf. 1993). The next
section describes the experiments done in this direction.

Experiments

The Simulated Robot’s Task

The ultimate goal of the research reported in this doc-
ument is to develop a fully autonomous real robot.
This was one reason why self-sufficiency was considered
a useful property to include in the system. Another
reason for this choice is that is easier to think of emo-
tions in the context of an animal-like creature with self-
maintainance needs.

The robot’s task consists in collecting energy from
food sources scattered throughout the environment.
These food sources are actually lights so that the ro-
bot is able to distinguish them with its poor perception
capabilities. The robot needs this energy to use dur-
ing its functioning. It will use up energy faster if the
velocity it demands from its motors is higher.

To gain energy from a food source, the robot has
first to bump into it. If the food source still has energy
left, it will make some of it available to the robot for a
short period of time. At the same time an odour will be
released that can be sensed by the robot. During this
short period, the robot can acquire energy by receiving
high values of light in its rear light sensors. This means
that the robot must turn its back to the food source. To
receive more energy the robot has to restart the whole
process again by hitting the light again so that a new
time window of released energy is started.

The robot can only extract a limited amount of en-
ergy from each food source. In time, the food source will

Figure 2: The robot and its environment.

recover its ability to provide energy again, but mean-
while the robot will be forced to look for other sources
of energy in order to survive. The robot cannot be suc-
cessful by relying on a single food source for energy,
i.e. the time it takes for new energy to be available in a
single food source is longer than the time it takes for the
robot to use it. When the food source has no energy,
the light associated with it is turned off.

The robot’s task can be translated into multiple
goals: moving around the environment in order to find
different food sources and, if a food source is found, ex-
tracting energy from it. ~-hrthermore, the robot should
not keep still in the same place for long durations of
time or collide with obstacles.

In order to have the robot’s emotional state compat-
ible with its task, the emotions dependencies on feelings
are such that:

¯ The robot is happy if there is nothing wrong with
the present situation. It will be particularly happy if
it has been using its motors a lot or is getting new
energy at the moment.

¯ If the robot has very low energy and it is not acquiring
new energy, then its state will be sad.

¯ If the robot bumps into the walls then the pain will
make it fearful.

¯ If the robot stays in the same place too long it will
start to get restless. This will make it angry. The
anger will persist for as long as the robot does not
move away or change its current action. If the action
is changed the value of restlessness is reset by the
system.

All the experiments were carried out in a Khepera
simulated robot (Michel 1996) within a closed envir-
onment divided by several walls and containing a few
lights (see figure 2).

The Adaptive Controller

Reinforcement learning techniques have already been
successfully used in the field of robotics and were there-
fore selected for the learning algorithm. The main prob-
lem with reinforcement learning is that learning can
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be very slow, particularly if the task is very complex.
Yet, behaviour decomposition of the task can reduce
significantly the learning time or even make the task
feasible. Behavioural decomposition usually consists in
learning some predefined behaviours in a first phase
and then finding the high-level coordination of these
behaviours. Although the behaviours themselves are
often learned successfully (Mahadevan & Connell 1992;
Lin 1993), behaviour coordination is much more dif-
ficult and is usually hard-wired to some extent (Ma-
hadevan & Connell 1992; Lin 1993; Mataric 1994). One
problem in particular which is quite difficult and task
dependent is determining when to change behaviour.
This is not a problem in traditional reinforcement lean-
ing where agents live in grid worlds and state transition
is perfectly determined. Yet, in robotics, agent states
change asynchronously in response to internal and ex-
ternal events and actions take variable amounts of time
to execute (Mataric 1994). The design of a reward func-
tion can also be a problem if there are multiple goals and
immediate reinforcement is not always available. In this
case, it is often impossible to have a direct translation
to a traditional monolithic reward function (Mataric
1994). Both these previous problems can be found in
the task at hand. Furthermore, unlike traditional re-
inforcement learning tasks, the task of an autonomous
robot is mainly one of continuously executing a task for
as long as necessary in opposition to successfully com-
pleting a task and finishing. Another major difference
is that the distinction between a learning phase and
a performing phase had to be eliminated, because an
autonomous robot is supposed to continuously adapt
to its environment.

In our work we have chosen to have the primitive
behaviours hand-designed and learn only the behaviour
coordination in the hope that emotions might be useful
in solving some of the problems discussed previously.
Three primitive behaviours were hand-designed:

Avoid obstacles- Turn away from the nearest
obstacle and move away from it. If the sensors cannot
detect any obstacle nearby, then remain still.

Seek Light -- Go in the direction of the nearest light.
If no light can be seen remain still.

Wall Following -- If there is no wall in sight, move
forwards at full speed. Once a wall is found, follow
it. This behaviour by itself is not very reliable in
that the robot can crash. Yet, the avoid obstacles
behaviour can easily help in these situations.

The developed controller has two separate modules:

Associative Memory Module -- This plastic mod-
ule uses feed-forward networks to associate the robot
feelings with the current expected value of each one
of the three robot behaviours. Q-learning (Watkins
1989) was used in an implementation very similar to
the one reported by Lin (Lin 1992). Neural networks
learned, by back-propagation, utility functions that
model util(x, a) = R Jr veval(y), i.e. the immediate

reinforcement (R) plus the discount factor (3’, con-
stant set to 0.9) times the expected cumulative dis-
counted reinforcement (eval(y)) starting from state
y reached by executing behaviour a in state x.

Behaviour Selection Module- Taking into ac-
count the value attributed to each behaviour by the
previous module, this module makes a stochastic se-
lection based on the Boltzmann-Gibbs distribution of
the behaviour to execute next.

The Role of Emotions

From what was discussed previously in this document,
both in terms of emotions and of the reinforcement
learning paradigm, here are some possible roles for emo-
tions:

Reinforcement value- The design of a reward
function is one of the most critical aspects for the
success of a reinforcement learning task. In robotics,
the role of providing an evaluation of the state of the
world is often attributed to emotions, e.g., (Albus
1990; Wright 1996). It is often assumed that hu-
man decision making consists in the maximization of
positive emotions and minimisation of negative emo-
tions, e.g.(Tomkins 1984). It should be expected that
a reward function directly obtained from the emo-
tional state would work well. This can easily be ac-
complished with our model. At any moment in time,
a value judgement can be obtained from the emo-
tion system by considering the intensity of the cur-
rent dominant emotion and whether it is positive or
negative. Experiments were done that consisted in
using as reinforcement the intensity of the current
dominant emotion or zero if there was no dominant
emotion. If the dominant emotion was a negative one
then its (positive intensity) value would be negated.
This reinforcement function proved to be successful in
the experiments described in this paper. Yet, in pre-
vious experiments (Gadanho & Hallam 1998a) this
reinforcement function was not successful at all. The
main difference between the experiments was that the
first were done with an action-based adaptive control-
ler that selected a new action in each time step while
the present experiments use a behaviour-based con-
troller. We believe that the time-scales involved in
the execution of a behaviour are more adequate for
emotion-dependent reinforcement and that the small
time-scale associated with the execution of a single
action is to blame for the previous failure. The ex-
periments also showed that a more traditional mono-
lithic reward function directly derived from the ro-
bot’s sensations can also be used, if the state trans-
ition is triggered by emotions (see below).

Determining state -- Another mechanism that was
tested was having emotions influencing the robot per-
ception. When the robot learns associations between
states and rewards through its neural networks, is
actually using feelings to determine state by using
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them as network inputs. In the emotion model de-
veloped, feelings are influenced by emotions through
the hormone system. So the robot state is emotion
dependent. What the robot learns to associate with
rewards is actually being distorted by emotions. It is
being changed to be more compatible with the active
emotions, thus making the relevant features of the
environment more evident. For the moment no sig-
nificant differences were found in using this kind of
perception or using an alternative perception that is
not influenced by hormones. This shows that the ro-
bot can cope with a distorted view of reality, but does
not show that emotions can be useful in this domain.
Yet, the fact that no differences were found might be
purely task dependent.

Triggering state transition -- In a robotic environ-
ment, a new state can be found for virtually every
step. The perception of the world will always be
at least slightly different from step to step due to
noise. Nevertheless, making a re-evaluation of the
system every step by selecting a new behaviour and
performing an evaluation on the previous behaviour
is not wise. It is both a computational waste and an
hindrance to successfully learning the advantages of
each one of the behaviours. On the other hand, if
the behaviours are left running for too long, events
may occur that will make them inadequate for the
new situation. The ideal would be to know when
a significant change has occurred in the environment
that makes a re-evaluation necessary. Using emotions
to trigger state transition seems reasonable, because
emotions can provide a global summarised vision of
the environment. Any important change in the en-
vironment is liable to be captured by changes in the
emotional state. Experiments showed that emotions
could fulfill this role successfully (Gadanho & Hallam
1998b).

Conclusions
The model of emotions behaved appropriately when
tested on the animat, in the sense that the robot con-
sistently displays plausible contextual emotional states
during the process of interacting with the environment.
Furthermore, because its emotions are grounded in
body feelings, and not direct sensory input, it manages
to avoid sudden changes of emotional state, from one
extreme emotion to a completely different one. The
more different the emotions are, the more difficult it
is to change from one to the other. The physiological
arousal caused by emotions has been repeatedly left out
of cognitive theories of emotions, because it is not con-
sidered cognitively interesting, yet without it emotions
lack their characteristic inertia (Moffat, Frijda, & Phaf.
1993).

Furthermore, experiments showed that emotions can
be used as an attention mechanism at different levels of
a reinforcement learning task:

¯ providing a straightforward reinforcement function

which works like a powerful attention mechanism in
a reinforcement learning task by attributing value to
the different environmental situations;

¯ making more evident the relevant aspects of the en-
vironment, i.e. those directly related with the cur-
rent emotional state, by influencing the robot current
state through the hormones;

¯ determining the occurrence of the significant changes
in the environment that should trigger state trans-
ition, by looking at sudden changes in the emotional
system state.

These three different mechanisms all worked well ex-
perimentally.

Our ultimate intention is to scale up our architecture
to develop more complex emotions on the top of the
ones described, but that is not the primary focus of
this work.
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