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Abstract

Synthesis, needs to be presently understood as
close to emotion generation: to give computers
some level of understanding about what it might
be like to have emotions. Generating states for a
computer system with similar properties and/or
functions to human emotions, might be one of
the first steps in building such an understanding.
We propose a computational design for modeling
emotion generation both at the physiological and
at the subjective experience level.

Introduction

Given the strong interface between affect and cognition
described in an earlier paper (Lisetti et. al 1998), and
given the increasing versatility of computer agents on
the other hand, the attempt to enable our computer
tools to acknowledge affective phenomena rather than
to remain blind to them appears desirable (Lisetti et.
al 1998). While research on affect recognition is con-
tributing to this effort, the question about what to
do with the data while or after it is sensed is an im-
portant one. One approach is to develop agents with
emotion synthesis capabilities such that they can re-
spond appropriately to humans. Synthesis, needs to
be presently understood as close to emotion genera-
tion: to give computers some level of knowledge about
what it might be like to have emotions. Generating
states for a computer system with similar properties
and/or functions to human emotions, might be one of
the first steps in building such an understanding.

The present paper aspires to give a framework for
the development of a multi-level computational model
in which two major systems associated with emotion
- physiological arousal and subjective experience - are
all partially present, and their circular interactions are
specified. In the remaining of this paper, we raise some
issues that need to be addressed to implement emotion
synthesis in an artificial agent. We propose a design
for implementing such a system using a connectionist

network, and we present preliminary results of a case
study that we tested.

Computational Modeling

According to Pfeifer (1988), one of the limitations 
the previous AI approaches to emotion modeling was
that they left out the physiological component of emo-
tional states. Ortony (1988), on the other hand, points
to the lack of explicit consideration of the subjective
component of the emotional experience.

AI approaches to emotion have, for the most part,
been based upon Paulhan’s (1887) conflict theory, 
which emotions are thought to occur when an ongoing
tendency is interrupted. The conflict approach em-
phasizes the need to simulate systems with limited re-
sources in an unpredictable world, and with multiple
goals and plans which can conflict with each others,
and which, therefore, must be able to be interrupted.
Simon’s (1967) argument that emotions have a counter
part in computational systems that work with multiple
goals in finite time with limited resources is indeed re-
lated with Paulhan’s theory. A number of approaches
have already made a number of important contribu-
tions and have been surveyed and explained in details
(Picard 1997).

Design Issues

In neuroscience, theories which study the evolution-
ary component of the nervous system as depicted by
MacLean (1990), suggest that the key to understanding
the variety of emotion processes and their relation with
cognitive processes will emerge by taking an evolution-
ary approach to the analysis of human brain’s emo-
tional control systems. For example, Derryberry and
Tucker (1992), suggest associating: (1) expression 
instrumental functions with the earlier brain stem sys-
tems - the ANS, endocrine, and motor/expression sys-
tems; (2) increased sensitivity and flexibility to emo-
tion signals in the environment with the limbic sys-
tem - amygdala, hippocampus, and hypothalamus -
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which evolved later; (3) more complex emotions in-
volving cognitive processes such as salience and moti-
vation with the paralimbic and neocor~ical s~ruc~ures,
which evolved last in the brain.

In the same manner that the question arises as to
whether we need to consider multiple physiological in-
teracting systems for different emotions - rather than
one system for the variety of possible emotions- com-
putational models of emotion may need to model ac-
tivity at different levels possibly using different imple-
mentations, i.e. they may need to be "hybrid" systems.

Hybrid Systems

Following Pfeifer’s insight (1988), we give suggestions
for the design of a hybrid model. A hybrid model mixes
(1) system-theoretic considerations at the knowledge
level, i.e. specifications of the kind of knowledge used
in the system but no specifications of the processing
details; (2) specification of how the knowledge is pro-
cessed at the processing level; (3) specification of acti-
vation mechanisms which enable control of sequential
and parallel processing at the microscopic level; (4)
implementation of the above information into an inte-
grated computer system.

The methodology involves the investigation of ar-
chitectural principles at various levels such that emo-
tional phenomena emerge from the interaction of the
basic components. The design of the model is inspired
from overall representation of affect described by Za-
jonc and Markus (1984). As shown in figure 1, emo-
tion elicitation depends upon biological, sensory and
cognitive inputs. Emotion generation depends upon
gating processes, such as conflicting existing emotions,
conscious and unconscious suppression, previous mus-
cular engagement, and the like. Emotion generation
is associated with three components (the boxes on the
far right in figure 1) : (1) ANS arousal and visceral 
tivity; (2) motor expression of emotion; (3) subjective
experience of emotion which requires the mediation of
the cognitive system.

ANS Influence

Although emotions are associated with more than one
physiological systems, - the early brain stem, limbic,
and neocortical systems - in this part of our system, we
are presently interested in the somatic states associated
with emotions. We consequently focus on modeling the
ANS which was found to be the key to acheiving the
appropriate modification of physiological parameters
in the body (Damasio 1994).

ANS activity has long been considered undifferenti-
ated (Cannon, 1927; Schachter and Singer, 1962; Man-
dler, 1975). Mandler (1975) adapted Schachter 
Singer’s theory (1962) in which emotions are formed
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Figure 1: "Proposed Model"

from two independent systems, namely sympathetic
nervous system (SNS) arousal along the physical di-
mension and evaluative cognition along the social di-
mension. It stresses the role of interrupts in emotion
and proposes that increase in SNS activity follows the
interruption of well-organized behavior. It is consid-
ered that this increase in SNS activity determines how
important the emotion is, i.e. its intensity. Follow-
ing emotion generation, sympathetic activity can sub-
sequently increase depending on the level of surprise
that the interrupt brought about and on the intensi~y
of the emotion.

Other emotion theories, however, claim that differ-
ent emotions are accompanied by specific autonomic
patterns (Ekman, et.al. 1983; Izard, 1977). Re-
cent studies on multiple receptor subtypes in both the
sympathetic (Alquist, 1948) and the parasympathetic
(Mitchelson, 1988) branches of the ANS, and in the
various neurotransmitters and neuropeptides responsi-
ble for transmission and modulation, suggest that the
ANS might have a much greater capacity for differen-
tiated action on emotion phenomena than previously
anticipated (Levenson, 1992). We model the notion 
specificity, i.e. that different emotions are associated
with different patterns of ANS activity.

It is important to note that most emotion theorists
agree at least on the importance of the ANS in deter-
mining intensity and valence of an emotion. Zajonc’s
work on thermoregulation (1994) associates low body
temperatures (linked with parasympathetic activity)
with hedonic states, and high temperatures (linked
with the sympathetic activity) with negative emotional
states.
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This perspective has significant implications for
models of emotion elicitation, with direct relevance to
artificial systems: ANS differentiation in emotion im-
plies that changes in the environment, perceived and
appraised at a simple "automatic" level, lead to the
occurence of an emotional state, which then organizes
and calls subordinate response systems. We based our
model on this recent hypothesis that the ANS can ini-
tiate emotion.

This view is supported by Levenson (1992) who ex-
pects "that it will eventually be established that any
component of emotion can assume this initiating role"
(Levenson, 1992). As of today, however, such plasticity
in elicitation has only been considered by a few, includ-
ing Camras’ extension (1992) of dynamical systems
theory (Kugler et al., 1980; Kelso, 1995). Zajonc’s sug-
gestion of a link between facial action, hypothalamic
temperature, neurotransmitter release, and subjective
changes seems to support this theory further (Zajone,
1994).

Before discussing the proposed physiological subsys-
tem, however, we explain how the representation of
subjective experience might be integrated with other
subsystems.

Subjective Experience Subsystem

The subjective experience of emotion invo]ves the
cognitive system, and might be best represented by
abstract structures similar to the ones described in
schema theory (Schank, 1977). They derive from 
transformation of sensory and kinesthetic input (Za-
jonc and Markus, 1984). For more complex emo-
tions, they derive from cognitive processes of appraisal
(Ortony, 1988).

Our design consists of working at the knowledge level
with computational schema in a similar fashion to the
computational schemas for emotion concepts derived
from Wierzbicka’s work (1992) and described in Lisetti
(1997). These data structures are an attempt to iso-
late various emotional components relevant for specific
emotions. They represent the "knowledge" found in
a subjective emotional state and include physiological
representations such as intensity, and tempo, as well
as beliefs and other cognitive components. Not every
emotion requires the same components. We give one
example below and more examples can be found in
Lisetti (1997).

SEMANTIC META-DEFINITION
X feels something

sometimes a person thinks something like this:
something good happened
I wanted this

because of this,
this person feels something good

X feels like this
this person feels something good

X feels like this

PLEASED SCRIPT
Causal Chain:

Feel
.[ Think
J. Happened
.~ Wanted
Feel

Emotion Components:
User = Tony
Facial Expression = Happy
User .= Tony
Facial Expression = Happy
Tempo = fast
Intensity = unspec.
Involvement ---- passive
Comparison = match
Chunk size = unspec.
Criteria = good

The interface of this subsystem with the physiolog-
ical subsystem described below is only partial, given
that current data about ANS arousal describes the
ANS as giving information about valence and intensity
only (Mandler, 1975). New research on the variety 
neurotransmitters associated transmission and modu-
lation, as well as their uneven distribution along the
ANS (Levenson, 1992) might lead to more specific pa-
rameters passed along between the ANS and subjective
experience representations.

Physiological Subsystem

In this section, we describe the model that we have
implemented, and show some of our preliminary re-
sults. With the connectionist approach, simple non-
intelligent constituents (like neurons) express global
properties when connected. Knowledge or experience
is stored in the strength of the connections between
units. Each constituent in such a system functions
only in its local environment so that the system is not
directed by a central process. However, a global co-
operation emerges spontaneously (due to the configu-
ration of the system) when the state of each ’neuron’
reaches a satisfactory status.

We model how emotional patterns emerge from the
neural activity along the ANS, from either one of its
two branches, depending upon which branch is ac-
tive. The ANS includes two branches of nerve fibers,
the parasympathetic and sympathetic branches, both of
which act as a seesaw, where the two branches have op-
posing effects on each other. The sympathetic branch
is responsible for the arousal state of emotions such as
fear, anger, and the fight-or-flight response, while the
parasympathetic branch is responsible for the opposite
appeasing responses. Both branches consist of fibers
to and from the brain and spinal cord.

We represent the network as a set of artificial neu-
rons along the ANS corresponding to various body
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Figure 2: "Arising of an Emotional Attractor along the
ANS"

areas such as the stomach, the heart, etc. (see fig-
ure 2). We have designed an arbitrary mapping of var-
ious emotions corresponding to the arousal of nervous
activity in a particular body area. Fear, for example is
associated with the stomach while sadness is associated
with the throat (see figure 2). At the macro-level 
description, when many interconnected units become
activated simultaneously, they form a collection of ac-
tive units refered to, from now on, as attrators.

When an attractor emerges from the activity of the
network as a whole, it can be understood as modeling
a particular emotional state associated with a type of
activity of the ANS. As we explained earlier, ANS dif-
ferentiation implies that changes of the environment,
perceived and appraised at a simple automatic level
lead to an emotional state which then calls subordi-
nate response systems. To account for the responses
in our model, we have included units which stand for
the environment itself.

G’~d:.~d~~
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Figure 3: "Detail of units connectivity in one body
area"

The detail of the network units connectivity for one
particular body area, the stomach, is shown in figure 3.

The stomach has been associated with the emotions of
fear or anger, and calmness. The connections from the
units of the body areas to the perceived environment
need to be understood as actions taken upon the en-
vironment. The connections in the reverse direction,
can be understood as the feed-back of the environment
in response to the taken action. The connections be-
tween two possible distinct emotional attractors (such
as anger and fear in this example), are mutually in-
hibiting. The two units for the parasympathetic and
sympathetic branches are mutually exclusive and have
negative inhibiting connections. The sympathetic unit
is exciting to the two emotional attractors correspond-
ing to fear and anger, while it is inhibiting to the
calmness attractor. The parasympathetic unit, to the
contrary, excites the calmness response with a positive
connection.

The choice of mutual exclusion was made in accor-
dance with Clyne’s exclusivity principle of pure emo-
tional states which suggests that we cannot express
one emotion when we are feeling another. While test-
ing the various emotion theory as suggested by Picard
(1997), another test could be made in the future to sup-
port Plutchik’s notion (1980) that emotions are rarely
experienced in their pure form but are rather a mixture
of some of the principal of basic emotions . Altering
the connectivity matrix of the model could account for
computationally testing both theories.

Some particular tendencies toward a specific pattern
of activity, which models tendencies toward certain
emotions, can be set at the initial state. This is ac-
complished by pre-setting the strength of connections
(the weights) between ’neurons’. When the weights are
pre-set to a high value between a collection of units
standing for a certain region of the body (such as the
stomach, or other), the tendency of the system is to
arise and to settle in that region. This option was allo-
cated in order to allow for predispositional emotional
tendencies, some possibly being genetically encoded.

A Learning Boltzmann machine

In the present model, the propation rule calculates the
net input of a unit by a summation of the weights mul-
tiplied by the activation values of each units connected
to the unit whose activation level is being updated. It
is given by the following equations:

net,(t) = Ej=o wijad(t) where

I1 ifrandomnumber < sigmd(neti(t))
ai(t) = 0 otherwise

and where
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We then can get a measure of the degree to which
the overall network has acheived a "good" interpreta-
tion. This measure is defined as the goodness function,
G, where:

G = ~,j=o wija, a i

In general, the model moves in such a way as to
maximize goodness.

Furthermore, some of the connections between ’neu-
rons’ are modifiable so as to allow learning to happen.
The effect of learning can be two-fold: emphasize a
particular ’emotional attractor’, or attract the system
into a new one. The learning option was added to the
system in order to account for the possibility of chang-
ing the emotional setup of the system. The relearning
can happen in the human ANS via several processes.
The ANS is influenced by naturally present neuro-
transmitters, and it can be stimulated with chemically
similar compounds.

A Hebbian learning rule was added to the Bollzmann
architecture to allow the network to learn without a
’teacher’ such that the patterns can organize by them-
selves. In this manner, the emotional patterns get nat-
urally reinforced via Hebbian learning (similarly to the
real neurons in the body), so as to depict the build-up
of emotional arousal. It is worth noting that ttebbian
learning is atypical of Boltzmann machines which are
usually implemented with learning with a target (or
’teacher’). This choice was made so that the model
could account not only for predispositional tenden-
cies toward one or more emotion, but also for some
new patterns which may incidently occur and get re-
inforced. It is important to note that we later pro-
vide for unlearning and relearning so that the model
can change some pre-established and/or reinforced pat-
terns of emotional arousal later in its life-cycle .

The Hebbian rule used in this present model is given
by the following equation:

~kWij = ~?(4aiaj -- ai -- aj)

where Awij is the amount by which the weight con-
nection between unit ui and unit uj is incremented in
order to reflect the learning; and 71 is a parameter which
can be adjusted. The effect of the rule is to strengthen
the connection between two units which are on simul-
taneously, to decrease the connections if one unit is on
and the other is off, and to keep the weights unchanged
if both units are off.

Modeling Cases and Results
The system illustrates the cycle from reflex-like emo-
tional responses to chosen ones by modeling three
chronological cases described as follows: (1) some pre-
determined dispositions toward a particular emotion;
(2) the re-inforcement of these dispositions;(3) the aris-
ing of a new interpretation aimed at altering the pre-
dispositional emotional patterns.

Case One: Pre-dispositional Tendencies

This portion of the modeling (see figure 4) provides
an illustration of how the system can be perturbed
from wilhin. Inner perturbations constrained by the
nervous system’s organization (rather than external
inputs) are presently considered to be the cause of
emotional arousal in the human body. The choice of
the Boltzmann machine was made accordingly so as to
model the spontaneous inner activity of the nervous
system.

Figure 4: "Coupling with the Environment"

The inner pertubations of the network can be un-
derstood as bodily sensations, leading to the arising of
a particular emotional state. This emotional state, in
turn, influences the type of action that the system will
take upon its environment. The loop continues further,
as the actions taken feed-back onto the system itself,
leading to new bodily sensations, and so on. The con-
nections from the body units to the perceived environ-
ment units can be understood as the actions taken by
the system. The connections in the reverse direction
can be understood as the influence of the environment
upon the system.

As explained earlier, at the initial state, some par-
ticular tendencies toward a specific pattern of activity
which models tendencies toward certain emotions can
be pre-set. Just as individual A might have a particu-
lar tendency toward anger, and individual B might be
more prone to sadness, so our network can instantiate
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different agents with (so to speak) different personal-
ities. The degree to which these tendencies exist can
also be set depending on how strongly predisposed to-
ward one emotional state we want our instantiation of
the model to be.

Case Two: Learning

Figure 5: "Case two: plot of the mean of the goodness
funciion of the learning process"

This very same model then grows into a learning sys-
tem. While some e motions might not have been reflex-
like or pre-wired to start with (as in the previous case
modeled), these emotions can still become reflex-like
for the system. Once an emotional attractor emerges,
it becomes more and more attractive through Hebbian
learning. As the system grows ’older’, patterns are re-
inforced by the learning process and emotional reflexes
built up.

The increase of the goodness function over time,
shown is figure 5, is an indicator of how the network
learns a particular pattern of activity. With a low ten-
dency toward a particular emotional state to start with
(sadness, in this particular case), the learning system
still ends up in a state of equal intensity to the starting
state of the previous network.

The curve of the learning process (figure 5) has a lin-
ear overall structure, although, at the 27th life-cycle,
the system jumps out of its emotional state to experi-
ence a temporary lapse of some other emotion (fear in
this case), and continues learning sadness.

Case Three : Unlearning and Relearning

Lastly, the system evolves into the stage characterized
by the understanding of a new interpretation of the
emotional arousal (see figure 6). It is here assumed
that by increasing the activity of the parasympathetic
branch, the system can reach a different state, as the
bodily sensations are brought back to a calmer re-
sponse. This means that the activity of the parasympa-
thetic nervous system is activated and/or emphasized
at a particular location of the body (in this example,
the stomach area).

In the neural network, this is accomplished by keep-
ing the parasympathetic unit on or clamped for a long

PERCEIVED
ENVIROI’~MF..N’r

Figure 6: "Actively Coupling with the Environment"

period of time at a particular body region (see figure 3).
Hence, the network evolves from a predispositional ten-
dency toward anger (as in case one above, figure 4), 
calmer bodily arousal, which leads the system to a rein-
terpretation of the emotional arousal of anger (see fig-
ure 6). In the future, when the anger attractor arises,
the calmness attractor will arise as well, keeping the
system in a state of balance where the original primal
emotion points to another interpretation.

Discussion
Further improvements could be made in the following
directions: (1) The stimulation of the each branch 
the ANS could be implemented by replacing the clamp-
ing of the ANS units by the activation of neuromodula-
tots (Rumelhart 1995) ; (2) The different pathways 
the parasympathetic and sympathetic branches could
be further refined by connecting these units together
and simulate ascending and descending pathways; (3)
Various experiments with existing competing theories
of emotion could be instantiated and tested by looking
at the physiological and behavioral level.

Conclusion
In conclusion, the model we have developed is only a
first pass toward a model of emotional states. Further
work is of course required to develop a better under-
standing of our emotional states, and to simulate their
function on artificial systems.
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