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Abstract
We develop a method for recognizing the emotional

state of a person who is deliberately expressing one of
eight emotions. Four physiological signals were mea-
sured and six features of each of these signals were ex-
tracted. We investigated three methods for the recog-
nition: (1) Sequential floating forward search (SFFS)
feature selection with K-nearest neighbors classifica-
tion, (2) Fisher projection on structured subsets 
features with MAP classification, and (3) A hybrid
SFFS-Fisher projection method. Each method was
evaluated on the full set of eight emotions as well as
on several subsets. The SFFS attained the highest
rate for a trio of emotions, 2.7 times that of random
guessing, while the Fisher projection with structured
subsets attained the best performance on the full set
of emotions, 3.9 times random. The emotion recog-
nition problem is demonstrated to be a difficult one,
with day-to-day variations within the same class often
exceeding between-class variations on the same day.
We present a way to take account of the day informa-
tion, resulting in an improvement to the Fisher-based
methods. The findings in this paper demonstrate that
there is significant information in physiological signals
for classifying the affective state of a person who is
deliberately expressing a small set of emotions.

Introduction
This paper addresses emotion recognition, specif-

ically the recognition by computer of affective infor-
mation expressed by people. This is part of a larger
effort in "affective computing," computing that relates
to, arises fl’om, or deliberately influences emotions (Pi-
card 1997). Affective computing has numerous appli-
cations and motivations, one of which is giving com-
puters the skills involved in so-called "emotional in-
telligence," such as the ability to recognize a person’s
emotions. Such skills have been argued to be more im-
portant in general than mathematical and verbal abil-
ities in determining a person’s success in life (Goleman
1995). Recognition of emotional information is a key
step toward giving computers the ability to interact
more naturally and intelligently with people.

The research described here focuses on recognition
of emotional states during deliberate emotional ex-
pression by an actress. The actress, trained in guided
imagery, used the Clynes method of sentic cycles to as-
sist in eliciting the emotional states (Clynes 1977). For
example, to elicit the state of "Neutral," (no emotion)
she focused on a blank piece of paper or a typewriter.
To elicit the state of "Anger" she focused on people
who aroused anger in her. This process was adapted
for the eight states: Neutral (no emotion) (N), Anger
(A), Hate (H), Grief (G), Platonic Love (P), 
Love (L), Joy (J), and Reverence 

The specific states one would want a computer to
recognize will depend on the particular application.
The eight emotions used in this research are intended
to be representative of a broad range, which can be
described in terms of the "arousal-valence" space com-
monly used by psychologists (Lang 1995). The arousal
axis ranges from calm and peaceful to active and ex-
cited, while the valence axis ranges from negative to
positive. For example, anger was considered high in
arousal, while reverence was considered low. Love was
considered positive, while hate was considered nega-
tive.

There has been prior work on emotional expression
recognition from speech and from image and video;
this work, like ours, has focused on deliberately ex-
pressed emotions. The problem is a hard one when you
look at the few benchmarks which exist. In general,
people can recognize affect in neutral-content speech
with about 60% accuracy, choosing from among about
six different affective states (Scherer 1981). Computer
algorithms can match this accuracy but only under
more restrictive assumptions, such as when the sen-
tence content is known. Facial expression recognition
is easier, and the rates computers obtain are higher:
from 80-98% accuracy when recognizing 5-7 classes of
emotional expression on groups of 8-32 people (Ya-
coob & Davis 1996; Essa & Pentland 1997). Facial
expressions are easily controlled by people, and easily
exaggerated, facilitating their discrimination.

Emotion recognition can also involve other modali-
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Figure 1: Examples of four physiological signals mea-
sured from an actress while she intentionally expressed
anger (left) and grief (right). From top to bottom:
electromyogram (microvolts), blood volume pressure
(percent reflectance), galvanic skin conductivity (mi-
croSiemens), and respiration (percent maximum ex-
pansion). The signals were sampled at 20 samples 
second. Each box shows 100 seconds of response. The
segments shown here are visibly different for the two
emotions, which was not true in general.

ties such as analyzing posture, gait, gesture, and a va-
riety of physiological features in addition to the ones
described in this paper. Additionally, emotion recog-
nition can involve prediction based on cognitive rea-
soning about a situation, such as "That goal is im-
portant to her, and he just prevented her from ob-
taining it; therefore, she might be angry at him." The
best emotion recognition is likely to come from pattern
recognition and reasoning applied to a combination of
all of these modalities, including both low-level sig-
nal recognition, and higher-level reasoning about the
situation (Picard 1997).

For the research described here, four physiological
signals of an actress were recorded during deliberate
emotional expression. The signals measured were elec-
tromyogram (EMG) from the jaws, representing mus-
cular tension or jaw clenching, blood volume pressure
(BVP) and skin conductivity (GSR) from the fingers,
and respiration from chest expansion. Data was gath-
ered for each of the eight emotional states for approx-
imately 3 minutes each. This process was repeated
for several weeks. The four physiological waveforms
were each sampled at 20 samples a second. The ex-
periments below use 2000 samples per signal, for each
of the eight emotions, gathered over 20 days (Fig. 1).
Hence there are a total of 32 signals a day, and 80
signals per emotion.

Very little work has been done on pattern recogni-
tion of emotion from physiological signals, and there is
controversy among emotion theorists whether or not
emotions do occur with unique patterns of physio-
logical signals. Some psychologists have argued that
emotions might be recognizable from physiological sig-
nals given suitable pattern recognition techniques (Ca-
cioppo & Tassinary 1990), but nobody has yet to
demonstrate which physiological signals, or which fea-
tures of those signals, or which methods of classifica-
tion, give reliable indications of an underlying emo-
tion, if any. This paper suggests signals, features, and
pattern recognition techniques for solving this prob-
lem, and presents results that emotions can be recog-
nized from physiological signals at significantly higher
than chance probabilities.

Choice of Features
A very important part in recognizing emotional

states, as with any pattern recognition procedure, is to
determine which features are most relevant and help-
ful. This helps both in reducing the amount of data
stored and in improving the performance of the recog-
nizer, recognition problem.

Let the four raw signals, the digitized EMG, BVP,
GSR, and Respiration waveforms, be designated by
(Si), i = 1, 2, 3, 4. Each signal is gathered for 8 dif-
ferent emotions each session, for 20 sessions. Let S~
represent the value of the nth sample of the i th raw
signal, where n = 1...N and N = 2000 samples. Let
S,~, refer to the normalized signal (zero mean, unit vari-
ance), formed as:

i = 1, ...,4

where #i and ai are the means and standard devia-
tions explained below. We extract 6 types of features
for each emotion, each session:

1. the means of the raw signals (4 values)

N

#i 1=-~ES~, i = 1,...,4 (1)
n=l

2. the standard deviations of the raw signals (4 values)

~,~,

) 1/2

¢i=_1 E(S~ _ #i)2 i = 1,...,4 (2)
N 1

n=l

3. the means of the absolute values of the first differ-
ences of the raw signals (4 values)

/~,r _ 11- ’IS,+l - S~[ i = 1, ...,4 (3)
-1

rt=l
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4. the means of the absolute values of the first differ-
ences of the normalized signals (4 values)

N-11
-N_I~ [S,,+1-’ _ k~[ =a’ i = 1,...,4.

n=l

(4)
5. the means of the absolute values of the second dif-

ferences of the raw signals (4 values)

N--2

c~ 1
--N- 2E] Sin+2-Si] i=1,...,4 (5)

n=l

6. the means of the absolute values of the second dif-
ferences of the normalized signals (4 values)

N-2 i

a~ 1~ -i -i 52
-N--2--1Sn+2-SnI=7 i=1,...,4 (6)

Therefore, each emotion is characterized by 24 fea-
tures, corresponding to a point in a 24-dimensional
space. The classification can take place in this space,
in an arbitrary subspace of it, or in a space otherwise
constructed from these features. The total number of
data in all cases is 20 points per class for each of the
8 classes, 160 data points in total.

Note that the features are not independent; in par-
ticular, two of the features are nonlinear combinations
of the other features. We expect that dimensionality
reduction techniques will be useful in selecting which
of the proposed features contain the most significant
discriminatory information.

Dimensionality reduction
There is no guarantee that the features chosen

above are all appropriate for emotion recognition. Nor
is it guaranteed that emotion recognition from phys-
iological signals is possible. Furthermore, a very lim-
ited number of data points--20 per class--is available.
Hence, we expect that the classification error may be
high, and may further increase when too many fea-
tures are used. Therefore, reductions in the dimen-
sionality of the feature space need to be explored,
among with other options. In this paper we focus on
three methods for reducing the dimensionality, and
evaluate the performance of these methods.

Sequential Floating Forward Search
The Sequential Floating Forward Search (SFFS)
method (Pudil, Novovicova, & Kittler 1994) is chosen
due to its consistent success in previous evaluations
of feature selection algorithms, where it has recently
been shown to outperform methods such as Sequen-
tial Forward and Sequential Backward Search (SFS,
SBS), Generalized SFS and SBS, and Max-Min, (Jain

& Zongker 1997) in several benchmarks. Of course the
performance of SFFS is data dependent and the data
here is new and difficult; hence, the SFFS may not be
the best method to use. Nonetheless, because of its
well documented success in other pattern recognition
problems, it will help establish a benchmark for the
new field of emotion recognition and assess the qual-
ity of other methods.

The SFFS method takes as input the values ofn fea-
tures. It then does a non-exhaustive search on the fea-
ture space by iteratively adding and subtracting fea-
tures. It outputs one subset of m features for each m,
2 < m < n, together with its classification rate. The
algorithm is described in detail in (Pudil, Novovicova,
& Kittler 1994).
Fisher Projection
Fisher projection is a well-known method of reducing
the dimensionality of the problem in hand, which in-
voh,es less computation than SFFS. The goal is to find
a projection of the data to a space of fewer dimensions
than the original where the classes are well separated.

Due to the nature of the Fisher projection method,
the data can only be projected down to c-1 (or fewer if
one wants) dimensions, assuming that originally there
are more than c - 1 dimensions and c is the number
of classes.

It is important to keep in mind that if the amount
of training data is inadequate, or the quality of some of
the features is questionable, then some of the dimen-
sions of the Fisher projection may be a result of noise
rather than a result of differences among the classes.
In this case, Fisher might find a meaningless projec-
tion which reduces the error in the training data but
performs poorly in the testing data. For this reason,
projections down to fewer than c- 1 dimensions are
also evaluated in the paper.

Furthermore, since 24 features is high for the
amount of training data here, and since the nature
of the data is so little understood that these features
may contain superfluous measures, we decided to try
an additional approach: applying the Fisher projec-
tion not only to the original 24 features, but also to
several "structured subsets" of the 24 features, which
are described further below. Although in theory the
Fisher method finds its own most relevant projections,
the evaluation conducted below indicates that better
results are obtained with the structured subsets ap-
proach.

Note that if the number of features n is smaller
than the number of classes c, the Fisher projection
is meaningful only up to at most n - 1 dimensions.
Therefore in general the number of Fisher projection
dimensions d is 1 < d < min(n, c) - 1. For example,
when 24 features are used on all 8 classes, all d = [1, 7]
are tried. When 4 features are used on 8 classes, all
d = [1, 3] are tried.
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Hybrid SFFS with Fisher Projection (SFFS-
FP)
As mentioned above, the SFFS algorithm proposes one
subset of m features for each m, 2 < m < n. There-
fore, instead of feeding the Fisher algorithm with all
24 features or with structured subsets, we can use the
subsets that the SFFS algorithm proposes as our input
to the Fisher Algorithm. Note that the SFFS method
is used here as a simple preprocessor for reducing the
number of features fed into the Fisher algorithm, and
not as a classification method. We call this hybrid
method SFFS-FP.

Evaluation
We now describe how we obtained the results shown

in Table 1. A discussion of these results follows below.

Methodology
The Maximum a Posteriori (MAP) classification 
used for all Fisher Projection methods. The leave-
one-out method is chosen for cross validation because
of the small amount of data available. More specif-
ically, here is the algorithm that is applied to every
data point:

1. The data point to be classified (the testing set only
includes one point) is excluded from the data set.
The remaining data set will be used as the training
set.

2. In the case where a Fisher projection is to be used,
the projection matrix is calculated from only the
training set. Then both the training and testing set
are projected down to the d dimensions found by
Fisher.

3. Given the feature space, original or reduced, the
data in that space is assumed to be Gaussian. The
respective means and covariance matrices of the
classes are estimated from the training data.

4. The posterior probability of the testing set is cal-
culated: the probability the test point belongs to a
specific class, depending on the specific probability
distribution of the class and the priors.

5. The data point is then classified as coming from the
class with the highest posterior probability.

The above algorithm is first applied on the original
24 features (Fisher-24). Because this feature set was
expected to contain a lot of redundancy and noise, we
also chose to apply the above algorithm on various
"structured subsets" of 4, 6 and 18 features defined as
follows:

Fisher-4 All combinations of 4 features are tried,
with the constraint that each feature is from a different
signal (EMG, BVP, GSR, Respiration). This gives 
total of 64 = 1296 combinations, which substantially
reduces the (24 choose 4)=10626 that would result 
all combinations were to be tried. The results of this

evaluation may give us an indication of which type of
feature is most useful for each physiological signal.

Fisher-6 All combinations of 6 features are tried,
with the constraint that each feature has to be of a
different type: (1)-(6). This gives a total of 46 = 
combinations instead of (24 choose 6)=134596 if all
combinations were to be tried. The results of this eval-
uation may give us an indication which physiological
signal is most useful for each type of feature.

Fisher-18 All possible combinations of 18 features
are tried, with the constraint that exactly 3 features
are chosen from each of the types (1)-(6). That again
gives a total of 46 = 4096 combinations, instead of
(24 choose 18)=134596 if all combinations were to 
tried. The results of this evaluation may give us an
indication which physiological signal is least useful for
each feature.

The SFFS software we used included its own evalu-
ation method, K-nearest neighbors, in choosing which
features were best. For the SFFS-FP method, the
procedure below was followed: The SFFS algorithm
outputs one set of m features for each 2 < rn < n, and
for each 1 < k < 20. All possible Fisher projections
are then calculated for each such set.

Another case, not shown in Table 1, was investi-
gated. Instead of using a Fisher projection, we tried
all possible 2-feature subsets, and evaluated their
class according to the maximum a posteriori proba-
bility, using cross-validation. The best classification
in this case was consistently obtained when using the
mean of the EMG signal (feature #1 above) and the
mean of the absolute value of the first difference of
the normalized Respiration signal (feature 64 above)
as the 2 features. The only result almost comparable
to other methods was obtained when discriminating
among Anger, Joy and Reverence where a linear clas-
sifier scores 71.66% (43/60). When trying to discrim-
inate among more than 3 emotions, the results were
not significantly better than random guessing, while
the algorithm consumed too much time in an exhaus-
tive search.

Attempting to discriminate among 8 different emo-
tional states is unnecessary for many applications,
where 3 or 4 emotions may be all that is needed. We
therefore evaluated the three methods here not only
for the full set of eight emotion classes, but also for
sets of three, four, and five classes that seemed the
most promising in preliminary tests.

Results
The results of all the emotion subsets and classifica-
tion algorithms are shown in Table 1. All methods
performed significantly better than random guessing,
indicating that there is emotional discriminatory in-
formation in the physiological signals.

When Fisher was applied to structured subsets of
features, the results were always better than when
Fisher was applied to the original 24 features.
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3 emotions In runs using the Fisher-24 algorithm,
the two best 3-emotion subsets turned out to be
the Anger-Grief-Reverence (,4 GR) and the Anger-Joy-
Reverence (A JR). All the other methods are applied
on just these two triplets for comparison.

4 emotions In order to avoid trying all the possible
quadruplets with all the possible methods, we use the
following arguments for our choices:

Anger-Grief-Joy-Reverence (A G JR): These are the
emotions included iu the best-classified triplets. Fur-
thermore, the features used in obtaining the best re-
sults above were not the same for the two cases.
Therefore a combination of these features may be dis-
criminative for all 5 emotions. Finally, these emotions
can be seen as placed in the four corners of a valence-
arousal plot, a common taxonomy used by psycholo-
gists in categorizing the space of emotions:
Anger: High Arousal, Negative Valence
Grief: Low Arousal, Negative Valence
Joy: High Arousal, Positive Valence
Reverence: Low Arousal, Positive Valence

Neutral-Anger-Grief-Reverence (NA GR) In results
from the 8-emotion classification using the Fisher-24
algorithm, the resulting confusion matrix shows that
Neutral, Anger, Grief, and Reverence are the four
emotions best classified and least confused with each
other.

5-emotions The 5-emotion subset examined is the
one including the emotions in the 2 quadruplets chosen
above, namely the Neutral-Anger-Grief-Joy-Reverence
(NAG JR) set.

The best classification rates obtained by SFFS and
SFFS-FP are reported in Table 1, while the number
of features used in producing these rates can be seen
in Table 2. We can see that in SFFS a small number
mSFFS of the 24 original features gave the best results.
For SFFS-FP a slightly larger number mSFFS--FP
of features tended to give the best results, but still
smaller than 24. These extra features found useful
in SFFS-FP, could be interpreted as containing some
useful information, but together with a lot of noise.
That is because feature selection methods like SFFS
can only accept/reject features, while the Fisher algo-
rithm can also scale them appropriately, performing a
kind of "soft" feature selection and thus making use
of such noisy features.

In Table 3 one can see that for greater numbers
of emotions and greater numbers of features, the
best-performing number of Fisher dimensions tends
to be less than the maximum number of dimensions
Fisher can calculate, confirming our earlier expecta-
tions (Section).

Day Dependence

As mentioned previously, the data were gathered
in 20 different sessions, one session each dab’. During

Number of mSFFS mSFFS-FP
Emotions

8 13 17
5 (NAG JR) 12-17 15
4 (NAGR) 9-15,18 19
4 (AGJR) 7-8 12
3 (ACR) 2-16 12
3 (A JR) 6-14 7

Table 2: Number of features m used in the SFFS al-
gorithms which gave the best results. When a range
is shown, this indicates that the performance was the
same for the whole range.

their classification procedure, we noticed high corre-
lation between the values of the features of different
emotions in the same session. In this section we quan-
tify this phenomenon in an effort to use it to improve
the classification results, by first building a dab’ (ses-
sion) classifier.

Day Classifier
We use the same set of 24 features, the Fisher algo-
rithm, and the leave-one-out method as before, only
now" there are c = 20 classes instead of 8. There-
fore the Fisher projection is meaningful from 1 to 19
dimensions. The resulting :’day classifier" using the
Fisher projection and the lean’e-one-out method with
MAP classification, yields a classification accuracy of
133/160 (83%), when projecting down to 6,9,10 and
11 Fisher dimensions. This is better than all but one
of the results reported above, and far better than ran-
dom guessing (5%). We note the following on this
result:

¯ It should be expected that a more sophisticated al-
gorithm would give even better results. For exam-
ple we only tried using all 24 features, rather than
a subset of them.

¯ Either the signals or the features extracted from
them are highly dependent on the day the exper-
iment is held.

¯ This can be because, even if the actress is intention-
ally expressing a specific emotion, there is still an
underlying emotional and physiological state which
affects the overall results of the day.

¯ This may also be related to technical issues, like
the amount of gel used in the sensing equipment
(for the BVP and GSR signals), or external issues
like the temperature in a given day, affecting the
perspiration and possibly the blood pressure of the
actress.

Whichever the case, a possible model for the emo-
tions could then be thought of as follows: At any point
in time the physiological signals are a combination of
a long-term slow-changing mood (for example a day-
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Number of Random SFFS Fisher-24 Structured subsets (%) SFFS-FP
Emotions Guessing (%) (N) (%) 4-feature [ 6-feature 18-feature (%)

8 12.50 40.62 40.00 34.38[ 41.25 48.75 46.25
5 (NAG JR) 20.00 64.00 60.00 53.00 63.00 71.00 65.00
4 (NAGR) 25.00 70.00 61.25 61.25 70.00 72.50 68.75
4 (AGJR) 25.00 72.50 60.00 58.75 70.00 68.75 67.50
3 (AGR) 33.33 83.33 71.67 75.00 83.33 81.67 80.00
3 (A JR) 33.33 88.33 66.67 73.33 83.33 81.67 83.33

Table 1: Classification rates for several algorithms and emotion subsets.

Number of Structured subsets Fisher-24 SFFS-FP Ratio
Emotions 4-feature 6-feature [ 18-feature

8 3/3 3/5 5/7 6/7 4,5/7 4:1
5 (NAG JR) 3/3 4/4 3/4 3/4 3/4 3:2
4 (NAGR) 3/3 3/3 3/3 3/3 3/3 0:5
4 (AGJR) 3/3 2/3 2,3/3 3/3 2/3 3:2
3 (AGR) 2/2 2/2 2/2 2/2 2/2 0:5
3 (A JR) 2/2 2/2 2/2 1/2 2/2 1:4
Ratio 0:6 2:4 3:3 3:3 3:3 11:19

Table 3: Number of dimensions used in the Fisher Projections which gave the best results, over the maximum
number of dimensions that could be used. The last row and column give the ratio of cases where these two values
were not equal, over the cases that they were.

long frustration) or physiological situation (for exam-
ple lack of sleep) and of a short-term emotion caused
by changes in the environment (for example the arrival
of some bad news). In the current context, it seems
that knowledge of the day (as part of the features)
may help in establishing a baseline which could in turn
help in recognizing the different emotions within a day.
This baseline may be as simple as subtracting a dif-
ferent value depending on the day, or something more
complicated.

It is also relevant to consider conditioning the recog-
nition tests on only the day’s data, as there are many
applications where the computer wants to know the
person’s emotional response right now so that it can
change its behavior accordingly. In such applications,
not only are interactive-time recognition algorithms
needed, but they need to be able to work based on only
present and past information, i.e., causally. In partic-
ular, they will probably need to know what range of
responses is typical for this person, and base recogni-
tion upon deviations fi’om this typical behavior. The
ability to estimate a good "baseline" response, and to
compare the present state to this baseline is impor-
tant.

Establishing a day-dependent baseline
According to the results of the previous section, the
features extracted from the signals are highly depen-
dent on the day the experiment was held. Therefore,
we would like to augment the set of features to include

both the Original set of 24 features and a second set
incorporating information on the day the signals were
extracted. A Day Matrix was constructed, which in-
cludes a 20-number long vector for each emotion, each
day. It is the same for all emotions recorded the same
day, and differs among days. There are several pos-
sibilities for this matrix. In this work, we chose the
20-number vector as follows: For all emotions of day i
all entries are equal to 0 except the i’th entry which
is equal to a given constant C. This gives a 20x20
diagonal matrix for each emotion.

It must be noted that when the feature space in-
cludes the Day Matrix, the Fisher projection algo-
rithm encounters manipulations of a matrix which is
close to singular. We can still proceed with the cal-
culations but they will be less accurate. Nevertheless,
the results are consistently better than when the Day
Matrix is not included. A way to get around the prob-
lem is the addition of small-scale noise to C. Unfortu-
nately this makes the results dependent on the noise
values, in such an extent that consecutive runs with
just different random values of noise coming from the
same distribution give results with up to about 3%
fluctuations in performance.

Another approach that we investigated involves
constructing a Baseline Matrix where the Neutral
(no emotion) features of each day are used as a base-
line for (subtracted from) the respective features 
the remaining 7 emotions of the same day. This gives
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Feature Space SFFS Fisher SFFS-FP
(%) (%) (%)

Original (24) 40.62 40.00 46.25
Original+Day (44) N/A 49.38 50.62

Table 4: Classification Rates for the 8-emotion case
using several algorithms and methods for incorporat-
ing the day information. The "N/A" is to denote that
SFFS feature selection is meaningless if applied to the
Day Matrix.

Feature Space SFFS Fisher SFFS-FP
(%) (%) (%)

Original (24) 42.86 39.29 45.00
Orig.+Day (44) N/A 39.29 45.71

Orig.+Base. (48) 49.29 40.71 54.29
Orig.+Base.+Day (68) N/A 35.00 49.29

Table 5: Classification Rates for the 7-emotion case
using several algorithms and methods for incorporat-
ing the day information. The "N/A" is to denote that
SFFS feature selection is meaningless if applied to the
Day Matrix.

an additional 24x20 matrix for each emotion.
The complete 8-emotion classification results can

be seen in Table 4, while the 7-emotion classification
results can be seen in Table 5. Random guessing would
be 12.50% and 14.29% respectively. The results are
several times that for random guessing, indicating that
significant emotion classification information has been
found in this data.

Conclusions &: Further work
As one can see from the results, these methods of

affect classification demonstrate that there is signifi-
cant information in physiological signals for classifying
the affective state of a person who is deliberately ex-
pressing a small set of emotions. Nevertheless more
work has to be done until a robust and easy-to-use
emotion recognizer is built. This work should be di-
rected towards:
Experimenting with other signals: Facial, vocal,
gestural, and other physiological signals should be in-
vestigated in combination with the signals used here.
Better choice of features: Besides the features al-
ready used, there are more that could be of interest.
An example is the overall slope of the signals dur-
ing the expression of an emotional state (upward or
downward trend), for both the raw and the normal-
ized signals.
Real-time emotion recognition Emotion recogni-
tion can be very useful if it occurs in real time. That is,
if the computer can sense the emotional state of the
user the moment he actually is in this state, rather
than whenever the data is analyzed. Therefore we are

interested in examining the possibility of online recog-
nition. This should be considered in combination with
the model of an underlying mood, which may change
over longer periods of time. In that respect, the clas-
sification rate of a time window using given a previ-
ous time window can yield useful information. The
question is how frequently should the estimates of the
baseline be updated to accommodate for the changes
in the underlying mood. In addition, it appears that
although the underlying mood changes the features’
values for all emotions, it affects much less the relative
positions with respect to each other. We are currently
investigating ways of exploring this, expecting much
higher recognition results.
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