From: AAAI Technical Report FS-00-02. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Learning How to Edit Text

Tessa Lau, Pedro Domingos, and Daniel S. Weld
Department of Computer Science & Engineering
University of Washington
Box 352350
Seattle, Washington 98195-2350
tlau@cs.washington.edu

Abstract

Programming by demonstration systems acquire pro-
cedural knowledge from examples, and then use that
knowledge to execute the learned procedure on new
instances. We present an architecture, called version
space algebra, for learning this type of procedural

knowledge, and describe an implemented system for
programming by demonstration in the text-editing do-

main. We present results showing the system’s effec-
tiveness at acquiring procedures from a small number
of examples.

Introduction

Programming by demonstration, or PBD, has the potential to
empower programmers and non-programmers alike to cus-
tomize their applications and minimize the effort required to

perform everyday tasks. The central component of a PBD

system is procedural knowledge: the sequences of actions

users perform in order to accomplish their tasks. PBD sys-
tems acquire this knowledge via demonstration: the system

records the actions a user performs in the user interface, and

converts these actions into an internal representation, which
can later be executed automatically on behalf of the user.
As aresult, acquiring procedural knowledge is crucial to the

operation of a programming by demonstration system.

Our work has focused on the problem of programming
by demonstration in the text editing domain, which is a do-
main familiar to all computer users, from novice to expert.
We view text-editing actions as functions that transform the
application state into a new state. For instance, inserting a
string of text causes the state of the editor to change to incor-
porate the new content. Given a pair of application states,
the problem is to infer the action which caused that state
change.

In this work, we use machine learning to infer action func-
tions from examples of the application state both before and
after the action. We introduce a new method for learning
these functions which we call version space algebra. Using

version space algebra, we build up a complex search space of

functions by composing together smaller, more simple ver-

sion spaces. For example, a function which moves the cursor

Copyright © 2000, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

to a new position in the text file could be composed of two
simpler functions: one which predicts the new row position,
and one which predicts the column position.

We have implemented a PBD system called SMARTedit
that learns sequences of text-editing actions from demon-
strations using the version space algebra. The next section
motivates the text-editing domain as a fertile area for PBD
research. The following section describes the characteristics
of programming by demonstration as a knowledge acquisi-
tion problem. Next, we present the version space algebra
algorithm used in SMARTedit to learn procedural knowl-
edge. Finally, we conclude with a summary of experimental
results.

Text-editing domain

The text-editing domain has a number of benefits. Itis a con-
crete, familiar domain; every computer user is familiar with
the basics of manipulating text. As such, the types of tasks
commonly encountered in this domain are easy to explain
and motivate.

Examples of repetitive text transformation tasks include
converting from one file format to another, processing struc-
tured data such as tables or lists, or manipulating semi-
structured data such as addresses or bibliographic entries.
Often the kinds of tasks that arise in a text-editing domain
are simple one-shot tasks for which recording a macro would
be too much work, but which are clearly repetitive. These
repetitive tasks are prime candidates for automation by a
programming by demonstration system: a system that in-
fers a program by observing demonstrations of the behavior
of the program on concrete examples. The user is doing the
same actions she would normally do to complete the task,
but after a few examples, the PBD system is able to take
over and finish the remainder of the task.

The text-editing domain is also good from the standpoint
of knowledge acquisition. Although the space of possible
tasks is huge, each task is accomplished by sequencing to-
gether a number of simpler actions, such as inserting the
string “foo”, moving the cursor to the 3rd line and the first
column, or deleting the next five characters. The large vari-
ance in the number of different actions comes from the vari-
ance in arguments to each of a number of simple action
types. For example, a user could potentially insert or delete

just about any string, but all insertion actions are of the same

general type of action. In the text-editing domain, the num-
ber of different action types is small and easily represented
within the knowledge acquisition framework.

Although there a small number of action types, each
demonstrated example does not provide enough information
to uniquely identify the correct action. Any demonstration
could have a number of different explanations. For example,
if the user moves the cursor to a new location, she could have
intended to move the cursor one row down, move to the next
comma character, or move twenty characters forward. Al-
though each of these actions is consistent with the observed
example, not all of them will produce the correct effect on
future examples; the system must infer the correct action by

observation. If the user demonstrates a second example, the

system can infer that the features common to both examples
are important (such as the search text preceding the cursor),
and those that differ (for example, the column position of the
cursor location) are unimportant.

PBD Characteristics

We formalize the programming by demonstration problem
as the machine learning problem as follows. Each action a

e The task admits multiple levels of abstraction. At
the lowest level, the user's keypresses and mouse ac-
tions form a primitive level of abstraction. Our SMARTe-
dit system abstracts these primitives into higher-level ac-
tions such as “move the insertion cursor” and “insert
string”; these higher-level semantic actions are part of
even higher-level tasks such as “convert this record to the
new format”.

e The system learns passively from observed examples.
However, in current work we are investigating means for
incorporating active learning to allow the system to learn
more quickly.

Our SMARTedit system for learning text-editing proce-
dures is based on a machine learning technique which we
call version space algebra that allows us to learn complex
text-editing programs from small nhumbers of demonstrated
examples. The version space algebra is described in the next
section.

Version Space Algebra

user performs during a demonstration causes the state of theln this section, we define the version space algebra: a

application to change. For example, if she moves the cur-
sor in a text editor, the state of the editor (which includes

the cursor position, the contents of the text buffer, and so
on) changes to reflect the new cursor position. The learning
problem is to induce the action that explains successive ap-

method for composing together many simple version spaces
using algebraic operations such that the whole is also a ver-
sion space. We first extend version spaces to apply with any
partial order (not just generality, as in Mitchell (1982)). We
then define the union, intersection, join, and transform op-

plication state changes given observations of the sequenceerators over these extended version spaces, and describe the

of states occurring as the user performs a demonstration.

Programming by demonstration has a number of charac-
teristics that distinguish it from other types of knowledge
acquisition and machine learning problems.

Training data is scarce. When each training example
is constructed by a human typing on the keyboard, the
system won't have a lot of examples to work with.

The size of the domain is very large. As mentioned

in the introduction, there are a large number of possi-
ble text editing tasks, and many ways to accomplish each
task. This large domain is built up out of compositions of
atomic text-editing functions, such as moving the cursor
to a new location, or inserting or deleting text.

Tasks can range from single-step to elaborate multi-
step sequences.For our target audience, however, it's
likely that tasks requiring more than a dozen steps will be
too complex to demonstrate reliably.

Task knowledge must be executable.After the PBD
system learns how to perform a task, it must be able to
execute this task on new data.

Task knowledge should be human-readableln order

for a user to trust that the system’s learned procedure will
work correctly in the future, she must be able to under-
stand what it has learned.

The task is highly supervised. Not only does the hu-
man user construct training examples for the system to
learn from, but she also corrects and verifies the system’s
knowledge.

conditions under which the combined version space may be
efficiently maintained.

A hypothesiss a function that takes as input an element of
its domain and produces as output an element of its range. A
hypothesis spads a set of functions with the same domain
and range. Thddias determines which subset of the uni-
verse of possible functions is part of the hypothesis space;
a stronger bias corresponds to a smaller hypothesis space.
We say that a training examplg, o), for i € domain(h)
ando € range(h), is consistenwith a hypothesis: if and
only if h(i) = o. A version spaceVSy p, consists of only
those hypotheses in hypothesis spat¢hat are consistent
with the sequenc® of examples. When a new example is
observed, the version space mustupglatedto ensure that
it remains consistent with the new example. We will omit
the subscript and refer to the version space as VS when the
hypothesis space and examples are clear from the context.

In Mitchell’s (1982) original version space approach, the
range of functions was required to be the Boolear{8gt},
and hypotheses in a version space were partially ordered by
their generality. (A hypothesig, is more general than an-
other h,, iff the set of examples for which,(i) = 1is a
superset of the examples for whiéh (i) = 1.) Mitchell
showed that this partial order allows one to represent the
version space solely in terms of its most-general and most-
specific boundarie§& and S (i.e., the set& of most general
hypotheses in the version space and theSset most spe-
cific hypotheses). The consistent hypotheses are those that
lie between the boundarieisd, every hypothesis in the ver-
sion space is more specific than some hypothes(s and

more general than some hypothesi$in We say that a ver- wherei € domain{;) and o € range(;), and sim-
sion space idoundary-set representab{BSR) if and only ilarly for D, = {dg}’il_ Let D be the sequence
if it can be represented solely by ti$eand G boundaries. . i .

d of n pairs of examples(d;,d3). The join of two ver-

Hirsh (1991) showed that the properties of convexity an . .
definiteness are necessary and sufficient for a version spaceSIOn spaces, V,p, > VS, p,, is the set of or-

to be BSR. dered pairs of hypothese€Shi, ho)|hi € VSu, p,,he €

Mitchell's approach is appropriate for concept learning VS,,p,, C(h1, he), D)}
problems, where the goal is to predict whether an example ~ Joins provide a powerful way to build complex version
is a member of a concept. We extend the approach to any spaces, but a question is raised about whether they can be
supervised learning problerid,, to learning functions with ~~ maintained efficiently. LeT'(VS, d) be the time required to
any range) by allowing arbitrary partial orders. We base this update VS with examplé. Let S(VS) be the space required
proposal on the observation that the efficient representation to represent the version space VS (perhaps with boundary
of a version space by its boundaries only requires that some Sets).
partial order be defined on it, not necessarily one that corre- Proposition 2 (Efficiency of join) Let Dy :{djl'};%:l be a
sponds to gengrallty. _The partial orde_r to.be useq in a given sequence of: training examples each of the forf, o)
;/ﬁrstgonlspace |fs provujed by the Iaé)phcat_llghn designer, ocri.by wherei ¢ domain,) and o ¢ range(,), and letd,

e designer of a version space library. The corresponding S ’ ,
generalizations of thé&' and S boundaries are the least up- be anoth]erntralmng eX"?‘mP'e of the same type. Define
per bound and greatest lower bound of the version space. As P2 = {d2};—, andd similarly. LetD be the sequence
in Mitchell's approach, the application designer provides an of n pairs of examplesd’, d3). If VD1, Dy [C(h1, Dy) A
update functiorl/ (VS, d) that shrinks VS to hold only the C(ha, D2) = C({h1, ha), D)], thenVDy,dy, Dy, ds

hypotheses consistent with examgle S(VSy, p, VS, p,)
We now introduce a version space algebra using these ex- o 2
tended version spaces. We defineadomic version space = S(VSu,p.) + 5(VSm,,p,) + O(1)
to be a version space as described abaeg, one that is T(VSu, . p, X VSu, p,,(d1,dz))
defined by a hypothesis space and a sequence of examples. = T(VSu,.p,,d1) +T(VSu,.p,,d2) + O(1)

We define a&composite version spade be a composition of
atomic or composite version spaces using one of the follow-
ing operators.

In many domain representations, the consistency of a hy-
pothesis in the join depends only on whether each individual
hypothesis is consistent with its respective training exam-

Definition 1 (Version space union)Let H; andH; be two ples, and not on a dependency between the two hypotheses
hypothesis spaces such that the domain (range) of functions jp a pair. In this situation we say there is amlependent

in H, equals the domain (range) of thosefify. Let D be join in which the consistency of a pair of hypotheses in the
a sequence of training examples. TWesion space union version space join follows from the consistency of each indi-
VSu,,0 UVSy,,p, is equal to Vg, un,,p- vidual hypothesis relative to its respective training examples.

Hirsh proved that the union of two BSR version spaces is If the join is independent, then the hypotheses in the version
also BSR if and only if the union is convex and definite. In space join are exactly the hypotheses in the Cartesian prod-
contrast, we allow unions of version spaces such that the uct of the two component version spaces, and the join may
unions are not necessarily boundary-set representable, bybe updated by updating each of the two component version
maintaining component version spaces separately; thus, we spaces individually. For instance, given ¥&ntaining hy-
can efficiently represent more complex hypothesis spaces. potheseq A, B}, and VS containing{ X, Y}, even though
Proposition 1 (Efficiency of union) The time (space) com- 4 and X are consistent with their respective data, it is not
plexity of maintaining the union is a linear sum of the time ~ 2/Ways the case that!, X) is consistent with the joint data.

(space) complexity of maintaining each component version Although we have not yet formalized the conditions under
space. which joins may be treated as independent, a later section

Definition 2 (Version space intersection)Let [, and H, gives several examples of independent joins in the PBD do-

be two hypothesi h that the domai g main.
e two hypothesis spaces such that the domain (range) of "\ 5te that our union and intersection operations are both
functions inH; equals the domain (range) of those ify.

Let D be a sequence of training examples. Thesion space commutative and associative, which follows directly from
. ; : ' the properties of the underlying set operations. The join op-
intersectionVSy, p N VSy, p, is equal to V&, nw,.p- brop ying b J P

_ : _ erator is neither commutative nor associative.
un-irohneafs%ngldeiritcljotrr‘ia \r;:aarlgi?)nast,)oz\i/cee];?1;etr22c\t/iirr1$|0n SPAC€ pefinition 4 (Version space transform) Let 7, be a map-
In order toan¥roduce the next%perator Eth D). be a ping from elements in the domain of V& elements in
. ; . ') th main of V§ an ne-to-one mapping from
consistency predicate that is true when hypothkssscon- e domain of Vi and, be a one-to-one mapping fro

) . ; elements in the range of Y$o elements in the range of
sistent with the dat®), and false otherwise. In other words, VS,. Version space VSis a transformof VS iff VS, =

C(h, D) = Ni,oep h(i) = o. {913;evs Y5 9() = 75 1 (f (i)}

Definition 3 (Version space join) Let D; ={d{},_, be a Transforms are useful for expressing domain-specific ver-
sequence of: training examples each of the ford, o) sion spaces in terms of general-purpose ones.

Text-editing version spaces Program

SMARTedit implements an editor that supports a subset of
the Emacs command language. As the user is editing a
file, when she notices that she is about to perform a repet- Action Action .. Action

itive task, she invokes the SMART recorder by clicking on
a button in the user interface. SMARTedit then records the
sequence of states that result from the user’s editing com-
mands, and learns functions that map from one state to an-
other.

Action

Move

Cut

When the user has completed one instance of the repeti- | oohion oot Copy Select
tive task, she clicks another button to indicate that she has /R Delete l
completed a single demonstration. At this point, SMARTe- Condsr NumsStr Indentstr Location
dit initializes the version space using the recorded state se- BIN
quence as the first training example. SMARTedit updates the P< N Locaisation
version space lazily as the user provides training examples, Nurmber ConstSr
which allows it to consider infinite version spaces that are /J\C‘msr Indent
only instantiated on receipt of a positive training example. Linearint Linearint L ocation
The learner is able to make useful predictions after just
a single training example. When the user enters another /ﬁ\
state where the same repetitive task must be performed, she FindPrefix FindSuffix RowCol
invokes the learned procedure step by step. The system
chooses the most likely function in the version space, ex- l 1 /‘\
ecutes it, and presents the resulting state to the user. If the Qiffer PrefSr Row Column
system’s guess was incorrect, the user may press a button
to switch to the next most likely state, and so on. At any /\ /L\
point, she may choose to undo SMARTedit's last action, or AbsRow RelRow AbsCol RelCol
override the system and perform edits manually. When the i
user chooses a state (either by selecting one of SMARTedit’s Constlnt Linearint Constint Linearint

choices or by performing the action manually), this state is
interpreted as another example and used to update the ver-

sion spaces appropriately. Figure 1. Version space structure for the text-editing do-

main. The upper tree shows the complete version space
Version Space Decomposition for aProgram, expressed in terms éfction version spaces
(middle tree). Action version spaces are in turn expressed in
terms ofLocation version spaces (bottom tree). lItalicized
text denotes an atomic version space, while regular text de-
notes a composite version space.

We represent procedural knowledge as a function from one
application state to another. In the text editing domain, the
state is an ordered triplel’, L, P, S), whereT is the con-
tents of the text editing buffel. = (R, C') the row and
column location of the insertion cursaP, the contents of
the clipboard, and the highlighted selection range (if any).)) i .
After an action is performede(g, inserting a string at the p_ractlce,_the number is de;ermlned lazily as the length of the
current cursor position), the resultant state incorporates the first training example. Variable-length action sequences are
changes made by that action. a topic for future research.) Eaéhntlon fun.ctlon represents

At the highest level, our composite version space de- @Simple command a user might perform in a text editor, such
scribes a set of functions mapping one text-editing program &s moving the insertion cursor, inserting ar]d deletlng text at
state to another. The set of functions in the version space the current cursor location, and manipulating the clipboard
represents all text-editing transformations we are able to (Selecting text and copying it to and from the clipboard).
learn. The goal of the learner is to induce a function from The leaf nodes in the version space hierarchy are the
one state to another by generalizing from training examples atomic version spaces. Tl@onstint hypothesis space in-
(in the form of a sequence of states demonstrating the de- cludes all functions of the formy(int : z) = C for
sired state changes). We compose the target version spacesome integer constarit. The Constint version space is
out of smaller, component version spaces. Figure 1 shows trivially maintained; after two or more examples, the ver-
the hierarchy of version spaces corresponding to the target Sion space collapses to one or zero hypotheses. Lifhe
function in the text-editing domain. Although we have pre- €arint hypothesis space includes all functions of the form
sented it here as a tree for clarity, the complete version space f(int :) = x + C, for some integer constaot. Its partial
has an equivalent representation as a formula in our alge- order and update function are analogouSamstint.
braic notation. The AbsRow and AbsCol version spaces transform the

The target spacerogram represents the class of all func- Constint atomic version spaces from integer functions into
tions learnable in our domain. It is composed of an indepen- functions on row or column valueg€., into functions that
dent join of a fixed number ofction version spaces. (In change the cursor position to an absolute row or column).

Similarly, theRelRow andRelCol version spaces transform Scenario Total # Exs. | # Train Exs.
LinearInt atomic version spaces into row and column func- | OKRA 14 2
tions (by changing the cursor position relative to its previous | bindings 11 4
location). TheRow composite version space consists of the | bold-xyz 50 4
union ofAbsRow andRelRow version spaces, and likewise column-reordering 14 2
for theColumn version space. TheowCol version space is outline 14 6
the independent join of tHiRow andColumn version spaces xml-comment-attribute 24 1

with a consistency predicate that is always true.

Besides row and column positioning, our domain repre- Figure 2: List of scenarios used to test the SMARTedit sys-
sentation Supports pOS|t|0n|ng the cursor relative to the next tem, total number of examp|es in each' and number of train-
occurrence of a string. If the cursor is positioned after (be- jng examples required by the system to induce a procedure

fore) a string, we say that the user was finding the peafix that makes the correct predictions on the remaining exam-
(suffiy match. Suppose the user has moved the cursor to the ples.

end of the next occurrence of the string “PBD”. From the

system’s point of view, the user may have been searching for

the prefix “PBD”, the prefix “BD”, or the prefix “D”. The the two positions has been deleted (selected).
FindPrefix and FindSuffix version spaces represent these

types of string-searching hypotheses. Empirical results

More formally, thePrefStr andSuffStr hypothesis spaces We evaluated SMARTedit by testing its performance on a

include all functions of the fornf() = T for some constant Iy ; X
stringT". We choose the partial order BfefStr according number Of. text-editing Scenarios. _These scenarios come
from a variety of sources, including information extraction

o a string prefix relationship in the striflg, it /() = T tasks drawn from the RISE information extraction reposi-

andg() = Ty, thenf < g iff T} is a proper prefix off5.) " 5
(SuffStr is defined similarly.) For clarity, we omit the func- (O » actual editing tasks gathered from real users, and ar
tificial tasks that simulate the repetitive text manipulation

tion symbol and simply refer to the function as the string it L) .
arising during regular text-editor use.
produces. The least upper bound (LUB) and greatest lower Each scenario consists of a number of textual records that

bound (GLB) boundaries of therefStr version space are must be transformed. We scored SMARTedit based on the
Irg'tlfélszee:ﬂ;o t:ﬁ‘eg Sa e?tdo(; ;?Isgtficr;[|vse Ié/% :’gg;f(slf)rﬁ gockfﬁ_ number of records that the user had to transform manually in
stgnt greategr than the maximun?text buffer size) andl a demonstration before the system was able to learn a program
token representing the set of all strings of unit length. When tﬂ_at correctly tran::,_formeg th? rerfngll\r;llgg_lr_eggi,rds. Nfo'ie tha.t
the first example is seen, the LUB becomes the singleton set ofltserzstr?ecg;lsstgr\rgac;\rg?yenselg(]jz (ran?nor correcetiolnss ltjs(arel:‘iggs}?é
containing the contents of the text buffer f_oIIowmg the cur- learned programs. In these cases, the user can step through
\?v%re(?eitinsn?r? ’ea::nhdatrgﬁtgrl_i?ntr)ﬁggirgti? t?gllf)lvr:/?r:etct)r:{esi}r’s or SMARTedit’s guesses and correct the incorrect ones, with-
After the first example the LUB andyGLB will glways con. out having to demonstrate the entire transformation herself.

; : . g However, for the purposes of evaluation, we have counted
tain at most one string each. Given a new training example the examples in that refinement process as part of the hand-

in which the strindI” follows the cursor, and the LUB con- o : ;
tains the stringd, the LUB is updated to contain the longest IabQIIed training examples required for SMART‘?d't to Iear_n.
Figure 2 shows the results for a representative collection

common prefix ofS and7". The GLB remains unchanged of text-editing Scenarios

if the character immediately following the cursor is again The OKRAgscenario i-s an information extraction task

otherwise the version space collapses to the null set. Given an HTML page returned by the OKRA white pageé
TheFindPrefix version space transforms each hypothesis (oo o seryice, the task is to extract the name, score, email

in the SuffStr' yersion space into a fur_lction from a state to address. and d,ate of entry for each person on t,he pagé

a cursor position. For each function in tBaffStr version Thebindings ~ scenario is a programming task. For each

o . €l o th Tuncorbind(argl, rga) ., the tsk s to
9, add a second call immediately after thmd() call to a

sor position at the end of the matching occurrerdedSu- different function with the argumenésgl and the constant
fix transformaPrefStr analagously, finding the beginning of b, adhering to proper indentation conventions
ea_lcfﬂ matc_hlng c;ccurrenfce. itioning. functi Thebold-xyz scenario takes an HTML page with in-
€ various types of cursor-postioning functions aré ¢, yiion about a company, and bolds all occurrences of the

unioned together as the singleocation version space,
which is in turn transformed by many of the actions. For gg?p]p;nyxgazrgﬁgpawg “?(E\i(gzei:ir-]r(?'e company name appears

instance, theMove version space transfornmsocation to
provide functions from one state to a new state with a differ-
ent cursor location. ThBeleteTo (SelectTo) version space
transforms d_ocation version space to represent functions
that delete (select) from the input cursor locationtoanew -~ =~ =~
location, and output a new state in which the text between 'RISE can be found at http://www.isi.edu/ muslea/RISE/

The column-reordering scenario operates on a text
file containing data in whitespace-separated columns. The
task in this scenario consists of moving the first column to
the end of the line. The typical sequence of actions involved

in this task is to select the text in the first column, copy it from these hints was combined with Cima’s domain knowl-
to the clipboard, delete the selection, move the cursor to the edge using a set of hard-coded preference heuristics. As a
end of the line, and paste the contents of the clipboard. result, it was never clear exactly which hypotheses Cima

Theoutline scenario operates on an outline in emacs- was considering, or why it preferred one over another. In
outline format. The task is to number each top-level section SMARTedit, these types of hints could be used to bias the
heading starting with the number 1, and also copy all the top- probabilities on its different hypotheses so as to prefer one
level section headings to the beginning of the file to make a over another.
list.

Thexml-comment-attribute scenario works on an
XML data file. The task is to remove the XML comment to-
kens from commented XML elements, and add the attribute
on="no" to those commented elements.

Conclusion

We have presented the SMARTedit system for learning
text-editing procedures by demonstration using the machine
learning technique of version space algebra. Our PBD sys-
tem acquires procedural knowledge through demonstrations
Related work of the procedure applied to a concrete example. The system
Unlike most previous text-editing PBD systems, SMARTe- infers the correct explanation for each demonstrated action
dit uses a formal machine learning technique to describe the and constructs a program that may be executed on a new
generalization that is performed by the system. Witten and example. The learned program, when used to automate the
Mo (1989) described the TELS system that recorded high- remainder of a repetitive task, saves the user time and effort

level actions similar to the actions used in SMARTedit, and

implemented a set of expert rules for generalizing the ar-

guments to each of the actions. TELS also used heuristic
rules to match actions against each other in order to detect
loops in the user’s demonstrated program; it outperformed
SMARTedit in this respect. However, TELS'’s dependence

on heuristic rules to describe the possible generalizations
makes it difficult to imagine applying the same techniques

to a different domain, such as spreadsheet applications.

Nix (1985) described the Editing by Example (EBE)
system that looked not at recorded actions, but at the in-
put/output behavior of the complete demonstration. EBE
attempted to find a program that could explain the observed
difference between the initial and final state of the text editor.
In this respect, SMARTedit is a refinement of EBE that uses
not only the initial and final state, but intermediate states
as well. SMARTedit’s approach has the drawback that it is
sensitive to the order in which the user chooses to perform
actions, but on the other hand it is making use of more in-
formation than EBE is given, and so SMARTedit is able to
learn programs for more complex text transformations than
EBE.

Masui and Nakayama (1994) described the Dynamic
Macro system for recording macros in the Emacs text editor.
Dynamic Macro performed automatic segmentation of the
user’s actions—breaking up the stream of actions into repet-
itive subsequences, without requiring the user to explicitly
invoke the macro recorder. Dynamic Macro performed no
generalization, and it relied on several heuristics for detect-
ing repetitive patterns of actions.

Maulsby and Witten's Cima system (1997) used a classifi-
cation rule learner to describe the arguments to particular ac-
tions, such as a rule describing how to select phone numbers
in the local area code. (SMARTedit was able to learn a pro-
gram to select all but one of the phone numbers given a sin-
gle demonstration. The anomalous phone number lacked a
preceding area code, and was also difficult for Cima to clas-
sify correctly.) Unlike other PBD systems, Cima allowed the
user to give "hints” to the agent that focused its attention on
certain features, such as the particular area code preceding
phone numbers of interest. However, the knowledge gained

over performing the entire task manually.

In future work, we plan to investigate the applicability
of the version space algebra to other domains besides text-
editing, consider the use of active learning or controlled ex-
perimentation to acquire concepts more quickly and with
less user effort, and extend the core version spaces to handle
disjunctive hypotheses or noisy training examples.

Acknowledgements

We thank Steve Wolfman for valuable discussion and feed-
back on the ideas presented in this paper.

References

Hirsh, H. 1991. Theoretical underpinnings of version
spaces. IProceedings of the Twelfth International Joint
Conference on Artificial Intelligen¢c&65—670. San Fran-
cisco, CA: Morgan Kaufmann.

Masui, T., and Nakayama, K. 1994. Repeat and Predict—
Two Keys to Efficient Text Editing. IiConference on Hu-
man Factors in Computing Systems (CHI '98)8-123.
Maulsby, D., and Witten, I. H. 1997. Cima: an interactive
concept learning system for end-user applicatiéplied
Artificial Intelligencel1:653—671.

Mitchell, T. 1982. Generalization as searcHrtificial
Intelligencel8:203-226.

Mo, D. H. 1989. Learning Text Editing Procedures from
Examples. Master’s thesis, University of Calgary.

Nix, R. P. 1985. Editing by ExampleACM Transactions
on Programming Languages and Systei{%):600—621.

