
Learning How to Edit Text

Tessa Lau, Pedro Domingos, and Daniel S. Weld
Department of Computer Science & Engineering

University of Washington
Box 352350

Seattle, Washington 98195–2350
tlau@cs.washington.edu

Abstract

Programming by demonstration systems acquire pro-
cedural knowledge from examples, and then use that
knowledge to execute the learned procedure on new
instances. We present an architecture, called version
space algebra, for learning this type of procedural
knowledge, and describe an implemented system for
programming by demonstration in the text-editing do-
main. We present results showing the system’s effec-
tiveness at acquiring procedures from a small number
of examples.

Introduction
Programming by demonstration, or PBD, has the potential to
empower programmers and non-programmers alike to cus-
tomize their applications and minimize the effort required to
perform everyday tasks. The central component of a PBD
system is procedural knowledge: the sequences of actions
users perform in order to accomplish their tasks. PBD sys-
tems acquire this knowledge via demonstration: the system
records the actions a user performs in the user interface, and
converts these actions into an internal representation, which
can later be executed automatically on behalf of the user.
As a result, acquiring procedural knowledge is crucial to the
operation of a programming by demonstration system.

Our work has focused on the problem of programming
by demonstration in the text editing domain, which is a do-
main familiar to all computer users, from novice to expert.
We view text-editing actions as functions that transform the
application state into a new state. For instance, inserting a
string of text causes the state of the editor to change to incor-
porate the new content. Given a pair of application states,
the problem is to infer the action which caused that state
change.

In this work, we use machine learning to infer action func-
tions from examples of the application state both before and
after the action. We introduce a new method for learning
these functions which we call version space algebra. Using
version space algebra, we build up a complex search space of
functions by composing together smaller, more simple ver-
sion spaces. For example, a function which moves the cursor

Copyright c© 2000, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

to a new position in the text file could be composed of two
simpler functions: one which predicts the new row position,
and one which predicts the column position.

We have implemented a PBD system called SMARTedit
that learns sequences of text-editing actions from demon-
strations using the version space algebra. The next section
motivates the text-editing domain as a fertile area for PBD
research. The following section describes the characteristics
of programming by demonstration as a knowledge acquisi-
tion problem. Next, we present the version space algebra
algorithm used in SMARTedit to learn procedural knowl-
edge. Finally, we conclude with a summary of experimental
results.

Text-editing domain
The text-editing domain has a number of benefits. It is a con-
crete, familiar domain; every computer user is familiar with
the basics of manipulating text. As such, the types of tasks
commonly encountered in this domain are easy to explain
and motivate.

Examples of repetitive text transformation tasks include
converting from one file format to another, processing struc-
tured data such as tables or lists, or manipulating semi-
structured data such as addresses or bibliographic entries.
Often the kinds of tasks that arise in a text-editing domain
are simple one-shot tasks for which recording a macro would
be too much work, but which are clearly repetitive. These
repetitive tasks are prime candidates for automation by a
programming by demonstration system: a system that in-
fers a program by observing demonstrations of the behavior
of the program on concrete examples. The user is doing the
same actions she would normally do to complete the task,
but after a few examples, the PBD system is able to take
over and finish the remainder of the task.

The text-editing domain is also good from the standpoint
of knowledge acquisition. Although the space of possible
tasks is huge, each task is accomplished by sequencing to-
gether a number of simpler actions, such as inserting the
string “foo”, moving the cursor to the 3rd line and the first
column, or deleting the next five characters. The large vari-
ance in the number of different actions comes from the vari-
ance in arguments to each of a number of simple action
types. For example, a user could potentially insert or delete
just about any string, but all insertion actions are of the same

From: AAAI Technical Report FS-00-02. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



general type of action. In the text-editing domain, the num-
ber of different action types is small and easily represented
within the knowledge acquisition framework.

Although there a small number of action types, each
demonstrated example does not provide enough information
to uniquely identify the correct action. Any demonstration
could have a number of different explanations. For example,
if the user moves the cursor to a new location, she could have
intended to move the cursor one row down, move to the next
comma character, or move twenty characters forward. Al-
though each of these actions is consistent with the observed
example, not all of them will produce the correct effect on
future examples; the system must infer the correct action by
observation. If the user demonstrates a second example, the
system can infer that the features common to both examples
are important (such as the search text preceding the cursor),
and those that differ (for example, the column position of the
cursor location) are unimportant.

PBD Characteristics
We formalize the programming by demonstration problem
as the machine learning problem as follows. Each action a
user performs during a demonstration causes the state of the
application to change. For example, if she moves the cur-
sor in a text editor, the state of the editor (which includes
the cursor position, the contents of the text buffer, and so
on) changes to reflect the new cursor position. The learning
problem is to induce the action that explains successive ap-
plication state changes given observations of the sequence
of states occurring as the user performs a demonstration.

Programming by demonstration has a number of charac-
teristics that distinguish it from other types of knowledge
acquisition and machine learning problems.

• Training data is scarce. When each training example
is constructed by a human typing on the keyboard, the
system won’t have a lot of examples to work with.

• The size of the domain is very large. As mentioned
in the introduction, there are a large number of possi-
ble text editing tasks, and many ways to accomplish each
task. This large domain is built up out of compositions of
atomic text-editing functions, such as moving the cursor
to a new location, or inserting or deleting text.

• Tasks can range from single-step to elaborate multi-
step sequences.For our target audience, however, it’s
likely that tasks requiring more than a dozen steps will be
too complex to demonstrate reliably.

• Task knowledge must be executable.After the PBD
system learns how to perform a task, it must be able to
execute this task on new data.

• Task knowledge should be human-readable.In order
for a user to trust that the system’s learned procedure will
work correctly in the future, she must be able to under-
stand what it has learned.

• The task is highly supervised. Not only does the hu-
man user construct training examples for the system to
learn from, but she also corrects and verifies the system’s
knowledge.

• The task admits multiple levels of abstraction. At
the lowest level, the user’s keypresses and mouse ac-
tions form a primitive level of abstraction. Our SMARTe-
dit system abstracts these primitives into higher-level ac-
tions such as “move the insertion cursor” and “insert
string”; these higher-level semantic actions are part of
even higher-level tasks such as “convert this record to the
new format”.

• The system learns passively from observed examples.
However, in current work we are investigating means for
incorporating active learning to allow the system to learn
more quickly.

Our SMARTedit system for learning text-editing proce-
dures is based on a machine learning technique which we
call version space algebra that allows us to learn complex
text-editing programs from small numbers of demonstrated
examples. The version space algebra is described in the next
section.

Version Space Algebra
In this section, we define the version space algebra: a
method for composing together many simple version spaces
using algebraic operations such that the whole is also a ver-
sion space. We first extend version spaces to apply with any
partial order (not just generality, as in Mitchell (1982)). We
then define the union, intersection, join, and transform op-
erators over these extended version spaces, and describe the
conditions under which the combined version space may be
efficiently maintained.

A hypothesisis a function that takes as input an element of
its domain and produces as output an element of its range. A
hypothesis spaceis a set of functions with the same domain
and range. Thebias determines which subset of the uni-
verse of possible functions is part of the hypothesis space;
a stronger bias corresponds to a smaller hypothesis space.
We say that a training example(i, o), for i ∈ domain(h)
ando ∈ range(h), is consistentwith a hypothesish if and
only if h(i) = o. A version space, VSH,D, consists of only
those hypotheses in hypothesis spaceH that are consistent
with the sequenceD of examples. When a new example is
observed, the version space must beupdatedto ensure that
it remains consistent with the new example. We will omit
the subscript and refer to the version space as VS when the
hypothesis space and examples are clear from the context.

In Mitchell’s (1982) original version space approach, the
range of functions was required to be the Boolean set{0, 1},
and hypotheses in a version space were partially ordered by
their generality. (A hypothesish1 is more general than an-
otherh2 iff the set of examples for whichh1(i) = 1 is a
superset of the examples for whichh2(i) = 1.) Mitchell
showed that this partial order allows one to represent the
version space solely in terms of its most-general and most-
specific boundariesG andS (i.e., the setG of most general
hypotheses in the version space and the setS of most spe-
cific hypotheses). The consistent hypotheses are those that
lie between the boundaries (i.e., every hypothesis in the ver-
sion space is more specific than some hypothesis inG and



more general than some hypothesis inS). We say that a ver-
sion space isboundary-set representable(BSR) if and only
if it can be represented solely by theS andG boundaries.
Hirsh (1991) showed that the properties of convexity and
definiteness are necessary and sufficient for a version space
to be BSR.

Mitchell’s approach is appropriate for concept learning
problems, where the goal is to predict whether an example
is a member of a concept. We extend the approach to any
supervised learning problem (i.e., to learning functions with
any range) by allowing arbitrary partial orders. We base this
proposal on the observation that the efficient representation
of a version space by its boundaries only requires that some
partial order be defined on it, not necessarily one that corre-
sponds to generality. The partial order to be used in a given
version space is provided by the application designer, or by
the designer of a version space library. The corresponding
generalizations of theG andS boundaries are the least up-
per bound and greatest lower bound of the version space. As
in Mitchell’s approach, the application designer provides an
update functionU(VS, d) that shrinks VS to hold only the
hypotheses consistent with exampled.

We now introduce a version space algebra using these ex-
tended version spaces. We define anatomic version space
to be a version space as described above,i.e., one that is
defined by a hypothesis space and a sequence of examples.
We define acomposite version spaceto be a composition of
atomic or composite version spaces using one of the follow-
ing operators.
Definition 1 (Version space union)LetH1 andH2 be two
hypothesis spaces such that the domain (range) of functions
in H1 equals the domain (range) of those inH2. LetD be
a sequence of training examples. Theversion space union,
VSH1,D ∪ VSH2,D, is equal to VSH1∪H2,D.

Hirsh proved that the union of two BSR version spaces is
also BSR if and only if the union is convex and definite. In
contrast, we allow unions of version spaces such that the
unions are not necessarily boundary-set representable, by
maintaining component version spaces separately; thus, we
can efficiently represent more complex hypothesis spaces.
Proposition 1 (Efficiency of union) The time (space) com-
plexity of maintaining the union is a linear sum of the time
(space) complexity of maintaining each component version
space.

Definition 2 (Version space intersection)Let H1 andH2

be two hypothesis spaces such that the domain (range) of
functions inH1 equals the domain (range) of those inH2.
LetD be a sequence of training examples. Theversion space
intersection, VSH1,D ∩ VSH2,D, is equal to VSH1∩H2,D.

The considerations made above for the version space
union also apply to the version space intersection.

In order to introduce the next operator, letC(h,D) be a
consistency predicate that is true when hypothesish is con-
sistent with the dataD, and false otherwise. In other words,
C(h,D) ≡

∧
(i,o)∈D h(i) = o.

Definition 3 (Version space join) Let D1 ={dj1}
n

j=1 be a
sequence ofn training examples each of the form(i, o)

where i ∈ domain(H1) and o ∈ range(H1), and sim-
ilarly for D2 = {dj2}

n

j=1. Let D be the sequence

of n pairs of examples〈dj1, d
j
2〉. The join of two ver-

sion spaces, VSH1,D1 ./ VSH2,D2 , is the set of or-
dered pairs of hypotheses{〈h1, h2〉|h1 ∈ VSH1,D1 , h2 ∈
VSH2,D2 ,C(〈h1, h2〉, D)}.

Joins provide a powerful way to build complex version
spaces, but a question is raised about whether they can be
maintained efficiently. LetT (VS, d) be the time required to
update VS with exampled. LetS(VS) be the space required
to represent the version space VS (perhaps with boundary
sets).

Proposition 2 (Efficiency of join) LetD1 ={dj1}
n

j=1 be a
sequence ofn training examples each of the form(i, o)
where i ∈ domain(H1) and o ∈ range(H1), and let d1

be another training example of the same type. Define
D2 = {dj2}

n

j=1 and d2 similarly. LetD be the sequence

of n pairs of examples〈dj1, d
j
2〉. If ∀D1, D2 [C(h1, D1) ∧

C(h2, D2)⇒ C(〈h1, h2〉, D)], then∀D1, d1, D2, d2

S(VSH1,D1 ./ VSH2,D2)
= S(VSH1,D1) + S(VSH2,D2) +O(1)

T (VSH1,D1 ./ VSH2,D2 , 〈d1, d2〉)
= T (VSH1,D1 , d1) + T (VSH2,D2 , d2) +O(1)

In many domain representations, the consistency of a hy-
pothesis in the join depends only on whether each individual
hypothesis is consistent with its respective training exam-
ples, and not on a dependency between the two hypotheses
in a pair. In this situation we say there is anindependent
join in which the consistency of a pair of hypotheses in the
version space join follows from the consistency of each indi-
vidual hypothesis relative to its respective training examples.
If the join is independent, then the hypotheses in the version
space join are exactly the hypotheses in the Cartesian prod-
uct of the two component version spaces, and the join may
be updated by updating each of the two component version
spaces individually. For instance, given VS1 containing hy-
potheses{A,B}, and VS2 containing{X,Y }, even though
A andX are consistent with their respective data, it is not
always the case that〈A,X〉 is consistent with the joint data.
Although we have not yet formalized the conditions under
which joins may be treated as independent, a later section
gives several examples of independent joins in the PBD do-
main.

Note that our union and intersection operations are both
commutative and associative, which follows directly from
the properties of the underlying set operations. The join op-
erator is neither commutative nor associative.

Definition 4 (Version space transform) Let τi be a map-
ping from elements in the domain of VS1 to elements in
the domain of VS2, and τo be a one-to-one mapping from
elements in the range of VS1 to elements in the range of
VS2. Version space VS1 is a transformof VS2 iff VS1 =
{g|∃f∈VS2

∀j g(j) = τ−1
o (f(τi(i)))}.

Transforms are useful for expressing domain-specific ver-
sion spaces in terms of general-purpose ones.



Text-editing version spaces
SMARTedit implements an editor that supports a subset of
the Emacs command language. As the user is editing a
file, when she notices that she is about to perform a repet-
itive task, she invokes the SMART recorder by clicking on
a button in the user interface. SMARTedit then records the
sequence of states that result from the user’s editing com-
mands, and learns functions that map from one state to an-
other.

When the user has completed one instance of the repeti-
tive task, she clicks another button to indicate that she has
completed a single demonstration. At this point, SMARTe-
dit initializes the version space using the recorded state se-
quence as the first training example. SMARTedit updates the
version space lazily as the user provides training examples,
which allows it to consider infinite version spaces that are
only instantiated on receipt of a positive training example.

The learner is able to make useful predictions after just
a single training example. When the user enters another
state where the same repetitive task must be performed, she
invokes the learned procedure step by step. The system
chooses the most likely function in the version space, ex-
ecutes it, and presents the resulting state to the user. If the
system’s guess was incorrect, the user may press a button
to switch to the next most likely state, and so on. At any
point, she may choose to undo SMARTedit’s last action, or
override the system and perform edits manually. When the
user chooses a state (either by selecting one of SMARTedit’s
choices or by performing the action manually), this state is
interpreted as another example and used to update the ver-
sion spaces appropriately.

Version Space Decomposition
We represent procedural knowledge as a function from one
application state to another. In the text editing domain, the
state is an ordered triple(T,L, P, S), whereT is the con-
tents of the text editing buffer,L = (R,C) the row and
column location of the insertion cursor,P the contents of
the clipboard, andS the highlighted selection range (if any).
After an action is performed (e.g., inserting a string at the
current cursor position), the resultant state incorporates the
changes made by that action.

At the highest level, our composite version space de-
scribes a set of functions mapping one text-editing program
state to another. The set of functions in the version space
represents all text-editing transformations we are able to
learn. The goal of the learner is to induce a function from
one state to another by generalizing from training examples
(in the form of a sequence of states demonstrating the de-
sired state changes). We compose the target version space
out of smaller, component version spaces. Figure 1 shows
the hierarchy of version spaces corresponding to the target
function in the text-editing domain. Although we have pre-
sented it here as a tree for clarity, the complete version space
has an equivalent representation as a formula in our alge-
braic notation.

The target spaceProgram represents the class of all func-
tions learnable in our domain. It is composed of an indepen-
dent join of a fixed number ofAction version spaces. (In

Move

Location

Action

Select

Location
Delete

Location
Location

Insert

NumStr IndentStrConstStr

LinearInt

Number

LinearInt

ConstStr

Indent
ConstStr

DeleteSel

Cut
Copy

Paste

Action Action Action

Program

...

ConstInt ConstInt LinearIntLinearInt

Row Column

AbsRow AbsCol RelColRelRow

Location

FindPrefix RowCol

PrefStrSuffStr

FindSuffix

Figure 1: Version space structure for the text-editing do-
main. The upper tree shows the complete version space
for aProgram, expressed in terms ofAction version spaces
(middle tree).Action version spaces are in turn expressed in
terms ofLocation version spaces (bottom tree). Italicized
text denotes an atomic version space, while regular text de-
notes a composite version space.

practice, the number is determined lazily as the length of the
first training example. Variable-length action sequences are
a topic for future research.) EachAction function represents
a simple command a user might perform in a text editor, such
as moving the insertion cursor, inserting and deleting text at
the current cursor location, and manipulating the clipboard
(selecting text and copying it to and from the clipboard).

The leaf nodes in the version space hierarchy are the
atomic version spaces. TheConstInt hypothesis space in-
cludes all functions of the formf(int : x) = C for
some integer constantC. The ConstInt version space is
trivially maintained; after two or more examples, the ver-
sion space collapses to one or zero hypotheses. TheLin-
earInt hypothesis space includes all functions of the form
f(int : x) = x+C, for some integer constantC. Its partial
order and update function are analogous toConstInt.

The AbsRow andAbsCol version spaces transform the
ConstInt atomic version spaces from integer functions into
functions on row or column values (i.e., into functions that
change the cursor position to an absolute row or column).



Similarly, theRelRow andRelCol version spaces transform
LinearInt atomic version spaces into row and column func-
tions (by changing the cursor position relative to its previous
location). TheRow composite version space consists of the
union ofAbsRow andRelRow version spaces, and likewise
for theColumn version space. TheRowCol version space is
the independent join of theRow andColumn version spaces
with a consistency predicate that is always true.

Besides row and column positioning, our domain repre-
sentation supports positioning the cursor relative to the next
occurrence of a string. If the cursor is positioned after (be-
fore) a string, we say that the user was finding the nextprefix
(suffix) match. Suppose the user has moved the cursor to the
end of the next occurrence of the string “PBD”. From the
system’s point of view, the user may have been searching for
the prefix “PBD”, the prefix “BD”, or the prefix “D”. The
FindPrefix and FindSuffix version spaces represent these
types of string-searching hypotheses.

More formally, thePrefStr andSuffStr hypothesis spaces
include all functions of the formf() = T for some constant
stringT . We choose the partial order ofPrefStr according
to a string prefix relationship in the stringT ; if f() = T1

andg() = T2, thenf ≺ g iff T1 is a proper prefix ofT2.
(SuffStr is defined similarly.) For clarity, we omit the func-
tion symbol and simply refer to the function as the string it
produces. The least upper bound (LUB) and greatest lower
bound (GLB) boundaries of thePrefStr version space are
initialized to beS andC respectively, whereS is a token
representing the set of all strings of lengthK (some con-
stant greater than the maximum text buffer size) andC is a
token representing the set of all strings of unit length. When
the first example is seen, the LUB becomes the singleton set
containing the contents of the text buffer following the cur-
sor (a string), and the GLB becomes the singleton set{“c”},
wherec is the character immediately following the cursor.
After the first example the LUB and GLB will always con-
tain at most one string each. Given a new training example
in which the stringT follows the cursor, and the LUB con-
tains the stringS, the LUB is updated to contain the longest
common prefix ofS andT . The GLB remains unchanged
if the character immediately following the cursor is againc;
otherwise the version space collapses to the null set.

TheFindPrefix version space transforms each hypothesis
in the SuffStr version space into a function from a state to
a cursor position. For each function in theSuffStr version
space, we create a corresponding function inFindPrefix that
locates the first occurrence of this string, and returns the cur-
sor position at the end of the matching occurrence.FindSuf-
fix transformsPrefStr analagously, finding the beginning of
each matching occurrence.

The various types of cursor-positioning functions are
unioned together as the singleLocation version space,
which is in turn transformed by many of the actions. For
instance, theMove version space transformsLocation to
provide functions from one state to a new state with a differ-
ent cursor location. TheDeleteTo (SelectTo) version space
transforms aLocation version space to represent functions
that delete (select) from the input cursor location to a new
location, and output a new state in which the text between

Scenario Total # Exs. # Train Exs.
OKRA 14 2
bindings 11 4
bold-xyz 50 4
column-reordering 14 2
outline 14 6
xml-comment-attribute 24 1

Figure 2: List of scenarios used to test the SMARTedit sys-
tem, total number of examples in each, and number of train-
ing examples required by the system to induce a procedure
that makes the correct predictions on the remaining exam-
ples.

the two positions has been deleted (selected).

Empirical results
We evaluated SMARTedit by testing its performance on a
number of text-editing scenarios. These scenarios come
from a variety of sources, including information extraction
tasks drawn from the RISE information extraction reposi-
tory1, actual editing tasks gathered from real users, and ar-
tificial tasks that simulate the repetitive text manipulation
arising during regular text-editor use.

Each scenario consists of a number of textual records that
must be transformed. We scored SMARTedit based on the
number of records that the user had to transform manually in
demonstration before the system was able to learn a program
that correctly transformed the remaining records. Note that
this is a conservative estimate of SMARTedit’s usefulness;
often the system only needs minor corrections to refine its
learned programs. In these cases, the user can step through
SMARTedit’s guesses and correct the incorrect ones, with-
out having to demonstrate the entire transformation herself.
However, for the purposes of evaluation, we have counted
the examples in that refinement process as part of the hand-
labelled training examples required for SMARTedit to learn.

Figure 2 shows the results for a representative collection
of text-editing scenarios.

The OKRAscenario is an information extraction task.
Given an HTML page returned by the OKRA white pages
search service, the task is to extract the name, score, email
address, and date of entry for each person on the page.

Thebindings scenario is a programming task. For each
call to the functionbind(arg1, arg2) , the task is to
add a second call immediately after thebind() call to a
different function with the argumentsarg1 and the constant
b, adhering to proper indentation conventions.

The bold-xyz scenario takes an HTML page with in-
formation about a company, and bolds all occurrences of the
company name on the page. The company name appears
both as “XYZFind” and “XYZ Find”.

Thecolumn-reordering scenario operates on a text
file containing data in whitespace-separated columns. The
task in this scenario consists of moving the first column to
the end of the line. The typical sequence of actions involved

1RISE can be found at http://www.isi.edu/ muslea/RISE/



in this task is to select the text in the first column, copy it
to the clipboard, delete the selection, move the cursor to the
end of the line, and paste the contents of the clipboard.

Theoutline scenario operates on an outline in emacs-
outline format. The task is to number each top-level section
heading starting with the number 1, and also copy all the top-
level section headings to the beginning of the file to make a
list.

Thexml-comment-attribute scenario works on an
XML data file. The task is to remove the XML comment to-
kens from commented XML elements, and add the attribute
on="no" to those commented elements.

Related work
Unlike most previous text-editing PBD systems, SMARTe-
dit uses a formal machine learning technique to describe the
generalization that is performed by the system. Witten and
Mo (1989) described the TELS system that recorded high-
level actions similar to the actions used in SMARTedit, and
implemented a set of expert rules for generalizing the ar-
guments to each of the actions. TELS also used heuristic
rules to match actions against each other in order to detect
loops in the user’s demonstrated program; it outperformed
SMARTedit in this respect. However, TELS’s dependence
on heuristic rules to describe the possible generalizations
makes it difficult to imagine applying the same techniques
to a different domain, such as spreadsheet applications.

Nix (1985) described the Editing by Example (EBE)
system that looked not at recorded actions, but at the in-
put/output behavior of the complete demonstration. EBE
attempted to find a program that could explain the observed
difference between the initial and final state of the text editor.
In this respect, SMARTedit is a refinement of EBE that uses
not only the initial and final state, but intermediate states
as well. SMARTedit’s approach has the drawback that it is
sensitive to the order in which the user chooses to perform
actions, but on the other hand it is making use of more in-
formation than EBE is given, and so SMARTedit is able to
learn programs for more complex text transformations than
EBE.

Masui and Nakayama (1994) described the Dynamic
Macro system for recording macros in the Emacs text editor.
Dynamic Macro performed automatic segmentation of the
user’s actions—breaking up the stream of actions into repet-
itive subsequences, without requiring the user to explicitly
invoke the macro recorder. Dynamic Macro performed no
generalization, and it relied on several heuristics for detect-
ing repetitive patterns of actions.

Maulsby and Witten’s Cima system (1997) used a classifi-
cation rule learner to describe the arguments to particular ac-
tions, such as a rule describing how to select phone numbers
in the local area code. (SMARTedit was able to learn a pro-
gram to select all but one of the phone numbers given a sin-
gle demonstration. The anomalous phone number lacked a
preceding area code, and was also difficult for Cima to clas-
sify correctly.) Unlike other PBD systems, Cima allowed the
user to give ”hints” to the agent that focused its attention on
certain features, such as the particular area code preceding
phone numbers of interest. However, the knowledge gained

from these hints was combined with Cima’s domain knowl-
edge using a set of hard-coded preference heuristics. As a
result, it was never clear exactly which hypotheses Cima
was considering, or why it preferred one over another. In
SMARTedit, these types of hints could be used to bias the
probabilities on its different hypotheses so as to prefer one
over another.

Conclusion
We have presented the SMARTedit system for learning
text-editing procedures by demonstration using the machine
learning technique of version space algebra. Our PBD sys-
tem acquires procedural knowledge through demonstrations
of the procedure applied to a concrete example. The system
infers the correct explanation for each demonstrated action
and constructs a program that may be executed on a new
example. The learned program, when used to automate the
remainder of a repetitive task, saves the user time and effort
over performing the entire task manually.

In future work, we plan to investigate the applicability
of the version space algebra to other domains besides text-
editing, consider the use of active learning or controlled ex-
perimentation to acquire concepts more quickly and with
less user effort, and extend the core version spaces to handle
disjunctive hypotheses or noisy training examples.

Acknowledgements
We thank Steve Wolfman for valuable discussion and feed-
back on the ideas presented in this paper.

References
Hirsh, H. 1991. Theoretical underpinnings of version
spaces. InProceedings of the Twelfth International Joint
Conference on Artificial Intelligence, 665–670. San Fran-
cisco, CA: Morgan Kaufmann.
Masui, T., and Nakayama, K. 1994. Repeat and Predict—
Two Keys to Efficient Text Editing. InConference on Hu-
man Factors in Computing Systems (CHI ’94), 118–123.
Maulsby, D., and Witten, I. H. 1997. Cima: an interactive
concept learning system for end-user applications.Applied
Artificial Intelligence11:653–671.
Mitchell, T. 1982. Generalization as search.Artificial
Intelligence18:203–226.
Mo, D. H. 1989. Learning Text Editing Procedures from
Examples. Master’s thesis, University of Calgary.
Nix, R. P. 1985. Editing by Example.ACM Transactions
on Programming Languages and Systems7(4):600–621.


