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Abstract

We propose a research strategy to study the evolution of
affective states and analyze the requirements for simulated
environments to be appropriate for experiments with affec-
tive agent architectures. We present the simulation model
and agent architecture used in our experiments to demon-
strate that (1) primitive emotional states (such as “fear” and
“anger”’) and primitive motivational states (such as “hunger”
and “thirst”) can play an important role in the control and co-
ordination of agents in agent societies, and (2) such states are
very likely to evolve (in certain environments).

Introduction

The potential of affective states as efficient and powerful
coordinators and controllers of agent behavior has become
appreciated in recent years, as witnessed by the increasing
number of research projects on this topic (e.g., Maes (1991),
Tyrrell (1993), the LEE model (Menczer and Belew 1996),
Spier and McFarland (1998), the Cathexis model (Veldsquez
1997), the Abbot model (Cafiamero 1997) and its exten-
sions, the Kismet model (Breazeal 1998), Seth (2000), the
various models by the SAB community (e.g., see Meyer et
al. 2000) and many others.! Especially in complex and
unpredictable environments where agents have limited re-
sources (e.g., computational power, memory capacity, etc.)
and sensory information is not reliable, classical (rationality-
based) decision methods to determine the best action for an
agent (from its current sensory information, its internal state,
its current goals, its knowledge, etc.) are not applicable. In
such circumstances, where it is impossible to provide com-
plete, perfect, and reliable information, mechanisms relying
on affective states (such as motivations, desires, attitudes,
preferences, moods, and some emotions) can be very effec-
tive and can serve as context-sensitive initiators modulators,
and regulators of an agent’s behavior. While natural systems
are the canonical models for affect-based control systems,
little is known about the evolutionary trajectories of affec-
tive mechanisms, i.e., under what conditions various kinds
of affective states are likely to evolve in competitive multi-
species environments and what the evolutionary advantages

"For space reasons we only list projects here that are also re-
ferred to later in this paper. For an overview of other models, see
for example Pfeiffer (1988) or Picard (1997).

of affective states are qua control states over other control
states. An answer to these questions may help us understand
how affect is grounded in the interaction of agents with each
other and their environments.

In this paper, we attempt to contribute to answering these
questions by focussing on two different kinds of affective
states: primitive “motivational states” (or drives) and prim-
itive “emotional states”. For easy reference, we will put the
labels “hunger” and “thirst” on the former, and “fear” and
“anger” on the latter, while keeping in mind that the states
used in the simulations below may bear varying resemblance
to the various states with the same labels found in nature.
We first sketch a research strategy to study affective states in
agent architectures, and then demonstrate this strategy by
examining the evolutionary trajectory of particular agents
without the above affective states to agent with those states
in a simulated environment. While we stress the functional
roles and evolutionary advantages provided by many affec-
tive mechanisms, we do not claim that all affective states
are biologically advantageous (some may be by-products of
useful mechanisms without being useful in themselves, e.g.,
see Sloman 2000a). An analysis of disadvantageous affec-
tive processes, however, is beyond the scope of this paper.

A Strategy for Studying Affective States and
their Origin

The notion of an “affective state” state is a so-called clus-
ter concept, which defies the usual characterization of clas-
sical concepts in terms of necessary and sufficient condi-
tions. Worse yet, most of its subspecies are cluster concepts
themselves, in particular the notion of “emotion” (there are
numerous different, partly incompatible characterizations of
what emotions are in psychology alone, e.g., see Griffiths
1997). Not surprisingly, neither terminology, nor concep-
tual underpinnings of different forms of affect form a uni-
form picture in Al either. While some see emotions as
special kinds of motivations (e.g., Breazeal, 1998), others
draw a distinction between motivations and emotions (e.g.,
Canlamero 1997). We believe that these discrepancies result
to a large extent from the fact that mental concepts seem to
be intrinsically architecture-based concepts. Hence, a sat-
isfactory analysis of such concepts will need to show how
affective states depend on and contribute to important capa-



bilities within an agent architecture (Sloman 2000a).

Without being able to go into any detail in this paper, we
suggest that what underwrites the common use of the term
“affective” is essentially the concept of a control state (Slo-
man 1993), and that while not every control state is an affec-
tive state, the subclass of affective control states can be char-
acterized by a distinction between “belief-like” and “desire-
like” states: if a system’s behavior changes an internal state
to make it fit reality, then this state is “belief-like”, whereas
if the system changes reality to make it fit the internal state,
then it is “desire-like” (Scheutz and Sloman 2001). It is this
distinction between belief-like and desire-like control states
that can give us a handle on how to construe affective states,
namely as desire-like control states, whose role is initiating,
evaluating and regulating, internal or external behavior (as
opposed to merely acquiring, interpreting, manipulating, or
storing information that might or might not be used in con-
nection with affective states to initiate or control behavior).
We shall use the term “affective states” in this sense for the
remainder of this paper.

Since affective states—the way we construe them-—are the
springs and guides of action (and sometimes disruptive side-
effects of such springs and guides) in natural systems, we
would like to understand the logical space of possible af-
fective states to be able to utilize them in artificial systems.
There seem to be two partly overlapping classes of three
questions each that are relevant in the context of our under-
standing of affective states. The first class concerns affec-
tive states as they occur in nature, asking (1) what affective
states are and what different kinds of affective states there
are, (2) how and why affective mechanisms came about, and
(3) what their function (if they have a function) is in infor-
mation processing architectures. The second class asks sim-
ilar questions about a wider set of affective states in actual
organisms, theoretically possible biological organisms and
artificial agents. This leads to an additional question: (4)
how can such affective mechanisms be incorporated in agent
architectures and implemented in real and synthetic agents?

Conceptual analyses of affective states are mostly targeted
at answering questions (1) and (3), investigations in the em-
pirical sciences mostly attempt to answer questions (2) and
(3) (especially in the last decade cognitive scientists paid in-
creasing attention to the evolutionary context, in which af-
fective states have developed). Successful implementations
of Al models, on the other hand, which employ (simple)
affective states to control the behavior of simulated or real
agents, provide (partial) answers to questions (3) and (4)
(with respect to the implemented model), but do not answer
questions (1) or (2) (for one, because models that do not con-
trast their implementation with alternative ways of achieving
the same goal, are in a sense mere “existence proofs” show-
ing that certain affective states can assume a particular func-
tional role in a particular system).

We believe that an answer to these question will likely
not come forth from independent inquiries, but from the in-
terplay of conceptual analyses, empirical findings and con-
crete experiments with agent architectures. The proposed re-
search strategy then is to start with a notion of affective state,
which is applicable to natural systems, determine/define its

function in a particular agent architecture and subsequently
try to explore the properties of this state for concrete agents
in different environments with the goal of extending the no-
tion to more complex cases. This includes investigating
ways in which slight changes in environments can change
the tradeoffs between design options for the architecture and
hence for the functional role of the affective state. Such
explorations of “neighborhoods in design and niche space”
(e.g., Sloman 2000b) will help us understand what the com-
petitive advantage of a particular change in architecture or
mechanism might be in a particular environment, and how
the benefits change in slightly different environments.

Requirements for the Experimental Setup

To be able to study the origins of affective states from
an evolutionary perspective and effectively experiment with
different kinds of agent architectures, a genuine artificial life
simulation environment is required, within which different
species of agents (with different architectures and possibly
different bodies) can coexist and procreate. Both require-
ments are crucial; the first, because affective states in natu-
ral systems did not evolve in isolation, but rather in compet-
ing multi-species societies. Hence, to fully appreciate the
benefits of affective states, we need to study the tradeoffs
between different control architectures in competition with
each other. A model employing affective states in the con-
trol of a particular isolated agent or a group of agents with
identical architectures is necessarily silent about the evo-
Iutionary advantage of affective control over other ways of
controlling and regulating behavior (e.g., by virtue of vari-
ous kinds of non-affective reactive or deliberative processes)
in a multi-species environment. The fact that agents of one
kind perform better than agents of another kind if tested in-
dependently does not shed any light on their performance in
mixed groups.

The second requirement is equally important, because
classic genetic algorithms (GAs) assess the fitness of agents
based on a static, predetermined fitness function and can
hardly (if at all) do justice to the dynamics of the local inter-
actions of agents with their (changing) environments, which
in the end determines reproductive success (e.g., see Kauft-
man 1995). There are several problems with specifying fit-
ness explicitly besides evolutionary plausibility. For one, it
is not clear what architectural features to select for if the
task at hand is to evaluate the role and potential of affective
states in different agent architectures from an evolutionary
perspective. Furthermore, as agents and their architectures
change over time together with the environment, adaptive
fitness changes as well, which would have to be somehow
reflected in the fitness function (for a more detailed descrip-
tion of the differences between exogenous and endogenous
fitness and some reasons why endogenous fitness is to be
preferred in such a simulation setup, see Menczer and Belew
1996). In general, it seems that we should refrain from im-
posing any particular behavioral criteria on agents other than
their ability to procreate so as to not bias their evolutionary
trajectories.

This is not to say that GAs cannot be employed suc-
cessfully to evolve functioning agents with certain kinds of



affective states. In fact, our results below indicate that it
should be (relatively) easy to evolve agents with controllers
that implement certain primitive affective states with a clas-
sic GA, if they evolve even in competitive multi-agent envi-
ronments. What simply does not follow automatically from
classic GA experiments is that the same results could have
been obtained if fitness had been assessed implicitly by al-
lowing the agents to procreate in competition with other
species or subspecies (unless all the factors that could possi-
bly lead to and be responsible for the procreation of an agent
are part of the explicit fitness function).

Other desiderata include spatial continuity (to eliminate
any potential influence of grid structures), temporal sen-
sitivity (to be able to study temporal trade-offs of actions
and processing mechanisms), at least two resources that
agents need to obtain (to make the decision problem inter-
esting, e.g., Tyrrell 1993, or Spier and McFarland 1998),
and Lamarckian mutation mechanisms (to be able to con-
trol modifications and extensions of certain components of
an architecture).?

We have developed the SimWorld® model based on the
above requirements in order to be able to study the origins
and roles of affective states in agent societies with possibly
many different kinds of agents. In the following, we will
first describe the experimental setup, the agents and their
architectures used in the experiments, and then present the
main results.

The SimWorld Simulation Environment

SimWorld consists of an unlimited continuous surface pop-
ulated with various spatially extended objects such as var-
ious kinds of agents, static obstacles of varying size, and
food and water sources, which pop up within a particular
area (usually of about 700 by 700 units) and disappear after
a pre-determined period of time, if not consumed by agents
earlier. Agents are in constant need of food and water as
moving consumes energy and water proportional to their
speed—even if they do not move, they will still consume a
certain amount of both. When the energy/water level of an
agent drops below a certain threshold w, agents “die” and
are removed from the simulation. They also die and are re-
moved, if they run into other agents or obstacles.

All agents are equipped with exteroceptive ‘“‘sonar”,
“smell”, and “touch” sensors. Sonar is used to detect ob-
stacles and other agents, smell to detect food and water, and
touch to detect impending collisions with agents or obsta-
cles as well as consumable food and water sources. In ad-
dition, the touch sensor is connected to a global alarm sys-

*Note that this is for methodological reasons only. As long as
these mutation operations are feasible using Darwinian mutation,
we can justify performing operations directly on the architecture
instead of performing them on genetic representations. As an aside,
it is always possible to regard architectures as representations of
themselves, although it is doubtful that organisms would use such
an uncompressed code.

3The SimWorld environment builds on the SimAgent
toolkit developed by Aaron Sloman and colleagues at the
University of Birmingham, which 1is freely available at
http://www.cs.bham.ac.uk/research/simagent/.

tem, which triggers a reflex beyond the agent’s control to
move the agent away from other agents and obstacles. These
movements are somewhat erratic and will slightly reorient
the agent (thus helping it to get out of “local minima”). Fur-
thermore, agents have two proprioceptive sensors to mea-
sure their energy and water levels, respectively.

On the effector side, they have motors for locomotion
(forward and backward), motors for turning (left and right
in degrees) and a mechanism for consuming food and wa-
ter (which can only be active, when the agent is not mov-
ing). When agents come to a halt on top of a food or water
source, their ingestion mechanism suppresses the motors for
locomotion until the item is consumed, which will take a
time proportional to the amount of energy/water stored in
the food/water source depending the maximum amount of
food/water an agent can take in at any given time.

After a certain age o (measured in terms of simulation
cycles), agents reach maturity and can procreate asexually.
Since the energy for creating offspring is subtracted from
the parent, agents will have a variable number of offspring
depending on their current energy level (from O to 4), which
pop up in the vicinity of the agent one at a time. Since a
mutation mechanism modifies with a certain probability w
some of the agent’s architectural parameters (e.g., such as
connection weights in a neural network), some offspring will
start out with the modified parameters instead of being exact
copies of the parent. Note that both parameters, « and w,
can be used to specify, whether the simulation is used as an
exogenous or as an endogenous fitness model.

Agents, Architectures and Behaviors

While different agents may have different (implicit) short-
term goals at any given time (e.g., getting around obstacles,
consuming food, reaching a water source faster than an-
other agent, or having offspring), common to all of them are
two (implicit) long-term goals: (1) survival (to get enough
food/water and avoid running into obstacles or other agents),
and (2) procreation (to live long enough to have offspring).
In the following experiments, we study different kinds
of related agents, which all possess the same architectural
components (but not all the same links among them). All
agents process sensory information and produce behavioral
responses using a schema-based approach (Arkin 1989). Let
Ent = { fum, } be an index set of the four types of ob-
jects food, water, obstacle, and agent—all subscript variables
will range over this set unless stated otherwise. For each
object type in Ent, a force vector F; is computed, which is
the sum, scaled by 1/|v|?, of all vectors v from the agent
to the objects of type ¢ within the respective sensory range,
where ‘|v| is the length of vector v. These four perceptual
schemas are then mapped into motor space by the transfor-
mation function T'(2) = g¢-Ff+guw - Fuw+9o-Fo+ga-Fy for
1 € Ent, where each g; is the respective gain value. These
gain values are provided by the output layer of a three-layer
interactive activation and competition (IAC) neural network
with four input units ¢7, four hidden units hid, and four out-
put units out (Rumelhart and McClelland, 1986) via indi-
vidual scaling functions f;(z) = z - ¢; + b; (where b; is




the base gain value and c; the scaling factor for the activa-
tion of out;). The input layer is connected (again via simi-
lar scaling functions) to the internal water (in,,) and energy
level sensors (iny) as well as the global alarm mechanism
(which sends an impulse to in, or ¢n, units depending on
whether the alarm was triggered by an impending collision
with an agent or an obstacle). Note that neural networks em-
ployed in other simulations to control the behavior of agents
(Menczer and Belew 1996, Seth 2000, et al.) usually com-
pute the mapping from sensors to effectors, while the neural
network here is intended to implement the affective system,
thus adding another layer on top of the input-output map-
ping (which is accomplished in a schema-based manner; of
course, this mapping, in turn, could have been implemented
as neural network as well).

The choice of TAC units over standard perceptrons is
based on their update rule, which is particularly suited to
implement important temporal features of affective states in
that it (1) takes into account the previous activation (hence,
can be used to implement “inner states”), and (2) incorpo-
rates a decay term to raise or lower the activation to a pre-
determined base level (both features that seem to be typi-
cal of the temporal development of certain affective states,
e.g., basic emotional states). Very similar update rules (with
only minor differences to IAC units) are also used in other
implementations of systems with affective states, although
they usually go by a different name (e.g., in the Cathexis or
Kismet models).

Although fully connected IAC networks are possible, we
will focus on a subset of networks at this point to avoid com-
plexity, where weights between in ; and hid; are always non-
zero and weights between hid; and out;, call them ow;, may
be non-zero, all other weights being zero. In basic agents,
then, each ow; is zero and as a result the corresponding gain
value g; = b;, i.e., constant. Consequently, the behavior of
such agents is completely determined by their inputs: inner
states, as possibly implemented by the hidden units, do not
contribute to their behavior, which is entirely reactive. Ba-
sic agents are contrasted with extended agents, where some
ow; are non-zero and gain values in 7' can consequently vary
depending on the state of the neural network.

As one might expect, the differences in behavior between
the various kinds of agents can be very subtle as the influ-
ence of the hidden units on the gain values can be very grad-
ual, and hence very difficult to detect. It is therefore crucial
to look at a time-frame larger than the life-time of a single
agent to be able to evaluate the advantages and disadvan-
tages of different weight values, in particular, in competi-
tive multi-agent environments. In fact, most tradeoffs are
only visible in simulations of many generations of agents in
different combinations under different environmental condi-
tions. Nevertheless, it is possible to sketch a few general
behavior tendencies. The basic agents, for example, always
behave in the same way given that their gain values are con-
stant: with positive gy = g,, they behave like the “consume
nearest” strategy in environments without obstacles (Spier
and McFarland 1998). Negative g, = ¢, values will make
them avoid obstacles and other agents. In extended agents
(with the same gain values) the degree to which they engage

in the respective behaviors will in addition to the sign and
strength of the weights depend on the activation of the re-
spective hidden units and hence vary from time to time (e.g.,
they tend to avoid food, if they are not “hungry”).

The Evolution of Simple Emotional States

We have shown elsewhere (although in a slightly different
setup, see Scheutz and Sloman 2001) that agents with pos-
itive owy and ow,, weights, call them motivational agents,
are likely to evolve from basic agents independent of many
environmental conditions such as the frequency of appear-
ance of new food and water sources, or the numbers and
initial distributions of food and water sources, obstacles and
agents. We argued that these agents implement two prim-
itive motivational states, i.e., “hunger” and “thirst” drives.
Here we extend these results to agents with additional affec-
tive states, the primitive emotional “fear” or “anger” state
(we first present the results and then justify the labels in the
next section).

We start with environments populated only by motiva-
tional agents and allow for mutation of w, and w, by the
fixed mutation factor 7 = 0.05. Whenever an agent has off-
spring, the probability © for modification of any of the two
weights is 1/3 (i.e., 1/6 for increase or decrease by 7, respec-
tively). The results are shown in Table 1: in 8 out of 20 runs
of the simulation, where 20 agents were randomly placed
in an environment with 30 obstacles, some (mutated) agents
survived after the maximum number of 100000 update cy-
cles (which is the equivalent of 400 to 500 generations given
that the average life-time of agents is around 220 cycles in
those simulations). Table 2 shows average and standard dis-
tribution of the various weight values that were evolved by
each surviving group. Note that surviving groups are ex-
tremely uniform, i.e., agents within such groups all have
very similar weights. If we correlate the number of surviv-
ing agents (abbreviated by ‘s’) with the magnitudes of their
respective weights, then we find a strong anti-correlation of
-0.97 between s and positive w, (indicating that being at-
tracted by obstacles is not conducive to survival), little cor-
relation between s and positive w, (indicating that being at-
tracted by other agents may only do very little for survival),
but quite strong correlations of 0.66 between s and nega-
tive w,, and 0.79 between s and w, (indicating that being
repelled by obstacles and especially other agents will facili-
tate survival). We also computed various other correlations
between the two weights and groups of agents (e.g., taken
over the whole course of evolution or over a restricted pe-
riod) and have found a similar picture with respect to the
ordering of the correlations (although with different values).

Analysis

Given the above results, how can we say that agents do or
do not implement certain affective states? First, it is cru-
cial to distinguish between (at least) two classes of affective
states that are supported by the architecture and grounded in
a difference between the inputs to the neural net and their
connection to entities in the world: inputs coming from the
energy and water level sensors can be regarded as indicat-



Table 1: The result of placing 20 motivational agents with
wy, = 0.7 and w; = 0.5 in an environment with 30 obstacle
using a plant rate of 0.25 and water rate of 0.25 averaged
over 20 runs of 100000 simulation cycles each.
| [ & [ o [ Con]

Alive 485 737 2.85
Thirst 15725 | 103.87 | 40.16
Hunger 1011.25 631.39 | 244.11
Crashed || 2064.85 | 1299.83 | 502.54

Table 2: The number of surviving agents and the average
values of their evolved w, and w, weights for the 8 simula-
tions with any surviving agent.

Num. Wo We Kinds
p | o p | o Obsts | Agents
4 0.0 0.07 || -0.41 | 0.03 - f
4 0.48 | 0.05 0.31 | 0.06 a -
7 0.0 0.04 || -0.01 | 0.13 - -
12 -0.43 | 0.08 0.68 | 0.08 f a
13 -0.09 | 0.05 0.16 | 0.03 - -
16 0.24 | 0.12 0.51 | 0.10 - a
18 0.11 | 0.11 || -0.61 | 0.09 - f
23 -0.56 | 0.07 || -0.79 | 0.08 f f

ing discrepancy values between the actual level and the nor-
mal/optimal level of a controlled “physiological” variable.
Hence, the links from proprioceptive sensors to input units,
to hidden units, to output units, and finally to gain values
can be seen to implement the processing of an error signal,
which indicates that a homeostatic value is outside of its nor-
mal range, to adjust behavior. Such processes are typically
identified with drives (e.g., see the various references to Mc-
Farland’s earlier works in Spier 1998). In the above case, by
virtue of the connections to the (simulated) energy and wa-
ter level sensors, these correspond to “hunger” and “thirst”
drives.

The other two links, based on inputs coming from the
global alarm, however, do not seem to implement drives. For
one, they are not connected to a proprioceptive sensor that
measures the state of an internal variable. Rather, they are
connected to a mechanisms that can be used to measure the
frequency of encounters with certain kinds of objects over a
particular period of time. While one alarm triggering might
not have much effect at all, high frequencies of alarm trig-
gering will lead to high activations of the corresponding hid-
den unit, which in turn exert influence on the associated gain
value in 7. This influence can be seen as an amplifying or di-
minishing modification of the behavior as determined by the
drives, which is typical of (some construals of) emotional
states (e.g., see Cafiamero 1997 for a similar view). More
specifically, the implemented states seem to correspond to
so-called “primary emotions” (e.g., Sloman 2000a) in that
they (1) play a regulatory role, (2) are engaged automatically
(by virtue of the global alarm system), and (3) alter the in-
ternal state of the agent and consequently its behavior. Note
that the relation between sensor activation and hidden unit
activation is not as direct as in the case of drives, but rather

indirect involving integration over time. Furthermore, the
intensity level of these emotional states will return to nor-
mal by itself by virtue of the decay rate of the hidden units
unless new interfering alarm triggerings keep it up, in con-
trast to the activations of the drive states, which are tightly
coupled to the activations of the proprioceptive sensors.

The process of building up activation over time, which is
not directly related to the activation level of some internal
sensor, but to the frequency of external simulation, seems
to be typical of emotional states like “fear” and “anger”.
We suggest that depending on the signs and strengths of
their w, and w, weights, agents will implement one of the
two states: with a sufficiently strong negative weight, which
creates a repulsive force causing the agent to avoid either
other agents or obstacles, a “fear-like” state will be imple-
mented, whereas with a sufficiently strong positive weight,
which creates an attractive force leading to increasing insis-
tence on the agent’s part to continue its current movement—a
behavior that could be described as aggressive—an “anger-
like” state will be implemented. “Sufficiently strong” in this
context means “to be able to influence the behavior signif-
icantly”, which is usually the case for absolute weight val-
ues greater than about 0.5 (+/- 0.1), a level reached by half
of the weights in surviving agents (the results are summa-
rized in the rightmost column of Table 2, where ‘a’ stands
for “anger”, ‘f” for “fear”, and ‘-* for “no state”). How-
ever, a word of caution seems appropriate at this point as we
are aware that attributions of affective states to agents of the
above kind, which depend on whether a variable has value
greater than a given threshold, are highly problematic and
it may be better to speak of degrees of affective influence in
such circumstances (in particular, if we are looking at inter-
mediary stages of evolutionary trajectories).

Discussion and Future Work

The above experiments demonstrate the research strategy
suggested earlier, which we believe will help us understand
the role and origins of affective states as well as the po-
tential uses affective states can be put to in the control of
agents. Furthermore, the experiments confirm that if there
are architectural components that can implement them, af-
fective states like “hunger”, “thirst”, “fear”, and “anger” are
likely to evolve, even in very competitive multi-agent en-
vironments. The degree of competitiveness of these envi-
ronments is apparent from the fact that on average any ba-
sic agent is still alive after 100000 update cycles in only 1
out 20 runs of a simulation without mutation. This goes to
show that the evolved affective states are not only benefi-
cial to the individual agent, but also lead to behavior, which
benefits the whole species. More specifically, agents use an
improved version of the cue Xcite f strategy (e.g., Spier
and McFarland 1998) to forage for food and water, which
takes the “clumpiness” (Seth 2000), i.e., the degree to which
agents tend to stick together, into account.

We used a schema-based agent architecture (quite com-
mon in behavior-based robotics, but rather unusual for such
an evolutionary setting) to show how affective states can be
implemented in components linking proprioceptive sensory
inputs and internal global alarm mechanisms to components



implementing the gain values of motor schemas. The causal
linkages effected by this architecture, which enable affec-
tive states to exert influence on the agent’s behavior at any
given time, is what makes them affective states in the first
place. Furthermore, the architecture obviates the need for
explicit action-selection mechanisms and explicit represen-
tations of behaviors at the architecture level, which we be-
lieve to rest on a conflation of a behavioral and a mech-
anistic level of description and explanation (see also Seth
2000). In other words, our agents can still can be engaged
in a “go-towards-food” behavior, then get interrupted by a
“veer-around-obstacle” behavior, become attracted to wa-
ter and engage in a “deviate-from-original-course-to-drink-
water” behavior, and so on without the need for similarly
labeled, functional components in the agent architecture (as
seems to be very common, e.g., Maes 1991, Veldsquez 1997,
Breazeal 1998, et al.). A unwanted consequence of such ex-
plicit representations of behavior is that affective states (e.g.,
“hunger”) are often, in our view unnecessarily, associated
with a particular behavior (e.g., “seeking-food”) at the ar-
chitecture level. Such design decisions, however, need to
be justified and a case needs to be made that these states
are indeed “affective states” and not merely local parame-
ters that exert influence on the behavior “only” when the
behavior is “active” or when the behavior is selected (e.g.,
by an implicit action-selection mechanism using a “winner-
takes-it-all” comparison of “activation levels of behaviors”,
e.g., Velasquez 1997). Such implementations miss the point
of affective states as properties of the whole system that in-
fluence the behavior of the whole system at any given time.
Not surprisingly, the attribution of “affect” to such systems
is usually stipulated, not argued for.

The investigations proposed in this paper are a start. Many
more experiments using different kinds of affective states
are needed to explore the space of possible uses of affective
states and the state of possible affective states itself. Adding
recurrent weights in the hidden layer, for example, would
allow emotional states to influence motivational states (and
vice versa) in a more direct way (e.g., the hunger drive could
be suppressed by strong fear, or increasing hunger could
keep the anger level up). Another direction would be to em-
ploy a more sophisticated body model (e.g., with an artifi-
cial hormone system similar to Cafiamero 1997) to increase
the number of controllable parameters and hence open up
room for other affective states to evolve. Finally, switch-
ing to sexual procreation would facilitate more interaction
among agents (e.g., competing for mates), providing yet an-
other dimension for affective states to take control.
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