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Abstract

Conflict resolutionisacritical problemin distributed and col-
laborative multi-agent systems. Negotiation via argumenta-
tion (NVA), where agents provide explicit arguments (jus-
tifications) for their proposals to resolve conflicts, is an ef-
fective approach to resolve conflicts. Indeed, we are apply-
ing argumentation in some real-world multi-agent applica-
tions. However, a key problem in such applications is that
awell-understood computational model of argumentation is
currently missing, making it difficult to investigate conver-
genceand scal ahility of argumentation techniques, and to un-
derstand and characterize different collaborative NVA strate-
gies in a principled manner. To alleviate these difficulties,
we present di stributed constraint satisfaction problem (DCSP)
asa computational model for NVA. We model argumentation
as constraint propagation in DCSP. This model enables usto
study convergence properties of argumentation, and formu-
late and experimentally comparetwo setsof 16 different NVA
strategies (over 30 strategies in all) with different levels of
agent cooperativenesstowards others. One surprising result
from our experiments is that maximizing cooperativenessis
not necessarily the best strategy even in a completely coop-
erative environment. In addition to their usefulnessin under-
standing computational properties of argumentation, thesere-
sults fould also provide new heuristics for speeding up DC-
SPs.
I ntroduction
Distributed, collaborative agents are promising to play an
important role in large-scale multi-agent applications in-
cluding virtual environments for training, distributed disas-
ter rescue applications, agent assisted human organizations,
and distributed spacecrafts (Barrett 1999; Rickel & Johnson
1997; Scerri, Pynadath, & Tambe 2001; Tambe 1997). While
such applicationsrequire agentsto be collaborative, conflicts
among these agents are inevitable, often due to their limited
(shared) resources(Tessier, Chaudron, & Muller 2000). Fur-
thermore, giventhat in distributed, dynamic and complex en-
vironments, no single agent can have a complete and accu-
rate picture of the entire domain, itisoftenimpractical, if not
impossible, to avoid such conflicts via centralized planning.
Negotiation via argumentation (NVA) offers a promising
approach to collaborative conflict resolution(Kraus, Sycara,
& Evenchik 1998; Parsons & Jennings 1996). In this ap-
proach, whileagents negotiateas usual by sending each other

'This paper significantly extends our earlier conference pa-
per(Jung, Tambe, & Kulkarni 2001).

proposals and counter-proposal s, these proposal s are accom-
panied by supporting arguments (explicit justifications). We
have successfully applied NVA to conflict resolution among
agentsin real world applications. While these implemented
argumentation systems have performed well in small-size
applications, no systematic investigation on large-scale ar-
gumentation systems has been done. Thus, in scaling up
the systems, several major questions regarding the compu-
tational performance of argumentation remain open. One
key open questionisunderstanding if (and when) argumenta-
tion actually speeds up conflict resolution convergence. The
presence of explicit justificationsin argumentation could fail
to improve convergence and may degrade performance due
to processing overheads. Another key open questioniis for-
mulating different collaborative NVA strategies and under-
standing their impact on convergence.

Answering the above questions requires that we define
an abstract, well-understood computational model of argu-
mentation, suitable for large-scale experimental investiga-
tions. Certainly, answering such questions by building ad-
hoc, complex agent argumentation systems is costly, labor
intensive, and problematic in identifying critical factors of
their success or failure. Another aternative is to exploit
existing formalizations of argumentation in logic, such as
modal logic(Kraus, Sycara, & Evenchik 1998) and dialec-
tical logic(Sawamura, Umeda, & Meyer 2000). However,
these formalizations focus on modeling agents' complex
mental states, and are sometimes suggested as toolsfor de-
sign specification, making them unsuitable as efficient com-
putational modelsfor large-scal e experimental investigation.

To dleviate the above difficulties, this paper proposesdis-
tributed constraint satisfaction problem (DCSP)(Armstrong
& Durfee1997; Yokoo & Hirayama 1998) asanovel compu-
tational model of NVA. Argumentation is modeled in DCSP
as communications of agents local constraints and their
propagation by other agents. We focus specifically on one of
the best published DCSP algorithms, that of Yokoo (Yokoo
& Hirayama 1998), and model argumentation as an exten-
sion to this algorithm by communicating local constraints.
Argumentation essentially enables this DCSP algorithm to
interleave constraint propagation in its normal execution.
Next, using thisextended DCSP as our computational model,
we formulate different NVA strategies, varying the level of
cooperativeness towards others. While cooperativeness to-



wards otherswould appear to be fundamentally importantin
a cooperative environment, the DCSP model enables a for-
malization of thisnotion. We specifically formulate different
NVA strategiesas varying the val ue ordering heuri stics(Frost
& Dechter 1995). The basic idea is to make some variable
values more or less preferable than the others, so asto model
the varying of cooperativeness towards others.

Existing DCSP algorithms and incorporation of argumen-
tation into DCSP enables us to investigate the impact of ar-
gumentation and different NVA strategiesin thelarge-scale,
which provides the following results. First, argumentation
can significantly improve agents' conflict resolution conver-
gence, and the overhead of argumentation isin general out-
weighed by its benefits. Here, the benefits of argumentation
vary non-monotonically with the proportion of agents that
offer tightly constraining argumentsfor their proposals. Sec-
ond, with respect to NVA strategies, given a highly collab-
orative environment, the expectation was that more cooper-
ativeness will lead to improved performance. However, a
surprising result we obtain is that a maximally cooperative
strategy is not the most dominant strategy. While some im-
provements in cooperativeness significantly improve perfor-
mance, further improvementsdo not help and may end up de-
grading performance. These results are measured in negoti-
ation cycles required to converge to a solution and thusthese
are not just artifacts of constraint processing overheads.

NVA and its Application Domains
This section introduces key concepts of NVA and two appli-
cation domains which require a significant scale-up in NVA,
thus concretely motivating the need for computational mod-
els of argumentation, such as the one we introduce later.

Negotiation is a process by which a group of agents
come to a mutually acceptable agreement on some is-
sue by communicating their proposals for the issue(Jen-
nings et al. 2001). In argumentation, agents send their
proposal s/counter-proposal s with explicit justifications (ar-
guments). Following (Jennings et al. 2001), negotiation ob-
jects refer to issues over which negotiation takes place. For
a negotiation object, an agent selects values based on its pri-
vate information and preferences that may not be known to
other agents. For instance, in a distributed spacecraft do-
main(Barrett 1999), a negotiation object may refer to the
direction to point a telescope. Agents can then send pro-
posals for particular values of negotiation objects to others
(e.g., a specific 3D orientation for the telescope), by com-
municating the local information as arguments for their pro-
posal. NVA is an iterative process in which (i) agents gen-
erate proposals for their negotiation objects and supporting
arguments; (ii) agents proposals and arguments are evalu-
ated by the other agents; and (iii) after evaluating received
proposal s/arguments, agents may accept/reject it and, in the
case of rejection, send a counter-proposal.

Earlier we have developed a domain independent NVA
system, called CONSA (COllaborative Negotiation System
based on Argumentation)(Tambe & Jung 1999). CONSA
is illustrative of complex, practical systems developed for
NVA, that have been successfully applied in small-scale sit-
uations. In CONSA, agentsinvolved in a conflict start a ne-
gotiation process that consists of three stages: opening, ar-
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Figure 1: Helicopter combat simulation: an overhead plan-

view display from the ModSAF simulator, with contour lines
illustrating the terrain of the virtual environment.

gumentation, and termination. In the opening stage, agents
agree to jointly resolve the current conflict, establishing a
joint commitment for conflict resolution. In argumentation
stage, they repeat cycles of communicating proposalsand ar-
guments, terminating argumentation when the conflict isre-
solved or found unachievable to resolve. CONSA’s repre-
sentation of argumentsis based on Toulmin’sargumentation
pattern(Toulmin 1958). A proposal is supported by agents
beliefs (including private beliefs) and inference rules. Each
fact can be supported by others as well, which builds a tree
structure arguments. Upon receiving such a proposal, other
agents may accept or reject it; if they reject, then the argu-
mentation cycle continues. CONSA has been successfully
applied to one of our application domains described bel ow.

M otivating Examples

The first application domain that motivates this research is
the helicopter combat simulation domain(Tambe 1997). Dif-
ferent conflict situations arise in a team of simulated pilot
agents. One example, henceforth called the firing positions
case, involvesallocating firing positionsfor ateam of pilots.
Individua pilotsin a helicopter team attack the enemy from
firing positions. Each firing position must enable a pilot to
shoot at enemy vehicles while protecting the pilot from en-
emy fire. In addition, a pilot’'sfiring position is constrained
by the firing positions of the others: two firing positionsare
in conflict if they are within one kilometer of each other.
Therefore, each agent hasto negotiateitsposition with others
to avoid conflict and provide safety.

Figure 1 isasnapshot of the firing position conflict where
such negotiation is necessary. To attack nearby enemy
units(e.g., 100A12, 100A11, etc.), two pilot agents, chee-
tah424 and cheetah425, must occupy good firing positions.
Unfortunately, they are too close to each other (only 100 me-
ters) and need to negotiate to resolve their firing position con-
flict. Furthermore, while cheetah425isoriented in such adi-
rection so as to see the enemy units, cheetah424 isunable to
see them sinceit is covering a different portion of the battle-
field; in fact, cheetah424 sees different enemy units. Thus,
these agents must negotiate for appropriate firing positions.

CONSA has been successfully applied in the helicopter
combat simulation domain to address conflicts such as these
(and others). Agents using CONSA may negotiate as fol-
lows. First cheetah424 computes new values for the firing



positions of both agents. Often several such firing position
values are possible. Here, cheetah424 selects one value,
offering equi-distant movements; and then communicates
its proposal to cheetah425, suggesting {(cheetah424 move
450 m left, cheetah425 move 450 m right) }, where the ap-
pended justification includes {(enemy E1 position, current
separation 100 m,...)}. When cheetah425 receives and eval-
uates the proposal, it realizes that it cannot move 450 meters
right because of other enemy units E2. Instead, it counter-
proposes {(cheetah424 move 600 m left, cheetah425 move
300 mright) }, with the justification being that {(enemy E1
position, enemy E2 position,...)}. However, cheetah424’s
600 meter move to the left may cause a conflict with a third
agent cheetah426, requiring further negotiation.

The second domain motivating thisresearch isthat of dis-
tributed sensor networks. This domain consists of multiple
stationary sensors, each controlled by an independent agent,
and targets moving through their sensing range. Each sensor
isequipped withaDoppler radar withthree sectors. Anagent
may activate at most one sector of a sensor at agiventimeor
switch the sensor off. Whileall of the sensor agents must act
as a team to cooperatively track the targets, there are some
key difficultiesin such tracking. First, in order for atarget to
be tracked accurately, at |east three agents must concurrently
turn on overlapping sectors to triangulate the target’s posi-
tion. Second, to minimize power consumption, sensors need
to be periodically turned off. Third, sensor readings may be
noisy and false detections may occur. Finaly, the situation
is dynamic as targets move through the sensing range.

To address this problem, agents may negotiate via argu-
mentation to enable them to coordinate their individual sec-
tor choice. For example, if an agent A detectsan objectinits
sector 1, it may negotiate via argumentation with neighbor-
ing agents, B and C say, so that they activate their respective
sectors that overlap with A's sector 1. In particular, it may
be the case that B islow in power or C is busy with another
target. Thus, if agent A is able to provide an argument (“tar-
get detected in sector 1”) to B and C, it may induce them to
switch sectors. Alternatively, B may counter-propose that it
cannot turn on its sector, with an argument “low in power”.

Argumentation open questions _ ,
The above applications illustrate the importance of investi-

gating the scale up properties of argumentation. For both do-
mains, argumentation appears useful for a small number of
agents. However, in cases involving hundreds of distributed
sensors in a grid or hundreds of pilot agents in formation,
argumentation may not provide significant enough benefits
to outweigh its overheads (of processing arguments). Thus,
to justify the use of argumentation, we need to investigate if
(and when) argumentation will truly speed up conflict reso-
[ution convergence with scale up.

A second very important open question is to investigate
different collaborative NVA strategies and their impact on
convergence. Being cooperativeis clearly important in both
domains, e.g., if pilot agents refuse to move, the problem
may in some cases be unsolvable. In some other cases, the
pilot agents' maximal cooperativenesstowardsothers, by of-
fering to move themaximal distance they are allowed, would
appear to be very helpful. However, as we scale up the num-

ber of agents, it isunclear if cooperativeness in general, or
maximal cooperativeness in particular, will necessarily lead
to improved performance. Unfortunately, answering these
questions by building ad-hoc implementationsis difficult —
the process would beimpractical and [abor intensive, and the
factorsthat led to success or failure of argumentation may re-
main unclear. For instance, applying CONSA to actual com-
bat simulationsinvolving 100s of pilot agents would appear
extremely difficult. Therefore, to address the above ques-
tions, we need a computational model of argumentation that
issuitable for large-scale experimental investigations.

NVA asDCSP

To provide an abstract and well-understood compu-
tationa model for NVA, we propose a novel compu-
tationa model, that of Distributed Constraint Satis-
faction Problem (DCSP)(Armstrong & Durfee 1997,
Yokoo & Hirayama 1998). DCSP allows us to easily model
conflicts via constraints. As a well-investigated problem,
it provides efficient algorithms to build on. Most impor-
tantly, it also allows us to very efficiently model the use of
argumentation in negotiation.

A Constraint Satisfaction Problem (CSP) iscommonly de-
fined by a set of n variables, X = {1, ..., 2, }, each ele-
ment associated withvaluedomains Dy, ..., D,, respectively,
and a set of & constraints, ' = {C1, ..., Cx}. A solutionin
CSP is the value assignment for the variables which satis-
fies al the constraintsin I'. A distributed CSPisa CSP in
which variables and constraints are distributed among mul-
tiple agents(Yokoo & Hirayama 1998). We consider DCSPs
with multiplevariables per agent(Yokoo & Hirayama 1998).
Formally, thereisaset of magents, Ag = { A4, ..., A, }. Each
variable (z;) belongsto an agent A;. There are two types of
constraints based on whether variables in the constraint be-
long to a single agent or not:

e Foracongtraint C, € T, if al thevariablesin €, belong
toasingleagent A; € Ag, itiscaled alocal constraint.

e Foracongtraint €, € T, if variablesin C'. belong to dif-
ferent agentsin Ag, itiscalled an external constraint.

Solving a DCSP requires that agents not only satisfy their
local constraints, but also communicate with other agents
to satisfy external constraints. Note that DCSP is not con-
cerned with speeding up a centralized CSP via paraleliza-
tion(Yokoo & Hirayama 1998); rather, it assumes that the
problem is originally distributed among the agents. This as-
sumption suits us well, since our negotiation problemisin-
deed a distributed one.

Given this DCSPframework, we map argumentation onto
DCSP asfollows. First, we divide an agent’s set of variables
into two subsets. In particular, an agent’s negotiation ob-
jects are modeled as externally constrained variables, hence-
forth referred to as negotiation variables. There are external
constraints among negotiation variables of different agents,
modeling the existing conflict. Local information (that is, at
least initially, only knownlocally by an agent) ismappedinto
locally constrained variables, and referred to as local vari-
ables. An agent’slocal variables locally constrain its nego-
tiation variables: there exist local constraints between them.



Negotiation via Argumentation | DCSP

| E.g., Firing position case

Negotiation objects Negotiation variables

Pilot agents’ positions

Local information Loca variables

Enemy positions, etc.

Conflicts among agents External constraints

Safe distance condition

Argument/justification Internal constraints

Restriction on pilot agent’s position from enemies

Argumentation

Communicating constraints
and Constraint propagation

Communicate justification as restriction on own firing
position; and its causing restriction on other pilots

Negotiation strategy Value ordering heuristic

Which proposal to send first

Table 1: Mapping NVA onto DCSP.

Agent A3 Agent A4

@ (b)
Figure 2: Model of agentsin argumentation.

Table 1 provides the complete mapping. Column 1 lists
a concept from Negotiation via Argumentation. Column 2
shows its mapping terms of DCSP. We have outlined the
mapping for the first four rows above. The mappings of ar-
gumentation and negotiation strategiesin the lower two rows
will be explained later. Column 3 in Table 1 presents exam-
ples corresponding to the mapped concept from thefiring po-
sition case. We will now discuss this case in more detail:

e Example: Each helicopter pilot’sfiring positionisitssin-
gle negotiation variable known to other agents. External
constraintsexist among the negotiationvariables of neigh-
boring agents: the firing positions must be at least 1000
metersapart. Enemy positionsthat arelocally observed by
individual agents form local variables. Since enemy posi-
tions (local variables) constrain firing positions (negotia-
tion variables), thereexist local constraints between them.

In our initial experimental investigations for DCSP, we
found it sufficient to model each agent as having only one
negotiation variable. However, there is no limitation on the
number of external constraints on this negotiation variable.
Thus, asillustrated in Figure 2.a, each agent (denoted by a
bigcircle) hasonly onenegotiationvariable X ;, but therecan
be any number of external constraints C;;, C., etc between
negotiation variables X; and X;, X; and X, etc. Here,
for expository purpose, all the local variables and local con-
straintsthat constrain the single negotiation variable are rep-
resented as a single node constraint (LC;) on the negotia-
tionvariable. Notethat we can easily extend thismappingto
problems involving multiple negotiation and local variables
per agent, as shown in Figure 2.b; in particular, DCSP algo-
rithms such as Asynchronous Weak Commitment search or
AWC(Yokoo & Hirayama 1998) can already deal withmulti-
ple variables per agent. Here, the squares labeled v1, v2, v3,
and v4 are negotiation variables, and the small circlesand the
links between them are local variables and constraints. This
extension will be considered in our future work.

Now, amajor aspect of our mapping isto formalize argu-
mentation in the context of DCSP. The key here isthat argu-
mentation can be mapped on as communicating constraints
followed by constraint propagation, which is a process of
reducing domains by filtering the values that cannot partici-
pateinasolution. Thatis, in DCSP algorithmssuch as AWC
(Yokoo & Hirayama 1998), agents communicates the val-
ues assigned to their externally constrained negotiation vari-
ables. However, with argumentation, agents also communi-
cate their argumentsin the form of local constraints(e.g., the
LC; in Figure 2.a) under which they made the selections of
valuesfor their negotiationvariables. Theselocal constraints
are propagated by the agents receiving the argument.

Concretely, argumentation in DCSP works as follows.
Here we assume agents 4; and A; are connected by the ex-
ternal constraint C’;; where X; has domain D; and X; has
domain D;. Supposean agent A; selectsavaluew; foritsne-
gotiationvariable X ;. Itwill then senditsselectionv; and its
local constraint LC'; to its neighboring agent A; whose ne-
gotiation variableis X;. After receiving thelocal constraint
LC; from A;, A; will propagate thereceived constraint LC;,
reducing thedomain D; of itsnegotiationvariable X ;. Here,
this constraint propagation can be considered as addition of
anew local constraint to agent A; by which A;’sincompat-
ible values with A; are eliminated. To elaborate on this, we
define function ® and ¥ of A; asfollows.

¢ Definition 1: For anagent A; and itsneighboring agent A ;
who share an external constraint C;;, assume A; receives
Aj;’slocal information (LC; and Dj).

— Domain inference function ®(D;, LCj) returns a re-
stricted domain of D;, D, inferred by applying LC';
to D;. (D} doesnot contain any valuewhich violates LC';.)

— Constraint propagation function ¥(C';;, D;, LC;) re-
turns a new local constraint Z.C” for X; such that LC”
eliminates any value v from D; if, given the external
constraint C';;, v for X; has no compatiblevaluefor X;
in <I>(Dj, LC])

Thus, with constraint propagation, agent A;’scurrentlocal
constraint L.C; is changed to LC; A W(Cyj, Dy, LCy): A;
eliminates its own values that are not compatible with L.C;
as well as those not compatible with the valuesin A;'s cur-
rently restricted domain. (Thismodifiedlocal constraint L.C';
is communicated to A;’s neighbors later.) While this con-
straint propagation amounts only to arc consistency (Kumar
1992), itisnot run by itself to solvethe DCSP, rather itisin-
terleaved with value selection. For instance, during each cy-
cle of message communication in AWC algorithm, we first



propagate communicated constraints and then select values
for variables. Thus, we do not increase the number of com-
munications, an important issue for DCSP.

NVA Strategies

A major benefit of the mapping NVA to DCSPisthat differ-

ent NVA strategies can now beformalized using DCSP. A ne-
gotiation strategy refers to the decision function used by an

agent to make aproposal or counter-proposal. A good nego-
tiation strategy attempts to select proposals that will speed

up conflict-resolution. In the mapping to DCSP, a negotia-

tion strategy in NVA ismodeled as a value ordering heuris-

tic used to choose a value of an assignment for a negotiation
variable. A value ordering heuristic ranks the value of vari-
ables(Frost & Dechter 1995). To speed up conflict resolu-
tion, valueswhich are morelikely tolead to asol utionshould
be tried first. Even a dight difference of the order in which
valuesare considered can have significant impact on thetime
until asolutionisfound. Inthe DCSP mapping of argumen-

tation, different value ordering heuristics can be considered,

each leading to different negotiation strategies.

Formalization of Cooperative NVA Strategy

In AWC(Yokoo & Hirayama 1998), the min-conflict heuris-

ticisused for value ordering: givenavariablethat isin con-

flict, min-conflict heuristic assigns it a value that minimizes
the number of conflicts with the values of the other vari-

ables(Mintonetal. 1990). Thismin-conflict heuristicisused

as a baseline negotiation strategy and we refer it as Syq 5.

Here, S.5:c Strategy selects values only based on the values
of the other agents' negotiation variables (without expl oiting

argumentation in generating a more cooperative response to
others). Argumentation enables agents to consider the con-

straints that the neighboring agents have on their domains,

which are communicated as arguments. Considering neigh-
boring agents’ local constraints enables an agent to generate
amore cooperative response, i.e., select avaue which gives
more choicesto neighbors, and thus, potentially lead to faster

negotiation convergence. To elaborate on thispoint, we first
define our notion of cooperativeness. For this definition, let

A; be an agent with a negotiation variable X;, domain D;,

and a set of neighboring agents ;.

o Definition 2: For avalue v € D; and a set of agents
Njub C Ny, flexibility functionis defined as ¥, (v, Nf4%)
= Y(c(v, A;)) where (i) A; € NfUb; (i) c(v, A;) isthe
number of valuesof .X; that are consistent withv; and (iii)
1, referred to as the flexibility base, can be sum, min,
max, product Ofr weighted sum;

As an example of the flexibility function f¥ (v, Nfu%),
suppose the flexibility base ¢ is chosen to be sum. Sup-
pose we are given two neighboring agents 4; and A,, where
a value v leaves 70 consistent values to A; and 40 to A,
whileanother value v’ leaves 50 consistent valuesfor 4; and
49 to A,. Now, assuming that values are ranked based on
flexibility, an agent which ranks values using the flexibility
base sum will prefer v too': f2¥™ (v, {41, A2}) = 110 and

co

sum(p! {Ay, Aa}) = 99. If ¢ is set to min however, an

co

agentwill rank v” higherthanv: 7" (v, {4, A»})=40and
min (U/, {Al,A2}) :49

co

We now provide two additional important definitions:

¢ Definition 3: For avalue v of X;, cooperativeness of v
is defined as f¥ (v, N;). That is, the cooperativeness of
v measures how much flexibility is given to all of A;’s
neighbors by wv.

o Definition 4: A maximally cooperative value of X; isde-
fined as v,,4, Such that, for any other value v,iper € D;,
fgj)(vmaxa NZ) Z fgjy(vothera Nz)

The concept of cooperativeness goes beyond merely sat-
isfying constraints of neighboring agents and enables even
faster convergence. That is, an agent 4; can provide a more
cooperative response to a neighbor agent A;, by selecting a
value for its negotiation variable that not only satisfies the
constraint with A4 ;, but maximizes flexibility (choice of val-
ues) for A;. If A; selects vy,q0, giving A; more choice, then
A; canmoreeasily select avaluethat satisfies A;’slocal con-
straints and other external constraints with its neighboring
agents such as Ag. Thisis partly the rationale for the pilots
in thefiring positions case (described in “Motivating Exam-
ples’ section) to offer the maximum flexibility to each other.
Having lower possibility of constraint violation, this cooper-
ative response can lead to faster convergence.

Syusie tries to minimize the number of constraint viola-
tions without taking neighboring agents' own restrictions
into account for value ordering. Anagent A;’sselected value
v With Sy iSthus not guaranteed to be maximally cooper-
aive, i.e.,, 12 (v, N;) < f¥ (vmae, Ni). Hence, Susic isnot
the most cooperative strategy to neighboring agents. Here,
other cooperative strategies can be introduced and formal-
ized in terms of value ordering, i.e., an agent A; can rank
each value (v) initsdomain D; based on the cooperativeness
f¥ (v, N;) of that value. Next, we define different coopera-
tive strategies which rely on the basic AWC framework.

Cooperative NVA strategiesin AWC framework
Since AWC, the state of the art DCSP algorithmis central to

the NVA strategies we discuss below, it isimportant to first
discuss AWC in some detail. In AWC, the S5 Strategy is
used in two cases described below. When an agent A; se-
lects a new value for its negotiation variable X;, the value
selection depends on whether A; can find a consistent value
v from the domain D; of X;. Here, v is said to be consis-
tent if v satisfies A;’s constraints with higher priority agents
2, If there exists a consistent value v in D;, we refer to it as
good case. In the good case, an agent applies S45:c mMini-
mizing constraint violations with lower priority agents. On
the contrary, if there is no such v, we refer to it as nogood
case. Inthenogood case, an agent 4; increasesitspriority as
maz + 1, where maz isthe highest priority of its neighbor-
ing agents and uSes Sy4sic t0 Minimize constraint violations
over all neighboring agents(Yokoo & Hirayama 1998).
Different negotiation strategies can be described in terms
of the good and nogood cases because different value or-
dering methods can be applied in these two cases. We will
now moreformally describe these negotiationstrategies. Let

2 A non-negative integer is assigned to each variable asa prior-
ity. Agent and variablein our description are used interchangeably
because each agent has only one variable in the current mapping.



N//9" (Nlow) be the subset of N; such that, for every A; €

NJ9" (Nkow), the priority of A;’s negotlatlon variable X is
h|gher (lower) than the pnonty of A,’snegotiation varlable
X;. Inthegood case, an agent A; computesaset (V;) of con-
sistent valuesfor X; fromitsdomain D;. For any flexibility
base ¢, in selecting a value from V;, four different negotia-
tion strategies can be considered in the good case as follows.

¢ Spign: Eachagent A; selectsavaluew from V; whichmax-
imizes £¥ (v, N/9") i.e., A; attempts to give maximum
flexibility towards its higher priority neighborswrt .

e S, Each agent A; selectsavalue v from V; which max-
imizes f¥ (v, N/°¥), i.e,, A; attempts to give maximum
flexibility towards its lower priority neighborswrt .

e S,;: Each agent A; selectsavaue v from V; which max-
imizes f¥ (v, N;), i.e. max flexibility to all neighbors.

* Sy.sic. Each agent A; selects a value from V; based on
min-conflict heuristic as described above.

We now define cooperativeness relation among these
strategies based on the cooperativeness of valuesthey select.

o Definition 5: For two different strategies S, and Ss de-
fined on a flexibility base ¢/, S,, ismore cooperative than
Sg iff (i) for al A;, X;, and v, vg € D; such that v,
andvs areselected by S,, and S respectively, f¥ (vq, N;)
> ¥ (vg, N;) and (i) for some A;, when f¥ (v, N;) #
FE (s, Ni), & (e, Ni) > fi(vs, Ni).

e Theorem 1: For any given flexibility base «, the strategy
Squ is maximally cooperative strategy in the good case,
i.e., for any other strategy S,:n.» ON the same flexibility
base 1, Sy is more cooperative than Sy e
Proof: By contradiction. Assume that S,ipe- IS more
cooperative given the flexibility base «. For A;, vy
is selected by S, and vetper DY Sotner such that if
fgj)(vallaNi) 7& fgj)(votheraNi)r then fo(vallaN) <
I¥ (votner, Ni). However, by thedefinitionof .Su;, vorper
would be selected by S,;; instead of v,;;. A contradiction.

By theorem 1, S,; is more cooperative than the other
strategies Syign, Sow, Svasic fOr the good case. Both Sy, 4,
and S, havetrade-offs. For instance, S;;,, may leave very
little or no choice to an agent’s neighborsin N making it
impossiblefor them to select any value for their negotiation
variables. S, has aconverse effect. S,,5;. aso has trade-
offs because it does not consider neighbors’ flexibility.

The abovefour different strategies can be also considered
in the nogood case. The computation in the nogood case is
identical to the good case except that the V; isthe set of all
valuesin D;, sincethereare no consistent values. S,;; isalso
the most cooperative strategy in the nogood case. Note that,
in thisnogood case, X;'spriority isincreased as usual as de-
scribed above, and N;""¢" and N/ are based on the vari-
able’s priority prior to thisincrease.

Based on theideas introduced above, we can combine dif-
ferent negotiation strategy combinations for the good and
nogood cases. Thus, for each flexibility base «, there are
16 possible strategy combinations from the four negotiation
strategies(Suigh, Sow, Sau, @Nd Spasi described above) for

Procedure check .agent view  // for astrategy S.-Ss

1. Propagate constraints from neighbor agents (LC; may be
changed by constraint propagation);
2. Check constraintsviolation for local constraint (L.C;) and exter-
nal constraints (C;;) with higher priority neighbors;
o |f there existsany violation,
(8 Findavaueset D, C D; whosevalues are consistent;
(b) If Do £0 1/ good case
— new_cooperativevalue(a, D..);
(c) Else /I nogood case(no consistent valuein D)
— Record and communicate nogood;
— X;'spriority = max of neighbors' priorities + 1;
— new_cooperativevalue(s, D)
(d) If there existsa changefor X;, communicateit to neighbor
agents;
Procedurenew _cooper ative value(Input: strategy o, domain A C
D;; Output: X;'snew value vyew)

o If o = basic,

1. select vnew € A Where vy, minimizes the number of con-
straint violation with lower priority agents,

e Else(s € {high, low, al})
1. Q= N7 (Here, N#" = Ny);
2. For eachvaluev € A, v'sflexibility = 2, (v, Q);
3. Find v € A which hasmax flexibility;
— Apply min-conflict heuristic to break ties;
4. Setthe selected v t0 vy ew;

Figure 3: Cooperative NVA strategy in AWC framework

the good case and nogood cases. Since, henceforth, we will
only consider strategy combinations, wewill refer tothem as
strategies for short. Note that all the strategies are enhanced
with argumentation (constraint propagation): indeed, except
for Spasic, these strategies cannot be applied without argu-
mentation. Here, two exemplar strategies are listed:

® Spusic-Spasic: This is the origind AWC. Min-conflict
heuristic is used for the good and nogood case.

® Sw-Shign: For the good case, an agent is maximally co-
operativetowardsitslower priority neighbor agents by us-
ing S;, (theselected value doesn’t violate the constraints
with higher neighbors). On the contrary, for the nogood
situations, an agent attemptsto be maximally cooperative
towards its higher priority neighborsby using Sy n .

In the next section, we systematically experiment with all
the 16 strategies for two flexibility bases (¢ = sum or min).
Sum was selected since defining S,y (Or Spign OF Siow) ON
this flexibility base implies selecting a value v that maxi-
mizes the sum of number of consistent values for neighbors
N; (or N or N}°v). However, in some circumstances,
the distribution of the numbers of consistent values over N,
may be highly non-uniform. Thus, sum as the flexibility
base may offer high flexibility to some neighbors, but very
low flexibility to others. Selecting ¢ to be min is intended
to alleviate this potential problem. That is, S, (Or Spigs OF
S ) defined using min will choose a value that maximizes
the minimum number of consistent values over neighborsN;.

Figure 3 provides an algorithm for an agents using a co-
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Figure 4: Cooperativeness relationship

operative negotiation strategy for value selection. Whilethe
basic agorithmic framework is from AWC, we have made
three additionsbased on our NVA mapping: (i) incorporation
of NVA strategies S,, and Sg; (ii) constraint communication;
and (iii) constraint propagation. Check _agent_view is a pro-
cedure of AWC in which an agent checks the consistency of
its value assignment with other agents’ values (agent_view)
and, if inconsistent, selects a new value. Cooperative nego-
tiation strategies amount to value ordering heuristics in the
procedure. For Figure 3, let'sassume that A; selects aNVA
strategy S.-Sp such that o, 5 € {high, low, al, basic}.
Among the cooperative strategies described above, S -
S.u 1sthe most cooperative strategy because it is maximally
cooperative to neighboring agents in both good and nogood
cases. Figure 4 shows a partial order over the cooperative-
ness of 16 different strategies. A higher strategy ismore co-
operative than a lower one. In genera, the strategies at the
same level are not comparable to each other such as S, -
Shigh ad Spign-Sow. However, strategies such as Sqsic-
Svasic Were not originally defined with the notion of cooper-
ativeness as defined in this section; and could thusbe consid-
ered |ess cooperétive than a strategy such as S ., -Spigp thet
attempts to be explicitly cooperative to neighboring agents.

Experimental Evaluation

DCSP experiments in this work were motivated by the fir-
ing position case and the distributed sensor domain. In the
experiments, each agent modeled a pilot whose firing posi-
tion was modeled as the agent’s negotiation variable. The
domain of thevariable was a set of firing positionsrestricted
by local constraints such as enemy positions. There exist
external constraints among negotiation variables, modeling
real-world constraint that, if two pilotswere neighbors, then
their positions (values) must at least be some fixed distance
from each other. Based on these mappings, aDCSP was con-
structed, and the goal of argumentation wasto find valuesfor
agents' negotiation variables that satisfied all of their local
and external constraints. Motivated by our two domains, two
types of DCSP configurationswere considered in the exper-
iments: achain and agrid. In the chain configuration, each
agent had two neighboringagents, toitsright and | eft (except
for end points). In agrid configuration, the negotiation vari-
ables formed a grid in which a variable was constrained by
its four neighbors except the ones on the grid boundary.

Our experiments followed the method used in (Yokoo &
Hirayama 1998) and same criteria were used for evaluation.
In particular, evaluations were performed by measuring cy-
cles and constraint checks. Cycles is the number of nego-
tiation cycles consumed until a solution is found, and con-
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Figure5: Comparing NVA strategies: cycles
straint checks (to measure the total computation cost) isthe
sum of the maximal numbers of constraint checks performed
by agentsat each of the negotiationcycle. Experimentswere
performed for two sets of the 16 negotiation strategies de-
scribed in “NVA Strategies’ section with two different flex-
ibility bases (¢ = sum or min). The number of agents was
512 and the domain size of each negotiation variableis one
dozen for the chain and 36 for the grid. The experimental re-
sultsreported bel ow were from 500 test runsand all the prob-
lem instances were solvable with multiple solutions.

Perfor mance of negotiation strategies
16 NVA strategies with with two flexibility bases (¢ = sum

or min) were compared on both the chain and the grid con-
figurations. Figure 5 shows the number of cycles to reach a
solutionfor all the 16 strategieswith the two flexibility bases
in the grid case. The horizontal axis plots the ratio of the
number of locally constrained agents to the total number of
agents. Each locally constrained agent has alocal constraint
(described in“NVA as DCSP” section) which restricts avail-
able values for its negotiation variable into a randomly se-
lected contiguousregion. Thus, for example, local constraint
ratio 0.1 means that 10 percent of the agents have local con-
straints. Local constraint ratio will henceforth be abbrevi-
ated as LCR. The vertical axis plots the number of cycles.
Theresultsfor all the strategieson both configurations(chain
and grid) showed that S; . -Sow OF Siow-Shign Was the best,
and the results also showed that those strategies with Sp; 45,
or Syqs:c for the good case performed worse than the others.

Given 16 strategieswith two flexibility bases, it isdifficult
to understand different patterns in Figure 5. With the same
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Figure 6: Comparing NVA strategies: negotiation cycles

manner in (Jung, Tambe, & Kulkarni 2001), we will hence-
forth present the results from four specific strategies such as
Sbasic'sbasiCy Slow 'Slow ’ Slow 'Shigh ’ and Sall 'Sall . Us ng
these four strategies does not change the conclusions from
our work, rather it is done solely for expository purpose.

Figure 6 shows the number of cycles to reach a solution
for the selected strategies on both configurations described
above, and both sum and min flexibility bases. These
graphs show the following results: (i) cooperative strategies
can improve performance, and (ii) even in the most cooper-
ative environment, maximal cooperativeness towards neigh-
boring agentsis not the best strategy. In particular, if wefo-
Cuson Sy -S,; Whichisthemaximally cooperative strategy,
it is clearly seen that S-S,y performs better than Sy 5c-
Svasic iINnthegrid and the chain (except for the LCR of 0.4 ~
0.7 in the grid with the flexibility base of min). However,
Suii-Sau performs worse than other less cooperative strate-
gies. More specificaly, Sow-Sow, One of the lower level
cooperative strategies from Figure 4, shows the best perfor-
mance in the chain with ¢ = sum (except for the LCR of 0.0)
and the grid (except for the LCR of 0.9 with both sum and
min asaflexibilitybase). S,;;-S,; doesbetter inexceptional
cases but, in such cases, other less cooperative strategies
(e.9., Sow-Snign) are able to outperform Sy;-S.;. While
Slow 'Slow or Slow 'Shigh performs better than Sbasic'sbasic
in terms of number of cycles, their computational overhead
for value selection may be high. Thus, they may end up
with significant slowdown in constraint checks. However,
the graph of constraint checks shows the same trend with the
graph of number of cycles, eliminating such a possibility.

The results above are surprising because, in cooperative
environments, we expected that the most cooperative strat-
eqy Saui-S.i would perform the best. However, much less
cooperétive strategies , Sou-Siow OF Siow-Shign, Show the
best performance. So, we conclude that a certain level of
cooperativeness is useful, but even in fully cooperative set-
tings, maximal cooperativeness is not necessarily the best
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Figure 7: Performance improvement from Argumentation.

NVA strategy. A related key point to noteisthat choosingthe
right negotiation strategy has significant impact on conver-

gence. Certainly, choosing Syqsic-Seasic May lead to signif-
icantly slower convergence rate while appropriately choos-

iNG Siow-Stow OF Stow-Shign Can lead to significant improve-

ments in convergence. Different flexibility bases also have
an impact on performance. For instance, choosing min asa
flexibility base (1) instead of sum may degrade performance
for some cooperative strategiesin the grid case.

Benefits of Argumentation
One critical question to be answered was how much total

amount of conflict resolution effort was saved by incorpo-
rating argumentation in negotiation, and whether the over-
head of argumentation could be justified. To answer this
question, two different versions of Syusic-Spasic Were com-
pared. The first version was the S,45:.-Spasic described in
“NVA Strategies’ section. The second version was same
With Spasic-Seasic €XCeEpt that it didn’'t use any argumenta-
tion (constraint propagation). That is, agents did not receive
arguments from neighbors, and thus did not propagate con-
strain Let this second strategy be Syq5ic-Spasic(noarg). Fig-
ure 7 shows how many fold of speedup isachieved withargu-
mentation (Spasic-Seasic) COMpared with non-argumentation
(Sbasic-Spasic(noarg)). The experiments were done for the
chain configuration with 16 agents®. Argumentation helped
Svasic-Svasic 10 reduce the total negotiation effort as mea-
sured by cycles (Figure 7.8) and constraint checks (Figure
7.b). One interesting point is that the benefit of argumen-
tation varied non-monotonically as the LCR of the agents
changed. The benefit of argumentation was the lowest when
there were too few or too many locally constrained agents
(e.g., a 0.0, 0.1, and 1.0). Asthe proportion of locally con-
strained agents (LCR) increased, the performance with ar-
gumentation did not monotonically improved. Thus, we can
begin to offer guidance on when to actually apply argumen-
tation for maximum benefits. Next, we provide mathemat-
ical analysis for the benefits of argumentation and the non-
monotonic improvements from argumentation in the chain.

Analysisfor the Benefits of Argumentation
Assuming that the time until a solution is found is propor-

tional to the size of search space, the analysis of reduced
search space from argumentation can provide the answer to
the question how much effort can be saved by argumentation.
For thisanalysis, we assume;

#The results for no-argumentation with larger number of agents
are not shown because experiments were too slow taking an hour
for anindividual runwith 512 agents.



1. N the number of agents;

2. K: the number of values per domain of agent

3. a: fraction of agents that have local constraints

4. /3. reductionfactorindomainduetoalocal constraint (i.e.,
domain becomes K /3 dueto alocal constraint)

Here, o« * N agents have local constraints and their do-
mains arereduced to K /3. Other (N — « x N) agents main-
tain their domainto be /. Thus, we have thefollowingorig-
inal search space (total number of combination of values):

K/B*K/Bx..«K/B+K*Kx ...« K=KY/g*N
—_—

a*xN times (N—axN) times

" Without argumentation, the search space for agents will
remain to be the same as the origina search space since
agents maintain their domains without reduction during
search. However, with argumentation, when there exist lo-
cally constrained agents (o # 0), the domains of neighbor-
ing agents which initially have no local constraints are also
reduced to K’/ insize. Within K/, wehave acertain frac-
tion (1/C) that is consistent. Thus, we have the following
search space with argumentation:

(K/B) * (K/B) x (K/B) % ...+ (K/B)

N times
Note that, at « = 0, the search space with argumenta-
tion will be the same as the original search space at « = 0
since there are no local constraints to cause domain reduc-
tion. Therefore, the “search space without argumentation”
(denoted by S P™°%79) and the “search space with argumen-
tation” (denoted by .S P"¢) will be asfollows:

S pnroarg = [{N/ﬁoc*N
KN ifa=0
arg =

SP { KN /3N otherwise

Now, the ratio of S P49 to .S P"?"¢ indicates how much
effort is saved by argumentation. In the chain case, with
argumentation, agents reduce search space by a fraction of
Sperg [ §prearg asfoIIO\{/S ’ 0

ITa =

arg noarg __
SPT/SP ~ | 1/8U4 N otherwise

This ratio also provides an answer to the question why
the benefits of argumentation varied non-monotonically as
the LCR of the agents changed. Theratio, S P*"9/SP"°%"9,
would appear to be high when « = 1, and reduce as « goes
lower. (As the ratio goes lower (o goes lower), the benefit
from argumentation increases.) Thus, we can explain why
Figure 7 (where LCR is « in our equation) shows greater
speedup in lower LCR’s (with large reduction of search
space), and little speedup when LCR = 1.0 or 0.0.

Related Work
While this paper builds on several previous effortsin argu-
mentation(Kraus, Sycara, & Evenchik 1998; Parsons & Jen-
nings 1996) and distributed constraint satisfaction(Yokoo &
Hirayama 1998), it is a unique effort in synthesizing these
two areas. Argumentation has been rigorously investigated
using different logics including specialy designed logics
of argumentation(Kraus, Sycara, & Evenchik 1998; Sawa-
mura, Umeda, & Meyer 2000). Some of these efforts fo-
cus on forma modeling of agents' detailed mental states,

or specific techniques for resolving conflicts in argumenta-
tion (e.g., defining defeat in argumentation). Unfortunately,
such formalization appears too detailed and computationally
complex to be suitable for empirical investigation of the ef-
fects of argumentation onlarge-scale conflict resolution con-
vergence. Furthermore, these efforts have not focused on
formalizing different collaborative NVA strategies or empir-
ically investigating the impact of such strategies. Indeed,
we are unaware of experimental investigationsinlarge-scale
convergence using such logical frameworks of argumenta
tion. In contrast, we have built on constraint propagation
in DCSP in modeling argumentation. We have also investi-
gated different collaborative NVA strategies using value or-
dering in this framework. Thus, by avoiding detailed mod-
eling of individual agents' mental states, and by building on
highly efficient DCSP algorithms, we enable systematic ex-
perimental investigation of the computational properties of
argumentation systems in the large-scale.

Computational complexity of argumentation/negotiation
has been studied inlogics(Dimopoul os, Nebel, & Toni 1999;
Wooldridge & Parsons 2000). However, these studies fo-
cused on the worst case complexity analysis in computing
arguments or determining if agents can reach an agreement,
and did not investigate the formalization of NVA strategies
and their impact on convergence. While some computa-
tional models for negotiation strategies have been offered,
e.g., (Matos, Sierra, & Jennings 1998), these effortsfocuson
non-collaborative strategies, do not focus on either investi-
gating argumentation or scale-up.

Our work has built on the foundations of the existing
DCSPwork(Armstrong & Durfee 1997; Yokoo & Hirayama
1998). Our ability to experimentally investigate argumenta-
tion and NVA strategies is a testimony to the effectiveness
of using DCSP as acomputational model. We have modeled
argumentation as constraint propagation(Kumar 1992), and
negotiation strategies as value ordering heuristics. Our NVA
strategies which interleave value selection with argumenta-
tion can be seen asthe integration of distributedlocal search
and constraint propagation. In DCSP, distributed versions
of centralized constraint propagation techniques have been
studied(Hamadi 1999). However, they are applied as a pre-
processor rather than being interleaved with search. While
our incorporation of argumentation into DCSP came about
in service of studying NVA, they appear to be useful as pos-
sible enhancements to DCSP a gorithms.

If we view cooperative NVA strategies from purely cen-
tralized perspective, they amount to one-step look-ahead
value ordering(Frost & Dechter 1995). In centralized CSP,
(full) look-ahead value ordering ranks values by some
heuristic functionswhich determine theimpact of each value
onthedomainsof all future (uninstantiated|ower order) vari-
ables. However, since there is no global variable ordering
in DCSP, look ahead val ue ordering technique can not be di-
rectly applied to DCSP. With our mapping of argumentation
onto DCSP as constraint propagation, agents can do value
ordering based on the flexibility given to neighbors by its
values. With constraint propagation, agents also take non-
neighboring agents into account to some extent since their
constraints are propagated into neighbors' local constraints.



Whileresourceallocationisitself abroad area of research,
our use of argumentation for resource conflict resolution and
the use of enhanced DCSP for modeling such conflict res-
olution sets our work apart. For instance, (Liu & Sycara
1996) extends dispatch scheduling to improve resource al-
location; and (Chia, Neiman, & Lesser 1998) on distributed
airport-ground scheduling service. While these systems do
not use argumentation, hopefully our research will begin to
shed light on the utility of argumentation in these domains.

Finally, whilethis paper buildson the previous conference
paper (Jung, Tambe, & Kulkarni 2001), this paper extends
the flexibility function with flexibility bases and provide ex-
perimental resultsfor thisextension. The analysisof the per-
formanceimprovement from argumentationisadded aswell.

Conclusion and Future Work
Argumentation is an important conflict-resol ution technique
inmulti-agent research. However, much of the existingwork
has focused on smaller-scale systems, and major questions
regarding the computational performance of large-scale col-
laborative argumentation and different NVA strategies re-
main unaddressed. Yet it is difficult to answer these ques-
tions with ad-hoc implemented argumentation systems or
complex and detailed logical frameworks.

To address these issues, we provided a novel computa
tional model of NVA asDCSP. Since, thismodel exploitsex-
isting efficient DCSP techniques, and efficiently incorporate
argumentation as constraint propagation, it appears better
suited for conducting large-scale experiments to investigate
computational performance of argumentation. The key con-
tributionsof thispaper are: (1) modeling of argumentationin
terms of constraint communication and constraint propaga-
tionin DCSP; (2) formalizing and investigating different co-
operative NVA strategies; (3) conducting large-scale exper-
iments that quantitatively measure the performance of argu-
mentation and different NVA strategies. These experiments
illustrate that argumentation can lead to significant speedup
in convergence of conflict resolution. Our experiments with
NVA strategiesillustratethat choosing the right strategy can
lead to very significant improvement in rate of convergence.
The experiments also reveal a surprising result: even in a
fully cooperative setting, the most cooperative argumenta-
tion strategy is not the best in terms of convergence in ne-
gotiation. These results can help guide the development of
real-world multi-agents systems. Finaly, key ideas from ar-
gumentation, such as cooperative response, could feed back
into improvements in existing DCSP algorithms.

Among topics for future work, one important topic is
to extend the current NVA mapping onto DCSP in sev-
eral ways. First, we wish to focus on multiple negotiation
variables. Since existing body of AWC can handle multi-
variables per agent, this extension may be straightforward.
Second, constraint propagation as investigated in this paper
does not model all forms of argumentation. For instance,
some types of arguments may lead to shiftinthe NVA strate-
gies, or may add new valuesto variables domains. An addi-
tional topicisto mathematically understand the performance
difference between strategies. Backing up our experimental
results with mathematical analysis may help us understand
different NVA strategies in more general settings.
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