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Abstract
Conflict resolution is a critical problem in distributed and col-
laborative multi-agent systems. Negotiation via argumenta-
tion (NVA), where agents provide explicit arguments (jus-
tifications) for their proposals to resolve conflicts, is an ef-
fective approach to resolve conflicts. Indeed, we are apply-
ing argumentation in some real-world multi-agent applica-
tions. However, a key problem in such applications is that
a well-understood computational model of argumentation is
currently missing, making it difficult to investigate conver-
gence and scalability of argumentation techniques, and to un-
derstand and characterize different collaborative NVA strate-
gies in a principled manner. To alleviate these difficulties,
we present distributed constraint satisfaction problem (DCSP)
as a computational model for NVA. We model argumentation
as constraint propagation in DCSP. This model enables us to
study convergence properties of argumentation, and formu-
late and experimentally compare two sets of 16 different NVA
strategies (over 30 strategies in all) with different levels of
agent cooperativeness towards others. One surprising result
from our experiments is that maximizing cooperativeness is
not necessarily the best strategy even in a completely coop-
erative environment. In addition to their usefulness in under-
standing computational properties of argumentation, these re-
sults could also provide new heuristics for speeding up DC-
SPs. 1

Introduction
Distributed, collaborative agents are promising to play an
important role in large-scale multi-agent applications in-
cluding virtual environments for training, distributed disas-
ter rescue applications, agent assisted human organizations,
and distributed spacecrafts (Barrett 1999; Rickel & Johnson
1997; Scerri, Pynadath, & Tambe 2001; Tambe 1997). While
such applications require agents to be collaborative, conflicts
among these agents are inevitable, often due to their limited
(shared) resources(Tessier, Chaudron, & Muller 2000). Fur-
thermore, given that in distributed, dynamic and complex en-
vironments, no single agent can have a complete and accu-
rate picture of the entire domain, it is often impractical, if not
impossible, to avoid such conflicts via centralized planning.

Negotiation via argumentation (NVA) offers a promising
approach to collaborative conflict resolution(Kraus, Sycara,
& Evenchik 1998; Parsons & Jennings 1996). In this ap-
proach, while agents negotiate as usual by sending each other

1This paper significantly extends our earlier conference pa-
per(Jung, Tambe, & Kulkarni 2001).

proposals and counter-proposals, these proposals are accom-
panied by supporting arguments (explicit justifications). We
have successfully applied NVA to conflict resolution among
agents in real world applications. While these implemented
argumentation systems have performed well in small-size
applications, no systematic investigation on large-scale ar-
gumentation systems has been done. Thus, in scaling up
the systems, several major questions regarding the compu-
tational performance of argumentation remain open. One
key open question is understanding if (and when) argumenta-
tion actually speeds up conflict resolution convergence. The
presence of explicit justifications in argumentation could fail
to improve convergence and may degrade performance due
to processing overheads. Another key open question is for-
mulating different collaborative NVA strategies and under-
standing their impact on convergence.

Answering the above questions requires that we define
an abstract, well-understood computational model of argu-
mentation, suitable for large-scale experimental investiga-
tions. Certainly, answering such questions by building ad-
hoc, complex agent argumentation systems is costly, labor
intensive, and problematic in identifying critical factors of
their success or failure. Another alternative is to exploit
existing formalizations of argumentation in logic, such as
modal logic(Kraus, Sycara, & Evenchik 1998) and dialec-
tical logic(Sawamura, Umeda, & Meyer 2000). However,
these formalizations focus on modeling agents’ complex
mental states, and are sometimes suggested as tools for de-
sign specification, making them unsuitable as efficient com-
putational models for large-scale experimental investigation.

To alleviate the above difficulties, this paper proposes dis-
tributed constraint satisfaction problem (DCSP)(Armstrong
& Durfee 1997; Yokoo & Hirayama 1998) as a novel compu-
tational model of NVA. Argumentation is modeled in DCSP
as communications of agents’ local constraints and their
propagation by other agents. We focus specifically on one of
the best published DCSP algorithms, that of Yokoo (Yokoo
& Hirayama 1998), and model argumentation as an exten-
sion to this algorithm by communicating local constraints.
Argumentation essentially enables this DCSP algorithm to
interleave constraint propagation in its normal execution.
Next, using this extended DCSP as our computational model,
we formulate different NVA strategies, varying the level of
cooperativeness towards others. While cooperativeness to-
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wards others would appear to be fundamentally important in
a cooperative environment, the DCSP model enables a for-
malization of this notion. We specifically formulate different
NVA strategies as varying the value ordering heuristics(Frost
& Dechter 1995). The basic idea is to make some variable
values more or less preferable than the others, so as to model
the varying of cooperativeness towards others.

Existing DCSP algorithms and incorporation of argumen-
tation into DCSP enables us to investigate the impact of ar-
gumentation and different NVA strategies in the large-scale,
which provides the following results. First, argumentation
can significantly improve agents’ conflict resolution conver-
gence, and the overhead of argumentation is in general out-
weighed by its benefits. Here, the benefits of argumentation
vary non-monotonically with the proportion of agents that
offer tightlyconstraining arguments for their proposals. Sec-
ond, with respect to NVA strategies, given a highly collab-
orative environment, the expectation was that more cooper-
ativeness will lead to improved performance. However, a
surprising result we obtain is that a maximally cooperative
strategy is not the most dominant strategy. While some im-
provements in cooperativeness significantly improve perfor-
mance, further improvements do not help and may end up de-
grading performance. These results are measured in negoti-
ation cycles required to converge to a solution and thus these
are not just artifacts of constraint processing overheads.

NVA and its Application Domains
This section introduces key concepts of NVA and two appli-
cation domains which require a significant scale-up in NVA,
thus concretely motivating the need for computational mod-
els of argumentation, such as the one we introduce later.

Negotiation is a process by which a group of agents
come to a mutually acceptable agreement on some is-
sue by communicating their proposals for the issue(Jen-
nings et al. 2001). In argumentation, agents send their
proposals/counter-proposals with explicit justifications (ar-
guments). Following (Jennings et al. 2001), negotiation ob-
jects refer to issues over which negotiation takes place. For
a negotiation object, an agent selects values based on its pri-
vate information and preferences that may not be known to
other agents. For instance, in a distributed spacecraft do-
main(Barrett 1999), a negotiation object may refer to the
direction to point a telescope. Agents can then send pro-
posals for particular values of negotiation objects to others
(e.g., a specific 3D orientation for the telescope), by com-
municating the local information as arguments for their pro-
posal. NVA is an iterative process in which (i) agents gen-
erate proposals for their negotiation objects and supporting
arguments; (ii) agents’ proposals and arguments are evalu-
ated by the other agents; and (iii) after evaluating received
proposals/arguments, agents may accept/reject it and, in the
case of rejection, send a counter-proposal.

Earlier we have developed a domain independent NVA
system, called CONSA (COllaborative Negotiation System
based on Argumentation)(Tambe & Jung 1999). CONSA
is illustrative of complex, practical systems developed for
NVA, that have been successfully applied in small-scale sit-
uations. In CONSA, agents involved in a conflict start a ne-
gotiation process that consists of three stages: opening, ar-

Figure 1: Helicopter combat simulation: an overhead plan-
view display from the ModSAF simulator, with contour lines
illustrating the terrain of the virtual environment.

gumentation, and termination. In the opening stage, agents
agree to jointly resolve the current conflict, establishing a
joint commitment for conflict resolution. In argumentation
stage, they repeat cycles of communicating proposals and ar-
guments, terminating argumentation when the conflict is re-
solved or found unachievable to resolve. CONSA’s repre-
sentation of arguments is based on Toulmin’s argumentation
pattern(Toulmin 1958). A proposal is supported by agents’
beliefs (including private beliefs) and inference rules. Each
fact can be supported by others as well, which builds a tree
structure arguments. Upon receiving such a proposal, other
agents may accept or reject it; if they reject, then the argu-
mentation cycle continues. CONSA has been successfully
applied to one of our application domains described below.

Motivating Examples
The first application domain that motivates this research is
the helicopter combat simulation domain(Tambe 1997). Dif-
ferent conflict situations arise in a team of simulated pilot
agents. One example, henceforth called the firing positions
case, involves allocating firing positions for a team of pilots.
Individual pilots in a helicopter team attack the enemy from
firing positions. Each firing position must enable a pilot to
shoot at enemy vehicles while protecting the pilot from en-
emy fire. In addition, a pilot’s firing position is constrained
by the firing positions of the others: two firing positions are
in conflict if they are within one kilometer of each other.
Therefore, each agent has to negotiate its position with others
to avoid conflict and provide safety.

Figure 1 is a snapshot of the firing position conflict where
such negotiation is necessary. To attack nearby enemy
units(e.g., 100A12, 100A11, etc.), two pilot agents, chee-
tah424 and cheetah425, must occupy good firing positions.
Unfortunately, they are too close to each other (only 100 me-
ters) and need to negotiate to resolve their firing positioncon-
flict. Furthermore, while cheetah425 is oriented in such a di-
rection so as to see the enemy units, cheetah424 is unable to
see them since it is covering a different portion of the battle-
field; in fact, cheetah424 sees different enemy units. Thus,
these agents must negotiate for appropriate firing positions.

CONSA has been successfully applied in the helicopter
combat simulation domain to address conflicts such as these
(and others). Agents using CONSA may negotiate as fol-
lows. First cheetah424 computes new values for the firing



positions of both agents. Often several such firing position
values are possible. Here, cheetah424 selects one value,
offering equi-distant movements; and then communicates
its proposal to cheetah425, suggesting f(cheetah424 move
450 m left, cheetah425 move 450 m right)g, where the ap-
pended justification includes f(enemy E1 position, current
separation 100 m,...)g. When cheetah425 receives and eval-
uates the proposal, it realizes that it cannot move 450 meters
right because of other enemy units E2. Instead, it counter-
proposes f(cheetah424 move 600 m left, cheetah425 move
300 m right)g, with the justification being that f(enemy E1
position, enemy E2 position,...)g. However, cheetah424’s
600 meter move to the left may cause a conflict with a third
agent cheetah426, requiring further negotiation.

The second domain motivating this research is that of dis-
tributed sensor networks. This domain consists of multiple
stationary sensors, each controlled by an independent agent,
and targets moving through their sensing range. Each sensor
is equipped with a Doppler radar with three sectors. An agent
may activate at most one sector of a sensor at a given time or
switch the sensor off. While all of the sensor agents must act
as a team to cooperatively track the targets, there are some
key difficulties in such tracking. First, in order for a target to
be tracked accurately, at least three agents must concurrently
turn on overlapping sectors to triangulate the target’s posi-
tion. Second, to minimize power consumption, sensors need
to be periodically turned off. Third, sensor readings may be
noisy and false detections may occur. Finally, the situation
is dynamic as targets move through the sensing range.

To address this problem, agents may negotiate via argu-
mentation to enable them to coordinate their individual sec-
tor choice. For example, if an agent A detects an object in its
sector 1, it may negotiate via argumentation with neighbor-
ing agents, B and C say, so that they activate their respective
sectors that overlap with A’s sector 1. In particular, it may
be the case that B is low in power or C is busy with another
target. Thus, if agent A is able to provide an argument (“tar-
get detected in sector 1”) to B and C, it may induce them to
switch sectors. Alternatively, B may counter-propose that it
cannot turn on its sector, with an argument “low in power”.

Argumentation open questions
The above applications illustrate the importance of investi-
gating the scale up properties of argumentation. For both do-
mains, argumentation appears useful for a small number of
agents. However, in cases involving hundreds of distributed
sensors in a grid or hundreds of pilot agents in formation,
argumentation may not provide significant enough benefits
to outweigh its overheads (of processing arguments). Thus,
to justify the use of argumentation, we need to investigate if
(and when) argumentation will truly speed up conflict reso-
lution convergence with scale up.

A second very important open question is to investigate
different collaborative NVA strategies and their impact on
convergence. Being cooperative is clearly important in both
domains, e.g., if pilot agents refuse to move, the problem
may in some cases be unsolvable. In some other cases, the
pilot agents’ maximal cooperativeness towards others, by of-
fering to move the maximal distance they are allowed, would
appear to be very helpful. However, as we scale up the num-

ber of agents, it is unclear if cooperativeness in general, or
maximal cooperativeness in particular, will necessarily lead
to improved performance. Unfortunately, answering these
questions by building ad-hoc implementations is difficult —
the process would be impractical and labor intensive, and the
factors that led to success or failure of argumentation may re-
main unclear. For instance, applying CONSA to actual com-
bat simulations involving 100s of pilot agents would appear
extremely difficult. Therefore, to address the above ques-
tions, we need a computational model of argumentation that
is suitable for large-scale experimental investigations.

NVA as DCSP
To provide an abstract and well-understood compu-
tational model for NVA, we propose a novel compu-
tational model, that of Distributed Constraint Satis-
faction Problem (DCSP)(Armstrong & Durfee 1997;
Yokoo & Hirayama 1998). DCSP allows us to easily model
conflicts via constraints. As a well-investigated problem,
it provides efficient algorithms to build on. Most impor-
tantly, it also allows us to very efficiently model the use of
argumentation in negotiation.

A Constraint Satisfaction Problem (CSP) is commonly de-
fined by a set of n variables, X = fx1, ..., xng, each ele-
ment associated with value domainsD1, ..., Dn respectively,
and a set of k constraints, � = fC1, ..., Ckg. A solution in
CSP is the value assignment for the variables which satis-
fies all the constraints in �. A distributed CSP is a CSP in
which variables and constraints are distributed among mul-
tiple agents(Yokoo & Hirayama 1998). We consider DCSPs
with multiple variables per agent(Yokoo & Hirayama 1998).
Formally, there is a set of m agents,Ag = fA1, ...,Amg. Each
variable (xi) belongs to an agentAj . There are two types of
constraints based on whether variables in the constraint be-
long to a single agent or not:

� For a constraint Cr 2 �, if all the variables in Cr belong
to a single agent Aj 2 Ag, it is called a local constraint.

� For a constraint Cr 2 �, if variables in Cr belong to dif-
ferent agents in Ag, it is called an external constraint.

Solving a DCSP requires that agents not only satisfy their
local constraints, but also communicate with other agents
to satisfy external constraints. Note that DCSP is not con-
cerned with speeding up a centralized CSP via paralleliza-
tion(Yokoo & Hirayama 1998); rather, it assumes that the
problem is originally distributed among the agents. This as-
sumption suits us well, since our negotiation problem is in-
deed a distributed one.

Given this DCSP framework, we map argumentation onto
DCSP as follows. First, we divide an agent’s set of variables
into two subsets. In particular, an agent’s negotiation ob-
jects are modeled as externally constrained variables, hence-
forth referred to as negotiation variables. There are external
constraints among negotiation variables of different agents,
modeling the existing conflict. Local information (that is, at
least initially,only known locally by an agent) is mapped into
locally constrained variables, and referred to as local vari-
ables. An agent’s local variables locally constrain its nego-
tiation variables: there exist local constraints between them.



Negotiation via Argumentation DCSP E.g., Firing position case
Negotiation objects Negotiation variables Pilot agents’ positions
Local information Local variables Enemy positions, etc.
Conflicts among agents External constraints Safe distance condition
Argument/justification Internal constraints Restriction on pilot agent’s position from enemies
Argumentation Communicating constraints Communicate justification as restriction on own firing

and Constraint propagation position; and its causing restriction on other pilots
Negotiation strategy Value ordering heuristic Which proposal to send first

Table 1: Mapping NVA onto DCSP.
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Figure 2: Model of agents in argumentation.

Table 1 provides the complete mapping. Column 1 lists
a concept from Negotiation via Argumentation. Column 2
shows its mapping terms of DCSP. We have outlined the
mapping for the first four rows above. The mappings of ar-
gumentation and negotiation strategies in the lower two rows
will be explained later. Column 3 in Table 1 presents exam-
ples corresponding to the mapped concept from the firing po-
sition case. We will now discuss this case in more detail:

� Example: Each helicopter pilot’s firing position is its sin-
gle negotiation variable known to other agents. External
constraints exist among the negotiationvariables of neigh-
boring agents: the firing positions must be at least 1000
meters apart. Enemy positions that are locally observed by
individual agents form local variables. Since enemy posi-
tions (local variables) constrain firing positions (negotia-
tion variables), there exist local constraints between them.

In our initial experimental investigations for DCSP, we
found it sufficient to model each agent as having only one
negotiation variable. However, there is no limitation on the
number of external constraints on this negotiation variable.
Thus, as illustrated in Figure 2.a, each agent (denoted by a
big circle) has only one negotiationvariableXi, but there can
be any number of external constraints Cij, Cik, etc between
negotiation variables Xi and Xj, Xi and Xk, etc. Here,
for expository purpose, all the local variables and local con-
straints that constrain the single negotiation variable are rep-
resented as a single node constraint (LCi) on the negotia-
tion variable. Note that we can easily extend this mapping to
problems involving multiple negotiation and local variables
per agent, as shown in Figure 2.b; in particular, DCSP algo-
rithms such as Asynchronous Weak Commitment search or
AWC(Yokoo & Hirayama 1998) can already deal with multi-
ple variables per agent. Here, the squares labeled v1, v2, v3,
and v4 are negotiation variables, and the small circles and the
links between them are local variables and constraints. This
extension will be considered in our future work.

Now, a major aspect of our mapping is to formalize argu-
mentation in the context of DCSP. The key here is that argu-
mentation can be mapped on as communicating constraints
followed by constraint propagation, which is a process of
reducing domains by filtering the values that cannot partici-
pate in a solution. That is, in DCSP algorithms such as AWC
(Yokoo & Hirayama 1998), agents communicates the val-
ues assigned to their externally constrained negotiation vari-
ables. However, with argumentation, agents also communi-
cate their arguments in the form of local constraints (e.g., the
LCi in Figure 2.a) under which they made the selections of
values for their negotiationvariables. These local constraints
are propagated by the agents receiving the argument.

Concretely, argumentation in DCSP works as follows.
Here we assume agents Ai and Aj are connected by the ex-
ternal constraint Cij where Xi has domain Di and Xj has
domainDj . Suppose an agentAj selects a value vj for its ne-
gotiationvariableXj . It will then send its selection vj and its
local constraint LCj to its neighboring agent Ai whose ne-
gotiation variable is Xi. After receiving the local constraint
LCj fromAj,Ai will propagate the received constraintLCj ,
reducing the domainDi of its negotiation variableXi. Here,
this constraint propagation can be considered as addition of
a new local constraint to agent Ai by which Ai’s incompat-
ible values withAj are eliminated. To elaborate on this, we
define function � and 	 of Ai as follows.

� Definition 1: For an agentAi and its neighboringagentAj
who share an external constraintCij, assume Ai receives
Aj’s local information (LCj and Dj).

– Domain inference function �(Dj ; LCj) returns a re-
stricted domain of Dj , D0

j , inferred by applying LCj
to Dj. (D0

j does not contain any value which violates LC j .)

– Constraint propagation function 	(C ij ; Dj; LCj) re-
turns a new local constraint LC 0 for Xi such that LC 0

eliminates any value v from Di if, given the external
constraintCij, v forXi has no compatible value forXj
in �(Dj ; LCj).

Thus, with constraint propagation, agentAi’s current local
constraint LCi is changed to LCi ^ 	(Cij ; Dj; LCj): Ai
eliminates its own values that are not compatible with LCi
as well as those not compatible with the values in Aj’s cur-
rently restricted domain. (This modified local constraintLCi
is communicated to Ai’s neighbors later.) While this con-
straint propagation amounts only to arc consistency (Kumar
1992), it is not run by itself to solve the DCSP, rather it is in-
terleaved with value selection. For instance, during each cy-
cle of message communication in AWC algorithm, we first



propagate communicated constraints and then select values
for variables. Thus, we do not increase the number of com-
munications, an important issue for DCSP.

NVA Strategies
A major benefit of the mapping NVA to DCSP is that differ-
ent NVA strategies can now be formalized using DCSP. A ne-
gotiation strategy refers to the decision function used by an
agent to make a proposal or counter-proposal. A good nego-
tiation strategy attempts to select proposals that will speed
up conflict-resolution. In the mapping to DCSP, a negotia-
tion strategy in NVA is modeled as a value ordering heuris-
tic used to choose a value of an assignment for a negotiation
variable. A value ordering heuristic ranks the value of vari-
ables(Frost & Dechter 1995). To speed up conflict resolu-
tion, values which are more likely to lead to a solutionshould
be tried first. Even a slight difference of the order in which
values are considered can have significant impact on the time
until a solution is found. In the DCSP mapping of argumen-
tation, different value ordering heuristics can be considered,
each leading to different negotiation strategies.

Formalization of Cooperative NVA Strategy
In AWC(Yokoo & Hirayama 1998), the min-conflict heuris-
tic is used for value ordering: given a variable that is in con-
flict, min-conflict heuristic assigns it a value that minimizes
the number of conflicts with the values of the other vari-
ables(Minton et al. 1990). This min-conflict heuristic is used
as a baseline negotiation strategy and we refer it as Sbasic.
Here, Sbasic strategy selects values only based on the values
of the other agents’ negotiation variables (without exploiting
argumentation in generating a more cooperative response to
others). Argumentation enables agents to consider the con-
straints that the neighboring agents have on their domains,
which are communicated as arguments. Considering neigh-
boring agents’ local constraints enables an agent to generate
a more cooperative response, i.e., select a value which gives
more choices to neighbors, and thus, potentially lead to faster
negotiation convergence. To elaborate on this point, we first
define our notion of cooperativeness. For this definition, let
Ai be an agent with a negotiation variable Xi, domain Di,
and a set of neighboring agents Ni.

� Definition 2: For a value v 2 Di and a set of agents
N sub
i � Ni, flexibility function is defined as f co(v;N

sub
i )

=  (c(v;Aj )) where (i) Aj 2 N sub
i ; (ii) c(v;Aj) is the

number of values ofXj that are consistent with v; and (iii)
 , referred to as the flexibility base, can be sum, min,
max, product or weighted sum;

As an example of the flexibility function f co(v;N
sub
i ),

suppose the flexibility base  is chosen to be sum. Sup-
pose we are given two neighboring agentsA1 andA2, where
a value v leaves 70 consistent values to A1 and 40 to A2

while another value v0 leaves 50 consistent values forA1 and
49 to A2. Now, assuming that values are ranked based on
flexibility, an agent which ranks values using the flexibility
base sum will prefer v to v0: fsumco (v; fA1; A2g) = 110 and
fsumco (v0; fA1; A2g) = 99. If  is set to min however, an
agent will rank v0 higher than v: fminco (v; fA1; A2g)= 40 and
fminco (v0; fA1; A2g) = 49.

We now provide two additional important definitions:

� Definition 3: For a value v of Xi, cooperativeness of v
is defined as f co(v;Ni). That is, the cooperativeness of
v measures how much flexibility is given to all of Ai’s
neighbors by v.

� Definition 4: A maximally cooperative value ofXi is de-
fined as vmax such that, for any other value vother 2 Di,
f co(vmax; Ni) � f co(vother ; Ni).

The concept of cooperativeness goes beyond merely sat-
isfying constraints of neighboring agents and enables even
faster convergence. That is, an agent Ai can provide a more
cooperative response to a neighbor agent Aj , by selecting a
value for its negotiation variable that not only satisfies the
constraint withAj , but maximizes flexibility (choice of val-
ues) forAj . IfAi selects vmax, givingAj more choice, then
Aj can more easily select a value that satisfiesAj’s local con-
straints and other external constraints with its neighboring
agents such as Ak. This is partly the rationale for the pilots
in the firing positions case (described in “Motivating Exam-
ples” section) to offer the maximum flexibility to each other.
Having lower possibilityof constraint violation, this cooper-
ative response can lead to faster convergence.

Sbasic tries to minimize the number of constraint viola-
tions without taking neighboring agents’ own restrictions
into account for value ordering. An agentAi’s selected value
v with Sbasic is thus not guaranteed to be maximally cooper-
ative, i.e., f co(v;Ni) � f co(vmax; Ni). Hence, Sbasic is not
the most cooperative strategy to neighboring agents. Here,
other cooperative strategies can be introduced and formal-
ized in terms of value ordering, i.e., an agent Ai can rank
each value (v) in its domainDi based on the cooperativeness
f co(v;Ni) of that value. Next, we define different coopera-
tive strategies which rely on the basic AWC framework.

Cooperative NVA strategies in AWC framework
Since AWC, the state of the art DCSP algorithm is central to
the NVA strategies we discuss below, it is important to first
discuss AWC in some detail. In AWC, the Sbasic strategy is
used in two cases described below. When an agent Ai se-
lects a new value for its negotiation variable Xi, the value
selection depends on whether Ai can find a consistent value
v from the domain Di of Xi. Here, v is said to be consis-
tent if v satisfies Ai’s constraints with higher priority agents
2. If there exists a consistent value v in Di, we refer to it as
good case. In the good case, an agent applies Sbasic mini-
mizing constraint violations with lower priority agents. On
the contrary, if there is no such v, we refer to it as nogood
case. In the nogood case, an agentAi increases its priorityas
max+ 1, where max is the highest priority of its neighbor-
ing agents and uses Sbasic to minimize constraint violations
over all neighboring agents(Yokoo & Hirayama 1998).

Different negotiation strategies can be described in terms
of the good and nogood cases because different value or-
dering methods can be applied in these two cases. We will
now more formally describe these negotiationstrategies. Let

2A non-negative integer is assigned to each variable as a prior-
ity. Agent and variable in our description are used interchangeably
because each agent has only one variable in the current mapping.



Nhighi (Nlow
i ) be the subset of Ni such that, for every Aj 2

Nhighi (Nlow
i ), the priority ofAj’s negotiation variable Xj is

higher (lower) than the priority of Ai’s negotiation variable
Xi. In the good case, an agentAi computes a set (Vi) of con-
sistent values forXi from its domain Di. For any flexibility
base  , in selecting a value from Vi, four different negotia-
tion strategies can be considered in the good case as follows.

� Shigh: Each agentAi selects a value v fromVi which max-
imizes f co(v;N

high
i ) i.e., Ai attempts to give maximum

flexibility towards its higher priority neighbors wrt  .

� Slow : Each agentAi selects a value v from Vi which max-
imizes f co(v;N

low
i ), i.e., Ai attempts to give maximum

flexibility towards its lower priority neighbors wrt  .

� Sall: Each agent Ai selects a value v from Vi which max-
imizes f co(v;Ni), i.e. max flexibility to all neighbors.

� Sbasic: Each agent Ai selects a value from Vi based on
min-conflict heuristic as described above.

We now define cooperativeness relation among these
strategies based on the cooperativeness of values they select.

� Definition 5: For two different strategies S� and S� de-
fined on a flexibility base  , S� is more cooperative than
S� iff (i) for all Ai, Xi, and v�, v� 2 Di such that v�
andv� are selected byS� andS� respectively, f co(v�; Ni)
� f co(v� ; Ni) and (ii) for some Ai, when f co(v�; Ni) 6=
f co(v� ; Ni), f

 
co(v�; Ni) > f co(v� ; Ni).

� Theorem 1: For any given flexibility base  , the strategy
Sall is maximally cooperative strategy in the good case,
i.e., for any other strategy Sother on the same flexibility
base  , Sall is more cooperative than Sother .
Proof: By contradiction. Assume that Sother is more
cooperative given the flexibility base  . For Ai, vall
is selected by Sall and vother by Sother such that if
f co(vall ; Ni) 6= f co(vother ; Ni), then f co(vall; Ni) <
f co(vother ; Ni). However, by the definition of Sall, vother
would be selected by Sall instead of vall . A contradiction.

By theorem 1, Sall is more cooperative than the other
strategies Shigh, Slow , Sbasic for the good case. Both Shigh
and Slow have trade-offs. For instance, Shigh may leave very
little or no choice to an agent’s neighbors in Nlow

i , making it
impossible for them to select any value for their negotiation
variables. Slow has a converse effect. Sbasic also has trade-
offs because it does not consider neighbors’ flexibility.

The above four different strategies can be also considered
in the nogood case. The computation in the nogood case is
identical to the good case except that the Vi is the set of all
values inDi, since there are no consistent values. Sall is also
the most cooperative strategy in the nogood case. Note that,
in this nogood case, Xi’s priority is increased as usual as de-
scribed above, and Nhigh

i and N low
i are based on the vari-

able’s priority prior to this increase.
Based on the ideas introduced above, we can combine dif-

ferent negotiation strategy combinations for the good and
nogood cases. Thus, for each flexibility base  , there are
16 possible strategy combinations from the four negotiation
strategies(Shigh, Slow , Sall, and Sbasic described above) for

Procedure check agent view // for a strategy S�-S�

1. Propagate constraints from neighbor agents (LCi may be
changed by constraint propagation);

2. Check constraints violation for local constraint (LCi ) and exter-
nal constraints (Cij ) with higher priority neighbors;

� If there exists any violation,
(a) Find a value set Dco �Di whose values are consistent;
(b) If Dco 6= ; // good case

– new cooperative value(�, Dco);
(c) Else // nogood case (no consistent value in D i)

– Record and communicate nogood;
– Xi’s priority = max of neighbors’ priorities + 1;
– new cooperative value(�,Di)

(d) If there exists a change for Xi, communicate it to neighbor
agents;

Procedure new cooperative value (Input: strategy �, domain��
Di; Output: Xi’s new value vnew)

� If � � basic,

1. select vnew 2 � where vnew minimizes the number of con-
straint violation with lower priority agents;

� Else (� 2 fhigh, low, allg)

1. 
 = N�
i (Here, Nall

i � Ni);
2. For ēach value v 2�, v’s flexibility = f co(v;
);
3. Find v 2 � which has max flexibility;

– Apply min-conflict heuristic to break ties;
4. Set the selected v to vnew;

Figure 3: Cooperative NVA strategy in AWC framework

the good case and nogood cases. Since, henceforth, we will
only consider strategy combinations, we will refer to them as
strategies for short. Note that all the strategies are enhanced
with argumentation (constraint propagation): indeed, except
for Sbasic, these strategies cannot be applied without argu-
mentation. Here, two exemplar strategies are listed:

� Sbasic-Sbasic: This is the original AWC. Min-conflict
heuristic is used for the good and nogood case.

� Slow-Shigh: For the good case, an agent is maximally co-
operative towards its lower priority neighbor agents by us-
ing Slow (the selected value doesn’t violate the constraints
with higher neighbors). On the contrary, for the nogood
situations, an agent attempts to be maximally cooperative
towards its higher priority neighbors by using Shigh.

In the next section, we systematically experiment with all
the 16 strategies for two flexibility bases ( = sum ormin).
Sum was selected since defining Sall (or Shigh or Slow) on
this flexibility base implies selecting a value v that maxi-
mizes the sum of number of consistent values for neighbors
Ni (or Nhigh

i or N low
i ). However, in some circumstances,

the distribution of the numbers of consistent values over Ni

may be highly non-uniform. Thus, sum as the flexibility
base may offer high flexibility to some neighbors, but very
low flexibility to others. Selecting  to be min is intended
to alleviate this potential problem. That is, Sall (or Shigh or
Slow) defined usingmin will choose a value that maximizes
the minimum number of consistent values over neighbors Ni.

Figure 3 provides an algorithm for an agents using a co-
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Figure 4: Cooperativeness relationship

operative negotiation strategy for value selection. While the
basic algorithmic framework is from AWC, we have made
three additions based on our NVA mapping: (i) incorporation
of NVA strategies S� and S�; (ii) constraint communication;
and (iii) constraint propagation. Check agent view is a pro-
cedure of AWC in which an agent checks the consistency of
its value assignment with other agents’ values (agent view)
and, if inconsistent, selects a new value. Cooperative nego-
tiation strategies amount to value ordering heuristics in the
procedure. For Figure 3, let’s assume that Ai selects a NVA
strategy S�-S� such that �, � 2 fhigh, low, all, basicg.

Among the cooperative strategies described above, Sall-
Sall is the most cooperative strategy because it is maximally
cooperative to neighboring agents in both good and nogood
cases. Figure 4 shows a partial order over the cooperative-
ness of 16 different strategies. A higher strategy is more co-
operative than a lower one. In general, the strategies at the
same level are not comparable to each other such as Slow-
Shigh and Shigh-Slow . However, strategies such as Sbasic-
Sbasic were not originally defined with the notion of cooper-
ativeness as defined in this section; and could thus be consid-
ered less cooperative than a strategy such as Slow-Shigh that
attempts to be explicitly cooperative to neighboring agents.

Experimental Evaluation
DCSP experiments in this work were motivated by the fir-
ing position case and the distributed sensor domain. In the
experiments, each agent modeled a pilot whose firing posi-
tion was modeled as the agent’s negotiation variable. The
domain of the variable was a set of firing positions restricted
by local constraints such as enemy positions. There exist
external constraints among negotiation variables, modeling
real-world constraint that, if two pilots were neighbors, then
their positions (values) must at least be some fixed distance
from each other. Based on these mappings, a DCSP was con-
structed, and the goal of argumentation was to find values for
agents’ negotiation variables that satisfied all of their local
and external constraints. Motivated by our two domains, two
types of DCSP configurations were considered in the exper-
iments: a chain and a grid. In the chain configuration, each
agent had two neighboringagents, to its right and left (except
for end points). In a grid configuration, the negotiation vari-
ables formed a grid in which a variable was constrained by
its four neighbors except the ones on the grid boundary.

Our experiments followed the method used in (Yokoo &
Hirayama 1998) and same criteria were used for evaluation.
In particular, evaluations were performed by measuring cy-
cles and constraint checks. Cycles is the number of nego-
tiation cycles consumed until a solution is found, and con-
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Figure 5: Comparing NVA strategies: cycles
straint checks (to measure the total computation cost) is the
sum of the maximal numbers of constraint checks performed
by agents at each of the negotiation cycle. Experiments were
performed for two sets of the 16 negotiation strategies de-
scribed in “NVA Strategies” section with two different flex-
ibility bases ( = sum or min). The number of agents was
512 and the domain size of each negotiation variable is one
dozen for the chain and 36 for the grid. The experimental re-
sults reported below were from 500 test runs and all the prob-
lem instances were solvable with multiple solutions.

Performance of negotiation strategies
16 NVA strategies with with two flexibility bases ( = sum
or min) were compared on both the chain and the grid con-
figurations. Figure 5 shows the number of cycles to reach a
solution for all the 16 strategies with the two flexibility bases
in the grid case. The horizontal axis plots the ratio of the
number of locally constrained agents to the total number of
agents. Each locally constrained agent has a local constraint
(described in “NVA as DCSP” section) which restricts avail-
able values for its negotiation variable into a randomly se-
lected contiguous region. Thus, for example, local constraint
ratio 0.1 means that 10 percent of the agents have local con-
straints. Local constraint ratio will henceforth be abbrevi-
ated as LCR. The vertical axis plots the number of cycles.
The results for all the strategies on both configurations (chain
and grid) showed that Slow-Slow or Slow-Shigh was the best,
and the results also showed that those strategies with Shigh
or Sbasic for the good case performed worse than the others.

Given 16 strategies with two flexibility bases, it is difficult
to understand different patterns in Figure 5. With the same
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Figure 6: Comparing NVA strategies: negotiation cycles

manner in (Jung, Tambe, & Kulkarni 2001), we will hence-
forth present the results from four specific strategies such as
Sbasic-Sbasic, Slow-Slow , Slow-Shigh, and Sall-Sall. Using
these four strategies does not change the conclusions from
our work, rather it is done solely for expository purpose.

Figure 6 shows the number of cycles to reach a solution
for the selected strategies on both configurations described
above, and both sum and min flexibility bases. These
graphs show the following results: (i) cooperative strategies
can improve performance, and (ii) even in the most cooper-
ative environment, maximal cooperativeness towards neigh-
boring agents is not the best strategy. In particular, if we fo-
cus on Sall-Sall which is the maximally cooperative strategy,
it is clearly seen that Sall-Sall performs better than Sbasic-
Sbasic in the grid and the chain (except for the LCR of 0.4�
0.7 in the grid with the flexibility base of min). However,
Sall-Sall performs worse than other less cooperative strate-
gies. More specifically, Slow-Slow , one of the lower level
cooperative strategies from Figure 4, shows the best perfor-
mance in the chain with = sum (except for the LCR of 0.0)
and the grid (except for the LCR of 0.9 with both sum and
min as a flexibilitybase). Sall-Sall does better in exceptional
cases but, in such cases, other less cooperative strategies
(e.g., Slow-Shigh) are able to outperform Sall-Sall. While
Slow-Slow or Slow-Shigh performs better than Sbasic-Sbasic
in terms of number of cycles, their computational overhead
for value selection may be high. Thus, they may end up
with significant slowdown in constraint checks. However,
the graph of constraint checks shows the same trend with the
graph of number of cycles, eliminating such a possibility.

The results above are surprising because, in cooperative
environments, we expected that the most cooperative strat-
egy Sall-Sall would perform the best. However, much less
cooperative strategies , Slow-Slow or Slow-Shigh, show the
best performance. So, we conclude that a certain level of
cooperativeness is useful, but even in fully cooperative set-
tings, maximal cooperativeness is not necessarily the best

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

local constraint ratio (LCR)

s
p

e
e

d
u

p
 i

n
 c

y
c

le

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

local constraint ratio

s
p

e
e

d
u

p
 i

n
 c

o
n

s
tr

a
in

t
c

h
e

c
k

s

(a) negotiation cycle (b) constraint checks
Figure 7: Performance improvement from Argumentation.

NVA strategy. A related key point to note is that choosing the
right negotiation strategy has significant impact on conver-
gence. Certainly, choosing Sbasic-Sbasic may lead to signif-
icantly slower convergence rate while appropriately choos-
ing Slow-Slow or Slow-Shigh can lead to significant improve-
ments in convergence. Different flexibility bases also have
an impact on performance. For instance, choosingmin as a
flexibilitybase ( ) instead of summay degrade performance
for some cooperative strategies in the grid case.

Benefits of Argumentation
One critical question to be answered was how much total
amount of conflict resolution effort was saved by incorpo-
rating argumentation in negotiation, and whether the over-
head of argumentation could be justified. To answer this
question, two different versions of Sbasic-Sbasic were com-
pared. The first version was the Sbasic-Sbasic described in
“NVA Strategies” section. The second version was same
with Sbasic-Sbasic except that it didn’t use any argumenta-
tion (constraint propagation). That is, agents did not receive
arguments from neighbors, and thus did not propagate con-
strain Let this second strategy be Sbasic-Sbasic(noarg). Fig-
ure 7 shows how many fold of speedup is achieved with argu-
mentation (Sbasic-Sbasic) compared with non-argumentation
(Sbasic-Sbasic(noarg)). The experiments were done for the
chain configuration with 16 agents3. Argumentation helped
Sbasic-Sbasic to reduce the total negotiation effort as mea-
sured by cycles (Figure 7.a) and constraint checks (Figure
7.b). One interesting point is that the benefit of argumen-
tation varied non-monotonically as the LCR of the agents
changed. The benefit of argumentation was the lowest when
there were too few or too many locally constrained agents
(e.g., at 0.0, 0.1, and 1.0). As the proportion of locally con-
strained agents (LCR) increased, the performance with ar-
gumentation did not monotonically improved. Thus, we can
begin to offer guidance on when to actually apply argumen-
tation for maximum benefits. Next, we provide mathemat-
ical analysis for the benefits of argumentation and the non-
monotonic improvements from argumentation in the chain.

Analysis for the Benefits of Argumentation
Assuming that the time until a solution is found is propor-
tional to the size of search space, the analysis of reduced
search space from argumentation can provide the answer to
the question how much effort can be saved by argumentation.
For this analysis, we assume:

3The results for no-argumentation with larger number of agents
are not shown because experiments were too slow taking an hour
for an individual run with 512 agents.



1. N : the number of agents;
2. K: the number of values per domain of agent
3. �: fraction of agents that have local constraints
4. �: reduction factor in domain due to a local constraint (i.e.,

domain becomes K=� due to a local constraint)

Here, � � N agents have local constraints and their do-
mains are reduced toK=�. Other (N �� �N ) agents main-
tain their domain to beK. Thus, we have the following orig-
inal search space (total number of combination of values):
K=� �K=� � ::: �K=�| {z }

��N times

�K �K � ::: �K| {z }
(N���N) times

= KN=���N

.
Without argumentation, the search space for agents will

remain to be the same as the original search space since
agents maintain their domains without reduction during
search. However, with argumentation, when there exist lo-
cally constrained agents (� 6= 0), the domains of neighbor-
ing agents which initially have no local constraints are also
reduced toK=� in size. WithinK=�, we have a certain frac-
tion (1/C) that is consistent. Thus, we have the following
search space with argumentation:

(K=�) � (K=�) � (K=�) � ::: � (K=�)| {z }
N times

Note that, at � = 0, the search space with argumenta-
tion will be the same as the original search space at � = 0
since there are no local constraints to cause domain reduc-
tion. Therefore, the “search space without argumentation”
(denoted by SP noarg) and the “search space with argumen-
tation” (denoted by SP arg) will be as follows:0

@ SPnoarg = KN=���N

SP arg =

�
KN if � = 0
KN=�N otherwise

Now, the ratio of SP arg to SP noarg indicates how much
effort is saved by argumentation. In the chain case, with
argumentation, agents reduce search space by a fraction of
SP arg=SPnoarg as follows:

SP arg=SPnoarg =

�
1 if � = 0
1=�(1��)�N otherwise

This ratio also provides an answer to the question why
the benefits of argumentation varied non-monotonically as
the LCR of the agents changed. The ratio, SParg /SP noarg,
would appear to be high when � = 1, and reduce as � goes
lower. (As the ratio goes lower (� goes lower), the benefit
from argumentation increases.) Thus, we can explain why
Figure 7 (where LCR is � in our equation) shows greater
speedup in lower LCR’s (with large reduction of search
space), and little speedup when LCR = 1.0 or 0.0.

Related Work
While this paper builds on several previous efforts in argu-
mentation(Kraus, Sycara, & Evenchik 1998; Parsons & Jen-
nings 1996) and distributed constraint satisfaction(Yokoo &
Hirayama 1998), it is a unique effort in synthesizing these
two areas. Argumentation has been rigorously investigated
using different logics including specially designed logics
of argumentation(Kraus, Sycara, & Evenchik 1998; Sawa-
mura, Umeda, & Meyer 2000). Some of these efforts fo-
cus on formal modeling of agents’ detailed mental states,

or specific techniques for resolving conflicts in argumenta-
tion (e.g., defining defeat in argumentation). Unfortunately,
such formalization appears too detailed and computationally
complex to be suitable for empirical investigation of the ef-
fects of argumentation on large-scale conflict resolution con-
vergence. Furthermore, these efforts have not focused on
formalizing different collaborative NVA strategies or empir-
ically investigating the impact of such strategies. Indeed,
we are unaware of experimental investigations in large-scale
convergence using such logical frameworks of argumenta-
tion. In contrast, we have built on constraint propagation
in DCSP in modeling argumentation. We have also investi-
gated different collaborative NVA strategies using value or-
dering in this framework. Thus, by avoiding detailed mod-
eling of individual agents’ mental states, and by building on
highly efficient DCSP algorithms, we enable systematic ex-
perimental investigation of the computational properties of
argumentation systems in the large-scale.

Computational complexity of argumentation/negotiation
has been studied in logics(Dimopoulos, Nebel, & Toni 1999;
Wooldridge & Parsons 2000). However, these studies fo-
cused on the worst case complexity analysis in computing
arguments or determining if agents can reach an agreement,
and did not investigate the formalization of NVA strategies
and their impact on convergence. While some computa-
tional models for negotiation strategies have been offered,
e.g., (Matos, Sierra, & Jennings 1998), these efforts focus on
non-collaborative strategies, do not focus on either investi-
gating argumentation or scale-up.

Our work has built on the foundations of the existing
DCSP work(Armstrong & Durfee 1997; Yokoo & Hirayama
1998). Our ability to experimentally investigate argumenta-
tion and NVA strategies is a testimony to the effectiveness
of using DCSP as a computational model. We have modeled
argumentation as constraint propagation(Kumar 1992), and
negotiation strategies as value ordering heuristics. Our NVA
strategies which interleave value selection with argumenta-
tion can be seen as the integration of distributed local search
and constraint propagation. In DCSP, distributed versions
of centralized constraint propagation techniques have been
studied(Hamadi 1999). However, they are applied as a pre-
processor rather than being interleaved with search. While
our incorporation of argumentation into DCSP came about
in service of studying NVA, they appear to be useful as pos-
sible enhancements to DCSP algorithms.

If we view cooperative NVA strategies from purely cen-
tralized perspective, they amount to one-step look-ahead
value ordering(Frost & Dechter 1995). In centralized CSP,
(full) look-ahead value ordering ranks values by some
heuristic functions which determine the impact of each value
on the domains of all future (uninstantiated lower order) vari-
ables. However, since there is no global variable ordering
in DCSP, look ahead value ordering technique can not be di-
rectly applied to DCSP. With our mapping of argumentation
onto DCSP as constraint propagation, agents can do value
ordering based on the flexibility given to neighbors by its
values. With constraint propagation, agents also take non-
neighboring agents into account to some extent since their
constraints are propagated into neighbors’ local constraints.



While resource allocation is itself a broad area of research,
our use of argumentation for resource conflict resolution and
the use of enhanced DCSP for modeling such conflict res-
olution sets our work apart. For instance, (Liu & Sycara
1996) extends dispatch scheduling to improve resource al-
location; and (Chia, Neiman, & Lesser 1998) on distributed
airport-ground scheduling service. While these systems do
not use argumentation, hopefully our research will begin to
shed light on the utility of argumentation in these domains.

Finally, while this paper builds on the previous conference
paper (Jung, Tambe, & Kulkarni 2001), this paper extends
the flexibility function with flexibility bases and provide ex-
perimental results for this extension. The analysis of the per-
formance improvement from argumentation is added as well.

Conclusion and Future Work
Argumentation is an important conflict-resolution technique
in multi-agent research. However, much of the existing work
has focused on smaller-scale systems, and major questions
regarding the computational performance of large-scale col-
laborative argumentation and different NVA strategies re-
main unaddressed. Yet it is difficult to answer these ques-
tions with ad-hoc implemented argumentation systems or
complex and detailed logical frameworks.

To address these issues, we provided a novel computa-
tional model of NVA as DCSP. Since, this model exploits ex-
isting efficient DCSP techniques, and efficiently incorporate
argumentation as constraint propagation, it appears better
suited for conducting large-scale experiments to investigate
computational performance of argumentation. The key con-
tributionsof this paper are: (1) modeling of argumentation in
terms of constraint communication and constraint propaga-
tion in DCSP; (2) formalizing and investigating different co-
operative NVA strategies; (3) conducting large-scale exper-
iments that quantitatively measure the performance of argu-
mentation and different NVA strategies. These experiments
illustrate that argumentation can lead to significant speedup
in convergence of conflict resolution. Our experiments with
NVA strategies illustrate that choosing the right strategy can
lead to very significant improvement in rate of convergence.
The experiments also reveal a surprising result: even in a
fully cooperative setting, the most cooperative argumenta-
tion strategy is not the best in terms of convergence in ne-
gotiation. These results can help guide the development of
real-world multi-agents systems. Finally, key ideas from ar-
gumentation, such as cooperative response, could feed back
into improvements in existing DCSP algorithms.

Among topics for future work, one important topic is
to extend the current NVA mapping onto DCSP in sev-
eral ways. First, we wish to focus on multiple negotiation
variables. Since existing body of AWC can handle multi-
variables per agent, this extension may be straightforward.
Second, constraint propagation as investigated in this paper
does not model all forms of argumentation. For instance,
some types of arguments may lead to shift in the NVA strate-
gies, or may add new values to variables’ domains. An addi-
tional topic is to mathematically understand the performance
difference between strategies. Backing up our experimental
results with mathematical analysis may help us understand
different NVA strategies in more general settings.
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