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The Negotiation Problem

We are interested in how cooperation can arise in types of
environments, such as open systems, where little or noth-
ing is known about the other agents. We view the ne-
gotiation problem as a strategic and communication rich
process between different local preference/decision mod-
els. This contrasts with the classical cooperative game theo-
retic (axiomatic) view of negotiation process as a central-
ized and linear optimization problem. Although uncon-
cerned with the processes of negotiation, such axiomatic
models of negotiation (in particular those of mechanism
design tradition) has assumed optimality can be achieved
through design of normative roles of interactions that in-
cents agents to act rationally (Neumann & Morgemstern
194.4),(Rosenschein & Zlotkin 1994),(Binmore 1990),(She-
hory & Kraus 1995),(Sandholm 1999). Likewise, in 
eration research the focus is the design of optimal solu-
tion algorithms based on mathematical programming tech-
niques (Kraus 1997),(Ehtamo, Ketteunen, & Hamalainen
2001),(Heiskanen 1999),(Teich et al. 1996). In both cases
optimality is achieved because: a) the geometry of the so-
lution set is assumed to be described by a closed and con-
vex set (therefore there is a bounded number of solution
points), b) the objective functions of the individuals (the
utility function) are concave and differentiable and c) some
global information (such as the actual utility of the agents
or the utility gradient increase vector (Ehtamo, Ketteunen,
& Hamalainen 2001)) is stored by a (hypothetical) central-
ized mediator that (incents) acts to direct problem solvers
towards pareto-optimality. However, although analytically
elegant, such optimality can not be guaranteed in decentral-
ized autonomous agent systems operating in open environ-
ments where information is sparse. Indeed, lack of infor-
mation or knowledge oftenteads to inefficiencies and sub-
optimality in the negotiated outcome.

A classic solution for handling such uncertainties is to as-
sume agents have means to compute conditional probabil-
ities and formulate subjective expected utilities. However
this approach is problematic. Firstly, assigning prior prob-
abilities is practically impossible. Even if assigning prior
probabilities was practically achievable for interactions that

are repeated (hence permitting the use of probability update
mechanisms such as Bayes rule (Raiffa 1968)), the same
is not true for encounters in open systems. In such envi-
ronments the prior probabilities may simply be wrong, a
fact that is exacerbated by the one-off nature of encounters
which prevents the update of prior distributions. Secondly,
the formulation of decisions based on subjective expected
utility introduces the silent out-guessing problem (Young
1975)--the agent designer’s choice of probabilities is based
on guesses about the probable choices of others, whose
choice in turn is dependent on the guesses about the prob-
able choices of the first, and so on.

One solution to this problem is the design of mechanisms
that model degrees of beliefs an agent can hold. We have
previously motivated and shown how a fuzzy model is well
suited for this class of problems (Faratin, Sierra, & Jennings
2000). Below we describe a new fuzzy model of choice ap-
plied to the context of buyer seller negotiation that is norma-
tively specified by a Request For Quote (RFQ) protocol. 
claim that in the absence of precise information/preferences
such models can be usefully executed by agents to make
choices.

A New Fuzzy Multi-Criteria Methodology
The key components of the fuzzy choice model can perhaps
best be explained by means of the following illustrative ne-
gotiation situation. Assume that one agent (the ’seller’) ne-
gotiates with several other agents (the ’buyers’) to sell a par-
ticular product or service. The seller’s RFQ is described in
terms of several criteria, and several quotes have been re-
ceived containing the various buyers’ values on these crite-
ria. Upon evaluating these counteroffers on the various cri-
teria involved in the RFQ, the seller will very likely express
different preferences with respect to these quotes.

Assuming that these preferences are on a [0,1 ]-scale, with
the limit values 0 and I expressing no or strict preference
respectively, the seller’s preferences can be summarized by
means of a fuzzy preference relation P (for a more funda-
mental discussion of fuzzy preference relations and their
rote in fuzzy preference structures, see (Van de Walle 
Kerre 1998)). In the matrix representation of P, the i-th row
of P contains preferences of the form Pij = P(oj, co}) 
[0,1], i.e., the degree of preference a seller has for his or her
offer o compared to a counter-offer coi made by buyer Bi,
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evaluated on criterion cj, with j E {1, ...,n}. We refer to
the i-th row of P as the ’preference profile’ for buyer Bi,
denoted as BiP, the P-afterset of buyer Bi.

The preference profiles of P form the starting point of
a detailed analysis that starts with the pairwise comparison
of the preference profiles. Technically speaking, we com-
pute a degree of inclusion for every pair of profiles - i.e., we
determine to what degree every profile is a subset of (or in-
cluded in) every other profile. This degree reflects how the
seller’s preferences on one counteroffer compare to the pref-
erences on another counteroffer. Taking the transitive clo-
sure of the pairwise comparison matrix resulting from this
computation, leads to a fuzzy quasi-order relation, which we
can process in a standard way. The result of that process is
a family of partial rankings of all counter-offers, of which
every particular member is a partial rank order correspond-
ing to a particular level of fuzziness of the fuzzy quasi-order
relation. More formally, we proceed as follows.

The Dependency Relation
Based upon the seller’s preference relation P, we build the
dependency relation D, a binary fuzzy relation in the set of
buyers B = {B1,..., Bn}, in the following way:

D(Bi, Bj) SH(B~P, BjP),

where SH(A, B) is the degree of subsethood of a fuzzy set
A in a universe X in a fuzzy set B in X, defined by:

SH(A, B) = 1 ~ min(1, 1 A(x) + S(x)),
?’l’zEX

with n the cardinality of X. This subsethood measure is a
weak fuzzy inclusion, i.e.,

A C_ B ~ SH(A,B) = 

for any two crisp sets A and B.

The Fuzzy Quasi-Order Closure

The next step consists of calculating the fuzzy quasi-order
closure Q of the dependency relation D. A binary fuzzy
relation R in a universe X is called a fuzzy quasi-order re-
lation in X if and only if it is reflexive and transitive. It
is well known that any binary fuzzy relation R has a fuzzy
quasi-order closure Q, i.e., a least inclusive fuzzy relation
Q containing R and possessing reflexivity and transitivity
properties (Bandler & Kohout 1988).

Cutting the Fuzzy Quasi-Order Relation
The following characterization of fuzzy quasi-order rela-
tions in terms of a-cuts will prove to be very important (Ban-
dler & Kohout 1988). Consider a binary fuzzy relation R in
X, then :

R is a fuzzy quasi-order relation in X

(Va ̄  [0, 1])(R~ is a quasi-order relation in 

In our buyer-seller negotiation example terminology, the
a-cuts of the relation Q, representing quasi-order relations

in the set of buyers B, have the following interpretation :
(Bi, Bj) 6 Q,~ if and only if buyer Bi is evaluated by the
seller on the criteria at most as good as buyer Bj, with de-
gree of confidence a. To each Q,~ corresponds an equiva-
lence relation Ea defined by :

(Bi,Bj) ¯ E~, ¢e~ (Bi,Bj) ¯ Q~, A (Bj,Bi) 

This equivalence relation partitions the set of buyers/3 in
classes of buyers among which the seller is indifferent, i.e,
who score equally well on the evaluation criteria of the
seller.

The corresponding quotient set /3c, is given by /3~ =
{[b]~ I b e/3} with

[b]. = {c I(b, c) e O.}.
Finally, on the quotient set A~ we can define the order

relation <~ :

[b]a _<, [c]a ¢~ (b, c) ¯ Qa.

Each equivalence class consists of a number of buyers that
have to be considered as equally good. These equivalence
classes become larger with decreasing a and merge grad-
ually. This means that incomparability diminishes at the
cost of increasing indifference. A relationship of the form
[a]~, <~ [b],~ actually means that all buyers in [b],~ are more
preferred by the seller than those in [a]a.

We now have obtained a family of partial rank orders that
express at the various alfa-levels the ranking of the buy-
ers according to the seller’s preferences as expressed in P.
This information will allow us to suggest to the seller which
buyers to negotiate with, depending upon the degree of im-
precision in that given negotiation phase.
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