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Abstract

Division of a resource among multiple agents is a fre-
quent problem in multiagent systems and fair, efficient,
and decentralized allocation procedures are highly val-
ued. A division of a resource or good is envy-free when
every agent believes that its share is not less than any-
one else’s share by its own estimate. As envy-free pro-
cedures are not efficient (in the sense of Pareto opti-
mality) we have previously worked on improving the
efficiency of such envy-free division procedures among
two agents using models of other agents’ utility func-
tions. In this paper, we extend that work by devising
an anytime algorithm that increases the efficiency of
the envy-free allocation. The procedure also has the
desired property of envy-freeness.

Introduction
A key research issue in agents and multiagent research is
to develop negotiation procedures by which agents can
efficiently and effectively negotiate solutions to their
conflicts (Rosenschein & Zlotkin 1994). In this paper,
we focus on the problem of agents vying for portions of a
good. The negotiation process will produce a partition
and allocation of the goods among the agents (Huhns
& Malhotra 1999; Robertson & Webb 1998). We are
interested in both protocols by which agents interact
and appropriate decision procedures to adopt given a
particular procedure.

In an envy-free divisioli, each agent believes that it
received, by its own estimate, at least as much as the
share received by any other agent (Brams & Taylor
1996; Stewart 1999). This also implies that an agent
has no incentive to trade its share with anyone else.
While such guarantees are indeed extremely useful to
bring parties to the discussion table, there is no a pri-
ori reason why a self-interested agent should be happy
with just the share that is most valuable to its estimate
in the group when it can possibly get even more. For
example, a procedure by which an agent can possibly
improve on its share received by an envy-free procedure
without losing the guarantee of envy-freeness, would be
of much value.

We assume that the good being divided is possibly
heterogeneous and the preference of an agent for various
parts of the good is represented by a utility functiont.

For historical reasons, we will represent the good as
a continuously divisible rectangular piece of cake, i.e.,
the cake may be cut at any point and can be cut any
number of times. We are only interested in the length
of the cake.

Envy-free procedures produce allocations that guar-
antee that each participating agent considers itself a
winner. A self-interested agent, however, may not be
contended with the most valuable share (according to
its own estimate) that it can get in the group. Put sim-
ply, a rational agent wants to maximize its utility, and
if there is scope for cornering a larger share of the good
being divided, even an envy-free procedure may not be
satisficing! Envy-free procedures are also not guaran-
teed to produce efficient, viz., Pareto-optimal, divisions.
This means that it is possible to further re-allocate por-
tions of the cake so that the utility of at least one of
the agents is improved without decreasing the utilities
of the other agents.

To illustrate this scenario, consider the "divide and
choose" procedure, in which one agent cuts the cake
into two portions and the other agent gets to choose
the portion it wants for itself. The strategy of the cut-
ting agent would be to divide the cake into two portions
of equal value by its own estimate. The choosing agent
should then choose the portion that is of more value
by its own estimate. Thus, both agents would believe
they did get the most valuable portion of the cake, and
would therefore be envy-free. But there may be por-
tions of the cake in their respective allocations that they
can still exchange and further improve their valuations.
This problem is only exacerbated with larger number
of agents.

In our previous work (Sen & Biswas 2000), we pre-
sented an approach for two-agent divisions by which
agents can use the model of the utility function of the
other agent to increase the efficiency of the resultant

1In this paper the good being divided represents a re-
source of interest to participating agents. We refer to the
resource as a good for consistency with literature in envy-
free division.
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division. The division was guaranteed to be envy-free
and was proven to be optimal when such an allocation
involved the assignment of a contiguous portion of the
cake to one agent. We will refer to this procedure as
’de-opt.

In the present work, we will focus on the problem
of improving the efficiency of envy-free divisions among
two agents by reeursively dividing, using 2e-opt, the
initial partitions produced. While our previous work
shows that there does not exist a guarantee optimal
envy-free division in general, the procedure presented
here can improve the efficiency of divisions that agents
can negotiate by using 2e-opt. The procedure also has
the desired property of improving the efficiency of the
division monotonically with time.

To set the context for this work, we will summarize
the requisites of fair division processes, the framework
for negotiation, and the algorithm 2e-opt from our pre-
vious work. We will then present the recursive algo-
rithm that is the contribution of this paper.

Division of a good

We concern ourselves with the problem of dividing up a
good between multiple individuals. We will assume that
the solution procedure is of a decentralized nature. This
means that the agents will be required only to abide by
a protocol by which the division is to be made. They
can freely choose any strategy to use to determine their
actions within the accepted protocol.

For example, a protocol used in auction settings may
require that every agent submit a sealed bid for the
good to an auctioneer. After every bid is collected, the
good is divided up among the bidders in proportion
to their bids. Our assumption is that once the agents
agree to such a protocol, they are free to choose their
bids following any strategies they adopt. We require,
however, that agents will agree to the division of the
good as specified once they have placed their bids.

From a designer’s point of view, the choice of a pro-
tocol provides a platform for agents to negotiate an
agreeable division. The choice of a strategy will be dic-
tated by concerns for arriving at a preferred share of the
good being divided. The protocol designer should then
provide protocols which can be used by agents to suc-
cessfully negotiate agreeable divisions with reasonable
computational costs. We now list properties of divisions
that can make them agreeable to self-interested agents.

Desired characteristics of divisions

We assume that a single divisible good is to be di-
vided among n agents. The following criteria have been
espoused as desirable characteristics of decision proce-
dures or outcomes from such procedures (Brams ~ Tay-
lor 1996):

Proportlonah Each agent believes that it received, by
its own estimate, at least ~ of the goods being allo-
cated.

Envy-free: Each agent believes that it received, by its
own estimate, at least as valuable a share as that
received by any other agent. This also implies that an
agent has no incentive to trade its share with anyone
else.

Equitable: A solution, i.e., a partition of the good
among the n agents, is equitable, when the share re-
ceived by each agent is identical in terms of their
individual utility functions.

Efficient: A solution is said to be Pareto optimal or ef-
ficient if there is no other partition which will improve
the perceived share of at least one agent without de-
creasing the perceived share of any other agent.

Envy-free divisions with improved
efficiency

We assume that the continuously divisible good is pos-
sibly heterogeneous and the preference of an agent for
various parts of the good is represented by a utility
function. For historical reasons, we will represent the
good as a rectangular piece of cake. For all practical
purposes, however, we are only interested in the length
of the cake. Though we present the 2e-opt negotia-
tion procedure from our previous work (Sen ~ Biswas
2000) here for completeness, at first glance the reader
can simply use the results from the following theorems
to facilitate understanding of the discussion about the
extended protocol in the later sections of this paper.

The utility to the ith agent of a piece of the cake
cut between points a and b (where a < b) is given 
[~Ui(z)dz, where Ui(x) is the utility function of the
ith agent. Without loss of generality, we will assume
that the first agent is having a model,/-/2, of the utility
function of the second agent. This model need not be
accurate, but the better the model, the more benefit
the modeling agent stands to gain by using it.

The 2e-opt procedure we now describe is derived
from Austin’s moving knife procedure (Brams & Taylor
1996). In the 2e-opt procedure (Sen & Biswas 2000),
the modeling agent A hold two knives parallel to the
side edges of the cake and then move them to the right
allowing for wrap around. Let the positions of the left
and right knives at time t be It and rt respectively, l0
and r0 determine the initial region offered to B. The
knives stop at time t = T when the right knife reaches
the original position of the left knife, and the left knife
reaches the original position of the right knife. The
agent B then chooses a time r < T, and the portion
of the cake in between l~ and r~ (with wrap-around if
needed) is given to B, with the rest of the cake going
to agent A (see Figure 1).

It can be shown that B can always negotiate an envy-
free division for itself if it calls "cut" at an appropriate
time irrespective of how A moves the knife. B, however,
can be resentful as it can presume that the advantage of
moving the knife allows A to obtain a super-equitable
share for itself, which guarantees a sub-equitable share
for B (Sen & Dutta 2001).
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Left knife Right knife

Figure 1: Our augmentation of Austin’s procedure with
the modeling agent moving two knives.

Region allocated to B

We now specify the choice of the initial region, the
choice of the target region that the modeler wants the
other to choose, and a way of moving the knife such
that this target region is most likely to be chosen by
the other agent.
Initial region selection: The initial knife placements

should be such that f~UA(x)dx 1 = ~fl Ua(x)dx,
where L is the length o~ the cake. It is also desirable
that the region in between does divide the cake in half
for agent B. Otherwise B may find it beneficial to choose
t = 0 (if, according to B’s estimate, the region (n, 
is the most valuable) or t = T (if, according to B’s es-
timate, the region (re, n) is the most valuable). 
a contiguous region that satisfy both these conditions
may not be found in general. So, the initial placement
(m, n) should also satisfy the following condition:

(re, n) = argmin fY’~B(z)dz l foL-u--BB(Z)dzY,= J~: -’2
.

For ease of exposition, if y < x, we use fff f(z)dz to
represent fL f(x)dx + fYo f(z)dz.
Target re~gion selectiVon: The target region must
result in an envy-free division. Eliminating begin-
ning and end points, the target region should be
selected from the following set: Z = {(x,y) 
(f:~(z)dz > ma~(f,~0- rT

v.(x)d~,f~ U.(x)dx)) 
1 L(f[ Ua(z)dz < ~ fo U~(~)dz)}.

From the regions in Z, we filter out those r.eygions that
are of least value to A: Y = argmin(~.y)ez f~ UA(z)dz.
From the regions in Y, A can select those regions
which are estimated to be of most value to B: X =

Yargmax(,,y)ey f~ "~B(z)dz. This maximizing choice
can be viewed either as a cooperative gesture or as an
attempt to improve the likelihood of B accepting what
A would prefer it to accept. If X is non-empty, then A’s
goal is to select one of its elements and then move the

knifes such that the corresponding region is the most
attractive offer received by B. If X is empty, however,
A will have to be satisfied with half of the cake.
Moving the knife: While moving between pairs
of points as identified in the previous paragraph,
the knife locations (u,v) should satisfy the following
¯ ¯ v-- 1 L-- ,lnequahty:f: UB(x)dx < ~ fo UB(x)dx. For regions
where A’s utility is high, the spacing between the knives
will be reduced to make that region non-envy-free for
B.

An instance of the above procedure is shown in Fig-
ure 2. We present some properties of this decision pro-
cedure (for proof see (Sen ~5 Biswas 2000)):

Theorem I Our scheme dominates Austin’s procedure
with respect to efficiency of allocations.

Theorem 2 If a Pareto-optimal allocation for a prob-
lem involves a contiguous region, our proposed scheme
will select it when given an accurate agent model.

Recursive division to improve optimality

The protocol 2e-opt guarantees an envy-free division
among two agents that is more optimal than Austin’s
moving knife procedure (Austin 1982). The division ob-
tained after applying 2e-opt will be Pareto-optimal only
if there exists some contiguous Pareto-optimal alloca-
tion in the good. In a large majority of cases, however,
such a contiguous Pareto-optimal allocation may not
exist¯ Under such circumstances, we propose an aug-
mented procedure to increase the efficiency of the al-
location without affecting the envy-free guarantee. We
now present a time-constrained procedure (with time-
limit T) that recursively invokes itself, checking at each
stage if further improvements are feasible. The input to
this procedure consists of the envy-free division of the
cake into two portions (portion X for agent A and por-
tion Y for agent B) obtained after applying 2e-opt or
any other envy-free division procedure. The algorithm
is presented in Figure 3.

The above algorithm combines and encapsulates both
the specification of a protocol, i.e., when agents commu-
nicate and the roles played by each agent in the division
process, and the strategy adopted for negotiation, i.e.,
what portions are offered by one agent and which por-
tion is selected by the other. This negotiation procedure
is decentralized as each agent is in control of what to
offer and accept. Such a procedure can be used both
in a cooperative and competitive scenario. In the com-
petitive scenario, the modeler will be interested only
in maximizing its own share of the good. In a cooper-
ative scenario agents can negotiate more efficient and
equitable divisions by truthfully revealing their prefer-
ences or utilities (incorrect utility estimates can limit
the performance of 2e-opt and 2e-optR but they will
still produce envy-free divisions).

We illustrate this process by considering two agents
A and B. Let us assume that an envy-free division
has produced an allocation of portion X to agent A
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Figure 2: Knife-moving procedure snapshots (G: target region; L,R: left, right knife).

and portion Y to agent B. Now, 2e-opt is applied on
both X and Y dividing it into portions (XA,Ys) and
(YA,YB) respectively. This means that if X were to
be the only portion to be divided up between A and
B, then (XA, Xs) would be an envy-free division with
A receiving Xa and B receiving XB, i.e., XA (XB) is
the more valuable portion of X in A’s (B’s) estimate.
Note that (XA, XB) is not the optimal envy-free divi-
sion possible, but the one that is computed by 2e-opt.
Similar reasoning holds for the portion Y. There exists
a plausible exchange between A and B if A believes YA
is more valuable than Xs, and B believes that XB is
more valuable than YA. This process is illustrated in
Figure 4. We have illustrated only a single step of our
algorithm. After the exchange is complete, the algo-
rithm recursively calls 2e-optR over the new allocations.

The above algorithm will return an envy-free alloca-
tion at least as efficient as the ~2e-opt procedure. Also,
if A and B have non-conflicting areas of interest within
the cake, the above algorithm guarantees a more effi-
cient solution than that achieved by Austin’s two person
envy-free allocation procedure. Our algorithm 2e-optR

terminates if A and B decide not to exchange any por-
tion at a particular iteration or if the running time has
exceeded T.

Figure 4 illustrates a possible iteration of our efficient
envy-free division algorithm. Envy-free allocation for A
and B (at the start of the algorithm) is shown. Given
that A likes Y_A more than X_B and similarly B likes
X_B more than Y_A, we can exchange these portions to
achieve more efficiency.

Discussion
In our prior work we presented an algorithm that pro-
duced optimal envy-free divisions of continuously divis-
ible goods between two agents under certain assump-
tions of utility functions (Sen & Biswas 2000). 
this work, we have introduced a recursive extension (of
course, an equivalent iterative version would do just as
well) of the previous protocol that results in an anytime
algorithm which monotonically increases the optimality
of envy-free divisions with available computation time.

It is quite likely that such an extension would fol-
low the law of diminishing returns. That implies that
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Procedure 2e-optR (X,Y,T)
// T is the maximum running time; X, Y are initial allocations
{

if (T=O) // if time has elapsed
return(X,Y); // return new allocations

else
Divide portion X into portion {X_A,X_B} using 2e-opt;
Divide portion Y into portion {Y_A,Y_B} using 2e-opt;
if (Utility_A(X_B) <= Utility_A(Y_A) 

Utility_B(Y_A) <= Utility_B(X_B))
{// if envy-free exchange possible, exchange X_B with Y_A

X <- X_A U Y_A;
Y <- X_B U Y_B;
return 2e-optR(X,Y,(T-C));// Time taken for this call = C

}
else // no more exchange possible

return(X,Y);

Figure 3: The 2e-optR negotiation procedure.

the earlier exchanges are likely to produce greater in-
crease in efficiency compared to latter exchanges. The
computation costs of each negotiation stage should be
roughly the same. This raises the issue of a tradeoff be-
tween computation cost and efficiency improvement. If
the negotiation is done off-line or with a fixed time limit
as we have assumed, the termination criteria should be
as used here. If the agents are interested in factoring in
computation costs, however, negotiation can possibly
be terminated when the expected gain from the next
negotiation stage is less than the computational cost of
participating in that stage.

We are working on extending our envy-free divi-
sion method to more than two agents. In the general
case of n agents, no envy-free division procedure ex-
ists. Hence, we would be interested in augmenting ap-
proximately envy-free division procedures, where allo-
cations are envy-free within some pre-specified error-
bounds (Brams & Taylor 1996). The 2e-optR algo-
rithm, can be utilized to improve the optimality of an
already existing envy-free division among n agents. For
example, for n = 3, an envy-free allocation divides the
cake into three portions. We can apply the 2e-optR al-
gorithm for two persons for every pair of agents. We
allow exchange between two agents if both agree and
the third agent does not object, i.e., the resultant allo-
cation after the exchange does not make the third agent
envious. The problem is similar to the multi-agent con-
tract problem which consists of exchanges between all
agents (Andersson & Sandhohn 1999). However, our
problem is more difficult because multi-agent contract-
ing is concerned only with individual rationality (no
agent will enter into a contract that leaves it worse-
off), whereas in this case we have to additionally en-
sure that all agents remain envy-free after a possible
exchange between any two agents.

We have presented a procedure that improves the ef-
ficiency of n agent envy-free divisions (Nuchia 83 Sen
2001). The difference of this work from the approach
above is that we assume an initial envy-free allocation
and try to improve on that allocation in efficiency with-
out sacrificing the envy-free property.
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