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Modeling Unpredictable or Random Environments

Jeannette M. Wing*
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Context: Formal Specification and
Verification

Given formal specifications of a system and a desired
property of that system, the verification question is
“Does this property hold of this system?” My long-
standing interest in the specification and verification
area has recently turned to autonomous and embedded
systems. Typical autonomous systems are unmanned
spacecraft and planetary exploration robots. Typi-
cal embedded systems are controllers found in aircraft
and automobiles, though they are increasingly found in
household appliances and consumer electronics.

There are some technically challenging formal model-
ing problems that arise from these kinds of applications
because of their operating environments:

e The system’s environment is unknown or unpre-
dictable. For example, for robots exploring Mars, we
cannot predict all environmental conditions or events.
Any system which interacts with humans must deal
with unpredictable behavior, not easily formalized.

¢ The system’s environment is random. Even if we were
able to identify all possible environmental events,
their likelihoods of occurrence might not be uniformly
distributed; more usually, there is a high variance be-
tween occurrences of normal and those of exceptional
events. For example, while we might explicitly model
the possibility of a power surge due to thunderstorms
(or some other act of Mother Nature), we would ex-
pect such events to be rare.

. o The system’s environment is continuous and dy-
namic. For example, temperature, air pressure, and
wind speed are continuous quantities that vary over
time. A control system may be monitoring consump-
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tion of continuous resources such as fuel or regulating
flow of continuous output such as water.

We use hybrid systems to handle the third set of en-
vironmental challenges: mode changes occur discretely
and within each mode, different control laws defined
over continuous variables model system behavior. To
address the first two sets of environmental challenges,
we are investigating the use of stochastic models, e.g.,
Markov Decision Processes.

Modeling Unpredictable Behavior

Let’s consider two traditional techniques for modeling
the environment, where its behavior is unknown or un-
predictable.

1. Open model approach (“all bets are off”): Here, we
carefully model the system by placing pre-conditions
on each of its state transitions. Verification is rel-
ative to these pre-conditions holding; if they don’t
hold-because of unknown or unpredictable environ-
mental behavior—all bets are off. At least we are not
guaranteeing anything outside of that which we mod-
eled.

2. Closed model approach (catchall “fault” states and
“unexpected event” state transitions): Here, we in-
clude in the model of the system a catchall “fault”
state, which can be reached from every other state
nondeterministically. We similarly include for each
state in the model of the environment, a nondeter-
ministic catchall “unexpected event” state transition,
which whenever taken causes the system correspond-
ingly to go to its “fault” state. Verification is relative
to the composition of the system and environment.
Anything not modeled by either of the two compo-
nents (system and environment) or by the composi-
tion of the two is outside the boundary of discourse.
Aside: at this level of discussion, whether the sys-
tem is modeled to have two kinds of nondetermin-
istic choice is a detail; e.g., in CSP a system may
nondeterministically make an internal choice or the
environment may make the system move nondeter-
ministically because of an external choice.

Both approaches are not completely satisfying. In the
first case, by definition we will not be able to say any-
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thing about unknown behavior. It’s a conservative ap-
proach because it qualifies under what conditions we an-
swer “yes” to the verification question (i.e., only when
the pre-conditions hold). In the second case, we will
almost always answer “no” because we can always take
the environment’s “unexpected event” transition and
go to the system’s “fault” state. Answering “no”, how-
ever, is uninteresting. What we really want to be able
to assert is that under the highly likely normal condi-
tions, the system will behave correctly.

Modeling Stochastic Behavior

To address the second set of challenges in model-
ing a system’s environment, specification and verifica-
tion researchers have used probabilistic models, e.g.,
stochastic transition systems (de Alfaro et al. 2000)
and probabilistic I/O automata (Segala & Lynch 1994;
Wu, Smolka, & Stark 1997) and probabilistic log-
ics, e.g., Probabilistic Computation Tree Logic (Bans-
son & Jonsson 1994) and Probabilistic Branching
Time Logic (Baier & Kwiatkowska 1998). For exam-
ple, PCTL formulae are interpreted over finite state
discrete-time Markov chains. The logic is very expres-
sive and has a model checking algorithm that can be
implemented using techniques based on Multi-Terminal
Binary Decision Diagrams (Bianco & de Alfaro 1995;
Clarke et al. 1993). MTBDDs represent transition
probability matrices and differ from Binary Decision Di-
agrams in that the leaves may have values other than 0
and 1; in particular, the leaves contain transition prob-
abilities. Others (Bozga & Maler 1999) use Probabilis-
tic Decision Graphs to represent probability functions;
and Conditional PDGs, Markov transition functions.
PDGs label all nodes, not just leaf nodes, with proba-
bilities; CPDGs extend PDGs to handle undetermined
variables.

Unfortunately, in my preliminary discussions with
colleagues, some of whom invented the techniques and
data structures discussed above, I get a very skeptical
response toward the use of stochastic models to rea-
son about uncertainty or randomness. I would like to
understand why:

¢ Is it because the state spaces are so unreasonably
large to be impractical? How impractical?

e Is it because no one knows where the numbers, i.e.,
probability distributions, come from?

¢ Isit because the mathematical models are inadequate
in some ways? What ways? Or perhaps too un-
wieldy? Why?

What I Hope to Learn from the
Workshop

What I would like to get from this workshop is a better
sense of the foundational and practical limitations of
models, in particular stochastic models, for reasoning
about uncertainty. Of these current limitations, what

kind of progress is reasonable to expect in the near fu-
ture? What are the pitfalls I should avoid in trying to
apply these models? '
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