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Abstract

We present a partial-order probabilistic planning algorithm
that adapts plan-graph based heuristics implemented in Re-
pop. We describe our implemented planner, Reburidan,
named after its predecessors Repop and Buridan. Reburidan
uses plan-graph based heuristics to first generate a base plan.
It then improves this plan using plan refinement heuristics
based on the success probability of subgoals. Our initial ex-
periments show that these heuristics are effective in improv-
ing Buridan significantly.

Introduction
During the last years, deterministic planning algorithms
have demonstrated significant progress in dealing with large
problems. Most notable scaling up has been observed with
plan-graph based, constraint satisfaction problem (CSP)
based, or state space based planning paradigms rather than
partial-order planners which were previously dominant in
planning research for several decades. In particular, the
number of steps that can be synthesized into a plan has in-
creased to the order of a hundred steps making it conceiv-
able that realistic problems can be solved using AI plan-
ning techniques. On the other hand, most realistic prob-
lems require an agent to operate in an uncertain environ-
ment, and it is unfortunate that a planner that can deal with
large, complex, non-deterministic domains has not emerged
despite ubiquitous need (Smith, Frank, & Jonsson 2000;
Wilkins & desJardins 2001).

Recently, it was demonstrated that the very heuristics that
speed up non-partial-order planners can be used to scale
up partial-order planning (Nguyen & Kambhampati 2001).
It is argued that in deterministic domains, the partial-order
planning paradigm might be desirable due to two main rea-
sons. First, due to its least commitment strategy, partial-
order planning (POP) produces plans which offer more exe-
cution flexibility as compared to other planning paradigms.
In particular, steps have precedence relations between them
only if there is a causal connection between them, or they
must be ordered to make the plans correct. The execution
flexibility offered by partial order planners is significant in
multi-agent domains because the plans are highly paralleliz-
able making the use of several agents possible. Second, the
POP framework has been used for domains which require

reasoning about time. In particular, planners that can han-
dle rich temporal constraints have been based on POP algo-
rithms.

Furthermore, when a planning domain has uncertainty,
optimization concerns come into the picture either explicitly
or implicitly. When the optimization requirement is explicit,
i.e., the planner needs to find a plan that makes the best use
of the resources available, all the planning paradigms are
faced with exponential explosion in the search space. On the
other hand, there are domains where multiple criteria must
be considered, but an optimization problem cannot be ex-
plicitly specified due to the lack of an objective function.
Obviously, in probabilistic domains, optimality can no more
be measured by the number of steps, because a long plan
might have a larger probability of success than a shorter one.
Because all base plans are candidates for being improved to
become a solution plan, an iterative approach might be desir-
able, so that an objective function can also be iteratively for-
mulated as options become clearer. In implementing such an
approach, constructing a least commitment plan as the base
plan is advantageous because it results in the most compact
representation for further iterations.

We therefore believe there is great incentive to explore
the ways for improving the speed of partial order proba-
bilistic plans. In this paper, we explore these approaches by
demonstrating that plan graph analysis and other heuristics
implemented in the Repop system (Nguyen & Kambhampati
2001) can be applied to probabilistic partial-order planning
to form a partially ordered base plan. These, coupled with
selective plan improvement heuristics result in significant
improvement over Buridan, a partial-order planner (Kushm-
erick, Hanks, & Weld 1995). In addition, by using a partial-
order plan representation, we can avoid splitting the plans
into several “branches” as uncertainty is introduced. The re-
sult is a planning algorithm that enjoys the soundness, com-
pleteness, and flexible execution properties of probabilistic
partial-order planning, and benefits from speed-up heuristics
of other planning paradigms.

The purpose of this paper is to show preliminary exper-
iments with our Reburidan probabilistic planning system,
named after its predecessors Repop and Buridan. In the re-
mainder of this paper, we first provide background on prob-
abilistic planning. We then describe our planning algorithm,
Reburidan, which has been named after its predecessors Re-
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pop and Buridan. We describe the heuristics used and pro-
vide empirical results demonstrating their effectiveness. We
conclude with a summary and directions for future work.

Background
We begin by providing a brief description of partial-order
probabilistic planning, and we build on the representation
first developed for Buridan (Kushmerick, Hanks, & Weld
1995, p. 247).

A partially ordered plan P is a is 5-tuple, �STEPS, ORD,
LINKS, OPEN, UNSAFE�, where STEPS is a set of ground ac-
tions, ORD is a set of ordering constraints, LINKS is a set of
causal links, OPEN is a set of open conditions, and UNSAFE is
a set of unsafe links.

The steps come from a domain theory which contains ac-
tions similar to the STRIPS representation with their pre-
condition and effect lists except for the fact that precondi-
tions are called triggers, and the effects are probabilistic. An
action is a set of triples �� t1�ρ1�e1 ��� � � �� tn�ρn�en ��,
where each ti is a set of literals called a trigger, ei is a set
of literals called the effects, and ρi is the probability that the
effects in ei will take place if all the literals in ti hold at the
time of execution. By convention, the triggers are exhaus-
tive and mutually exclusive, and the probabilities for each
distinct trigger add up to 1. Figure 1 depicts an example
probabilistic action taken from the logistics domain. The la-
bels on the arcs are the triggers, and the probabilities, and
the rectangular boxes contain the effects. The empty boxes
denote that the action has no effect under the circumstances
listed.

UNLOAD-P1-TR-PGH -PO

in-p1-truck ~in-p1-truck

at-truck-pgh-po

at-p1-pgh-po
~in-p1-truck

0.7 0.3

~at-truck-pgh-po

Figure 1: The UNLOAD action succeeds only with proba-
bility 0.7 when the trigger conditions are true.

An ordering constraint is of the form Si � S j and repre-
sents the fact that step Si precedes step S j. A causal link is
a triple � Si� p�S j �, where Si is the producer step, S j is the
consumer step and p is a literal that represents the condition
supported. (We refer the reader to (Kushmerick, Hanks, &
Weld 1995) for further details regarding probabilistic repre-
sentation.) An open condition is a pair � p�S �, where, p is
a literal representing a condition needed by step S. A causal
link � Si� p�S j � is unsafe if the plan contains a threaten-
ing step Sk such that Sk has p among its effects, and Sk may

intervene between Si and S j. Note that a probabilistic ac-
tion may have several sets of effects and an action will be
considered to be a threatener as long as one set of effects
contains p. Open conditions and unsafe links in a plan are
collectively referred to as flaws.

A planning problem is a triple �I�G� t�, where, I is a prob-
ability distribution over states representing the initial state,
G is a set of literals that must be true at the end of plan exe-
cution, and t is a probability threshold.

The Buridan algorithm operates as follows: it constructs
an initial plan by forming I and G into initial and goal steps
respectively, and then refines the plans in the search queue
until it finds a solution plan that meets or exceeds the prob-
ability threshold. We term a plan for which OPEN = /0 and
UNSAFE = /0 as a quasi-complete plan. In probabilistic plan-
ning, a quasi-complete plan might fail to be a solution if it
does not meet the probability threshold.

Plan refinement operations involve repairing flaws: clos-
ing an open condition, or handling an unsafe link. An open
condition can be closed by adding a new step from the do-
main theory, or reusing a step already in the plan. An un-
safe link is handled by the promotion and demotion oper-
ations, or by confrontation. Confrontation was introduced
in UCPOP(Penberthy & Weld 1992), and involves marking
commitment to those conditional or probabilistic effects of
an action that do not include the threatening condition.

The search is conducted using an A� algorithm guided
by a ranking function which provides the f value. In the
next section, we describe how Repop’s relax heuristic can
be adapted to provide a better ranking function for Buridan.

Repop’s Relax Heuristic
Nguyen and Kambhampati describe a combination of
heuristics that bring the performance of Ucpop to the level
of the state-of-the-art planners(Nguyen & Kambhampati
2001). One such heuristic—the relax heuristic—provides
an estimate of the total number of new actions needed to
close all the open conditions. The relax heuristic involves
ignoring the negative interactions among the steps in the
plan and building a planning graph akin to Graphplan’s plan-
ning graph (Blum & Furst 1997) to compute distance-based
heuristics (Ghallab & Laurelle 1994; McDermott 1999;
Bonet & Geffner 2001).

Before starting to search, Repop first builds a planning
graph which has the literals in the initial state in its first level,
and continues to expand it until it reaches a level where all
the goal literals are present without mutex relationships be-
tween them, and the plan graph is static.

Suppose that a partially ordered plan Pi in the search space
has a set of literals L � �l1� � � � � li� � � � � ln� as the conditions
in OPEN. To compute the estimated cost of achieving all the
conditions in L, Repop uses the plan graph to find the last
literal in L, say li, to be achieved by the plan. Suppose that S j
is the step that achieves li. Then one can write a recurrence
relation for the cost of achieving all the conditions in L:
cost(L) = new-step(S j) +
cost ( L � preconds(S j) - effects (S j))

This formula is recursively based on the preconditions of
S j and reaches its base condition when L is the set of con-



ditions in the initial state yielding a cost of 0. New-step
evaluates to 1 if S j is not among the steps in the plan, and to
0 otherwise.

The cost value is used to compute the rank of a plan P
as follows:
rank(P) = � STEPS( P)� + w * cost(conds ( OPEN)),
where, w is an adjustable parameter used to increase the
greediness of the search.

Relax Heuristic in Buridan
As it can be seen, the computation of the estimated cost de-
pends on building a plan graph. In order to account for prob-
abilistic effects, one would need to split the plan graph into
as many plan graphs as there are leaves in a probabilistic
action. To avoid this, we rest on the observation that the
search space of a probabilistic partial-order planner contains
two kinds of plans. The first kind is a quasi-complete plan
which does not have any open conditions or unsafe links. If
a quasi-complete plan meets the probability threshold, then
it is a solution plan. If it does not meet the threshold, it might
be possible to improve it. The second kind is an incomplete
plan which has flaws to be taken care of. Therefore, one can
view plan refinement as a two phase process. The first phase
consists of making the plan quasi-complete, and the second
phase consists of further improving the quasi-complete plan
so that it meets the probability threshold.

While building a quasi-complete plan, we can temporar-
ily ignore the actual probability numbers, and concentrate
on repairing the flaws. When the probability numbers are
ignored, the planning problem becomes deterministic, and
Repop’s plan-graph based heuristics can be used.

To facilitate this, we split each action in the domain the-
ory into as many deterministic actions as the number of
nonempty effect lists. Each new action represents a possible
way the original action would work (Fig. 2). For incomplete
plans, we use the deterministic actions and plan-graph based
heuristics. Once the plan becomes quasi-complete, we revert
the operators back to their probabilistic originals and let the
planner work with heuristics that are not based on the plan
graph.

This approach has three advantages:

1. The search queue is uniform in the sense that both quasi-
complete plans and incomplete plans are partial-order
plans. As opposed to using a non partial-order planner to
come up with a quasi-complete plan, this offers better po-
tential for integrating an expressive language for use with
more complicated domains such as the ones described in
(Smith, Frank, & Jonsson 2000).

2. The quasi-complete plans can be returned at any time as
intermediate solutions (anytime algorithms).

3. Both the quasi-complete plans and the solution plans are
highly parallelizable due to partially ordered representa-
tion.

Reopening Conditions
An important distinction between deterministic partial-order
planning and probabilistic partial-order planning is multiple

support for plan literals. In the deterministic case, an open
condition is permanently removed from the list of flaws once
it is resolved. In the probabilistic case, it can be reopened so
that the planner can search for additional steps that increase
the probability of the literal.

When Buridan retrieves a quasi-complete plan from the
search queue, it indiscriminantly reopens all the previously
closed conditions resulting in needless expansion of the
search space. We address this problem by employing selec-
tive reopening (SR). In particular, we select a random total
ordering of the plan and look at the state distribution after
the execution of each step to reopen only the conditions in-
volving literals that are not guaranteed to be achieved.

As an example, consider the situation depicted in Fig. 3,
where, �T, STEPi�, and �a, STEPj� are open conditions
that are now closed by causal links. Let PROB(a�S) denote
the probability of condition a just before the execution of
step S. We reopen only those previously closed conditions
c, where,

� c is an effect needed for STEPi, and PROB(c,STEPi) � 1,
or

� c is a trigger of a STEPi, and PROB(c,STEPi) � 1 and
c is a trigger for an effect a needed for STEPj, and
PROB(a,STEPj) � 1.

T ~T

p 1-p

a

STEPi

to  STEPj

Figure 3: �T,STEPi� and �a,STEPj� are open conditions
that are now closed. The arcs represent causal links.

The rationale behind the first case is that there is no need
for additional support for an effect that will be achieved with
probability 1. The rationale for the second case is that there
is no need for additional support for a trigger if it already is
expected to be achieved with probability 1, or the effect it
enables will be achieved with probability 1.

As we show in the next section, the benefit of avoiding
extra plans in the search space far exceeds the computational
overhead incurred.

Empirical Results
We have conducted a set of preliminary experiments by us-
ing the transportation and robot domains which were shown
to benefit from Repop’s heuristics both in terms of speed up
and plan quality. We ran all the experiments using Allegro
Lisp on a 550 MHz Linux machine.

We coded probabilistic actions for an increasing number
of packages (logistics-1 has 1 package, and logistics-5 has 5
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Figure 2: Probabilistic action ACTION1 is split into deterministic actions ACTION1-1, ACTION1-2, and ACTION1-3.

packages), and objects to be delivered (gripper-2 has 2 ob-
jects, and gripper-4 has 4). In Table 1, we tabulate the im-
provement in the performance of Buridan as our heuristics
are added. In these experiments, the probability threshold is
set to 0.6. Repop refers to the Repop heuristics and SR refers
to selective reopening. For the cases marked with a “*”,
no solution was found within 20 minutes of processor time,
or within 10,000 plans in the search space. For logistics-
5, Buridan + Repop was only able to find a quasi-complete
plan, therefore the run time is shown in parentheses. The
largest number of steps was 45. Buridan can solve the sim-
ple logistics problem which yields a plan with 4 steps, but
fails to solve the larger problems within the time allotted.
The SR heuristic is more effective in the logistics domain
due to the large number of operators instantiated.

In Table 2, we show the run times for the best perform-
ing combination, i.e., Buridan+Repop+SR, as the probabil-
ity threshold is increased. While selective reasoning can
be observed to be helpful, the steep increase in run times
shows that more powerful heuristics for plan improvement
are needed. We are currently looking into techniques for in-
corporating probability of success into the ranking function
as well as expanding the plan graph beyond the point where
all the goal conditions are satisfied.

Related Work
Early work has been done in improving Buridan with prob-
ability based heuristics(Blythe 1995). The recent trend is
to augment the state-of-the-art planners with reasoning un-
der uncertainty. Work has been done in stochastic satisfia-
bility based planning in probabilistic domains (Majercik &
Littman 1998), and in non-probabilistic domains (Ferraris
& Giunchiglia 2000); probabilistic planning in the Graph-
plan framework (Blum & Langford 1999); non-probabilistic
planning under uncertainty using state space search (Bertoli,
Cimatti, & Roveri 2001); and non-observable Markov De-
cision Process (MDP) based planners (Boutilier, Dean, &
Hanks 1999).

Non-probabilistic conformant planning is also a “blind”
planning technique which has been explored in (Goldman
& Boddy 1996; Smith & Weld 1998; Bertoli, Cimatti, &
Roveri 2001; Ferraris & Giunchiglia 2000). Conformant

planners generate plans which cover all possible situations
by finding alternative actions. Probabilistic planners can in
addition use the same action repeatedly to increase the prob-
ability of success.

There has also been work in integrating conditional and
probabilistic planning in STRIPS domains (Draper, Hanks,
& Weld 1994; Majercik & Littman 1999; Onder & Pollack
1999; Hansen & Feng 2000; Karlsson 2001), and in more
expressive domains allowing derived and functional effects
(Ngo, Haddawy, & Nguyen 1998). Most likely, no planning
paradigm will be superior in all kinds of domains. Conse-
quently, there is no consensus on a set of benchmark set of
problems to allow comparison of planners. On the positive
side, new application domains are emerging as the planning
technology advances. We will be providing a seed set of
benchmark problems with the release of Reburidan.

Conclusion
In this paper, we described powerful heuristics for proba-
bilistic partial-order planning. In designing our heuristics,
we relied upon plan graph analysis techniques implemented
in Repop, and probabilistic analysis to separate the condi-
tions that are worthwhile for added support. Our experi-
ments show substantial speedup over Buridan, and we be-
lieve that the basic concepts can be carried over to more
complicated domains.

We are currently working on expanding our experiments
to other probabilistic domains and performing comparisons
to other probabilistic planners such as Maxplan (Majercik
& Littman 1998), PGraphplan (Blum & Langford 1999),
SPUDD (Hoey et al. 1999) and GPT (Bonet & Geffner ).
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